next up previous contents
Next: General outline of the Up: Normalisation constraint Previous: Density-kernel variation   Contents

Support function variation

The electron number gradient with respect to the support functions is given in section 7.3 and denoted by $\{ \zeta^{\alpha}({\bf r})\}$:

\begin{displaymath}
\frac{\delta N}{\delta \phi_{\alpha}({\bf r})}=
2 K^{\alpha \beta} \phi_{\beta}({\bf r}) = \zeta^{\alpha}({\bf r}) .
\end{displaymath} (7.82)

The support function variation is again parameterised by the parameter $\lambda$:
\begin{displaymath}
\phi_{\alpha}({\bf r};\lambda) = \phi_{\alpha}({\bf r};\lambda=0)
+ \lambda \zeta^{\alpha}({\bf r})
\end{displaymath} (7.83)

and this results in the following quadratic variation of the overlap matrix
$\displaystyle S_{\alpha \beta}(\lambda)$ $\textstyle =$ $\displaystyle S_{\alpha \beta}(0)
+ \lambda \langle \phi_{\alpha}(\lambda=0) \v...
...ambda=0) \rangle
+ \lambda^2 \langle \zeta^{\alpha} \vert \zeta^{\beta} \rangle$  
  $\textstyle =$ $\displaystyle S_{\alpha \beta}(0) + \lambda S'_{\alpha \beta}
+\lambda^2 S''_{\alpha \beta}$ (7.84)

which defines the matrices $S'$ and $S''$. The variation of the electron number is therefore also quadratic
\begin{displaymath}
N(\lambda) = N(0) + 2 \lambda {\rm Tr}(KS') + 2 \lambda^2 {\rm Tr}(KS'')
\end{displaymath} (7.85)

and the roots of this expression can be found to correct the electron number.

We consider a general search direction for the localised functions denoted $\{ \xi^{\alpha}({\bf r}) \}$ and modify this search direction to obtain the direction which maintains the electron number to first order:

\begin{displaymath}
{\tilde \xi}^{\alpha}({\bf r}) = \xi^{\alpha}({\bf r}) -
\omega \zeta^{\alpha}({\bf r}) .
\end{displaymath} (7.86)

Now varying the localised functions according to
\begin{displaymath}
\phi_{\alpha}({\bf r};\lambda) = \phi_{\alpha}({\bf r};\lambda=0)
+ \lambda {\tilde \xi}^{\alpha}({\bf r})
\end{displaymath} (7.87)

results in the following variation of the electron number:
\begin{displaymath}
N(\lambda) = N(0) + 2 \lambda {\rm Tr}(K{\tilde S}')
- 2 \lambda \omega {\rm Tr}(KS') + {\cal O}(\lambda^2)
\end{displaymath} (7.88)

where ${\tilde S}'_{\alpha \beta} =
\langle \phi_{\alpha}(\lambda=0) \vert \xi^{\beta} \rangle
+ \lambda \langle \xi^{\alpha} \vert \phi_{\beta}(\lambda=0) \rangle$. Thus to maintain the electron number to first order, we choose
\begin{displaymath}
\omega = \frac{{\rm Tr}(K{\tilde S}')}{{\rm Tr}(KS')} .
\end{displaymath} (7.89)

In this case, the electron number is not constant along the search direction, but will still vary quadratically, so that it is necessary to correct the density-matrix before evaluating the total functional.
next up previous contents
Next: General outline of the Up: Normalisation constraint Previous: Density-kernel variation   Contents
Peter D. Haynes
1999-09-21