next up previous contents
Next: Total energy Up: Density-kernel derivatives Previous: Kinetic and pseudopotential energies   Contents

Hartree and exchange-correlation energies

The sum of the Hartree and exchange-correlation energies, $E_{\mathrm {Hxc}}$ depends only on the density so that

\begin{displaymath}
\frac{\partial E_{\mathrm{Hxc}}}{\partial K^{\alpha \beta}} ...
...f r})}
\frac{\partial n({\bf r})}{\partial K^{\alpha \beta}} .
\end{displaymath} (7.23)

The functional derivative of the Hartree-exchange-correlation energy with respect to the electronic density is simply the sum of the Hartree and exchange-correlation potentials, $V_{\mathrm{Hxc}}({\bf r})$. The electronic density is given in terms of the density-kernel by
\begin{displaymath}
n({\bf r}) = 2 \phi_i({\bf r}) K^{ij} \phi_j({\bf r})
\end{displaymath} (7.24)

so that we obtain
\begin{displaymath}
\frac{\partial n({\bf r})}{\partial K^{\alpha \beta}} =
2 \phi_{\alpha}({\bf r}) \phi_{\beta}({\bf r}) .
\end{displaymath} (7.25)

Finally, therefore
\begin{displaymath}
\frac{\partial E_{\mathrm{Hxc}}}{\partial K^{\alpha \beta}} ...
...r})
\phi_{\alpha}({\bf r}) = 2 V_{\mathrm{Hxc},\beta \alpha} .
\end{displaymath} (7.26)



Peter D. Haynes
1999-09-21