next up previous
Next: Results and discussion Up: Total-energy calculations on a Previous: Hartree, local pseudopotential, and


Total energy optimisation

The total energy is a functional of the charge density: $E = E[n(\mathbf{r})]$. The charge density itself is expanded in terms of the basis $\{ B(\mathbf{r}) \}$ and depends upon the density kernel elements, $\{ K^{\alpha\beta} \}$, and the NGWF expansion coefficients, $\{ C_{KLM,\alpha} \}$. Provided that it is $N$-representable, this dependence should be variational, i.e., the ground state energy, $E_{\mathrm{min}}$, is given by
\begin{displaymath}
E_{\mathrm{min}} = \min_{\{K^{\alpha\beta} \},\{ C_{KLM,\alpha} \}} E( \{K^{\alpha\beta}\}, \{C_{KLM,\alpha}\} ).
\end{displaymath} (39)

In this work we are concerned principally with the optimisation of the elements of the density kernel and we will consider the NGWF coefficients, $\{ C_{KLM,\alpha} \}$, as being fixed. We use the pseudo-atomic orbitals (PAOs) of Sankey et al. [20] as our NGWFs.

This minimisation must be performed under the constraints of constant electron number,

\begin{displaymath}
N_{\mathrm{e}} = \int_{V} d\mathbf{r} \: n (\mathbf{r}) = 2K^{\alpha\beta}S_{\beta\alpha} = 2\mathrm{Tr}[\mathbf{KS}],
\end{displaymath} (40)

and density-matrix idempotency,
\begin{displaymath}
\rho (\mathbf{r},\mathbf{r}') = \int_{V} d\mathbf{r}'' \: \r...
...lpha\beta} = K^{\alpha\gamma}S_{\gamma\delta} K^{\delta\beta},
\end{displaymath} (41)

where the overlap matrix, $S_{\alpha\beta}$ is given by
\begin{displaymath}
S_{\alpha\beta} = \int_{V} d\mathbf{r} \: \phi_{\alpha}(\mathbf{r})\phi_{\beta}(\mathbf{r}).
\end{displaymath} (42)

In order to avoid explicitly imposing the idempotency constraint (41), we use the method suggested by Li, Nunes and Vanderbilt [21] and independently by Daw [22], and generalised to the case of non-orthogonal functions by Nunes and Vanderbilt [23]. Our implementation follows the simplified version of Millam and Scuseria [24]. We define the following function of the density kernel $\mathbf{K}$:

\begin{displaymath}
L(\mathbf{K}) = E(\tilde{\mathbf{K}}) - \mu (2\mathrm{Tr}[\mathbf{KS}] - N_{\mathrm{e}}),
\end{displaymath} (43)

where $\tilde{\mathbf{K}}$ is the McWeeny purified density kernel [25],
\begin{displaymath}
\tilde{\mathbf{K}} = 3\mathbf{KSK} - 2\mathbf{KSKSK}.
\end{displaymath} (44)

The contravariant, tensor-corrected gradient [15,16] that is used in the steepest descent or conjugate gradient iterative minimisation is given by
$\displaystyle \nabla L$ $\textstyle =$ $\displaystyle \mathbf{S}^{-1}\frac{\partial L}{\partial \mathbf{K}} \mathbf{S}^{-1}$  
  $\textstyle =$ $\displaystyle 6\mathbf{KHS}^{-1} + 6\mathbf{S}^{-1}\mathbf{HK} - 4\mathbf{S}^{-1}\mathbf{HKSK}$  
    $\displaystyle - \mbox{ } 4\mathbf{KHK} -4\mathbf{KSKHS}^{-1} - 2\mu \mathbf{S}^{-1}.$ (45)

The value of $\mu$ is set at each step such that $\mathrm{Tr}[\mathbf{S} \nabla L] = 0$. This ensures that the total electron number remains unchanged, thus we simply require that our initial guess for the density kernel gives the correct number of electrons.


next up previous
Next: Results and discussion Up: Total-energy calculations on a Previous: Hartree, local pseudopotential, and
Peter D. Haynes 2002-10-29