next up previous contents
Next: Support function derivatives Up: Density-kernel derivatives Previous: Hartree and exchange-correlation energies   Contents

Total energy

Defining the matrix elements of the Kohn-Sham Hamiltonian in the representation of the support functions by

\begin{displaymath}
H_{\alpha \beta} = T_{\alpha \beta} + V_{\mathrm{Hxc},\alpha...
...
V_{\mathrm{loc},\alpha \beta} + V_{\mathrm {NL},\alpha \beta}
\end{displaymath} (7.27)

the derivative of the total energy with respect to the density-kernel is simply
\begin{displaymath}
\frac{\partial E}{\partial K^{\alpha \beta}} = 2 H_{\beta \alpha} .
\end{displaymath} (7.28)



Peter D. Haynes
1999-09-21