next up previous contents
Next: Hartree energy and potential Up: Total energy and Hamiltonian Previous: Total energy and Hamiltonian   Contents

Kinetic energy

The kinetic energy of the non-interacting Kohn-Sham system is given by

\begin{displaymath}
T_{\mathrm s}^{\mathrm J} = - \int {\mathrm d}{\bf r'}~
\lef...
...ight]_{{\bf r}={\bf r'}}
= 2 K^{\alpha \beta} T_{\beta \alpha}
\end{displaymath} (7.6)

in which
\begin{displaymath}
T_{\alpha \beta} = -\frac{1}{2} \int {\mathrm d}{\bf r}~
\phi_{\alpha}({\bf r}) \nabla_{\bf r}^2 \phi_{\beta}({\bf r})
\end{displaymath} (7.7)

are the matrix elements of the kinetic energy operator in the representation of the support functions. Since all of the matrix elements between the spherical-wave basis functions can be calculated analytically,
\begin{displaymath}
T_{\alpha \beta} = \sum_{n \ell m, n' \ell' m'} c^{n \ell m}...
...pha , n \ell m ;\beta , n' \ell' m'} c^{n' \ell' m'}_{(\beta)}
\end{displaymath} (7.8)

where ${\cal T}$ denotes matrix elements of the kinetic energy operator between spherical-wave basis functions.

Peter D. Haynes
1999-09-21