next up previous contents
Next: Hartree and exchange-correlation energies Up: Density-kernel derivatives Previous: Density-kernel derivatives   Contents

Kinetic and pseudopotential energies

From equations 7.6, 7.16 and 7.18 we have that

\begin{displaymath}
E_{\mathrm{kin,ps}} = T_{\mathrm s}^{\mathrm J} + E_{\mathrm...
...NL}} =
2 K^{ij} (T + V_{\mathrm{loc}} + V_{\mathrm {NL}})_{ji}
\end{displaymath} (7.21)

and therefore
\begin{displaymath}
\frac{\partial E_{\mathrm{kin,ps}}}
{\partial K^{\alpha \bet...
... 2 (T + V_{\mathrm{loc}} +
V_{\mathrm {NL}})_{\beta \alpha} .
\end{displaymath} (7.22)



Peter D. Haynes
1999-09-21