next up previous contents
Next: Kinetic energy Up: Computational implementation Previous: Computational implementation   Contents

Total energy and Hamiltonian

A quantity which is frequently required is the overlap matrix $S_{\alpha \beta}$ defined by

\begin{displaymath}
S_{\alpha \beta} = \int {\mathrm d}{\bf r}~
\phi_{\beta}({\bf r}) \phi_{\alpha}({\bf r}) .
\end{displaymath} (7.3)

The overlap matrix elements between the spherical-wave basis functions can be calculated analytically (section 5.4), and are denoted ${\cal S}_{\alpha, n \ell m ; \beta, n' \ell' m'}$ where
\begin{displaymath}
{\cal S}_{\alpha , n \ell m ;\beta , n' \ell' m'} =
\langle ...
..._{\alpha , n \ell m} \vert \chi_{\beta , n' \ell' m'} \rangle
\end{displaymath} (7.4)

so that the overlap matrix elements are given by
\begin{displaymath}
S_{\alpha \beta} = \sum_{n \ell m, n' \ell' m'} c^{n \ell m}...
...pha , n \ell m ;\beta , n' \ell' m'} c^{n' \ell' m'}_{(\beta)}
\end{displaymath} (7.5)

recalling that the support functions may be assumed real in the case of $\Gamma$-point Brillouin zone sampling.

Subsections

Peter D. Haynes
1999-09-21