next up previous contents
Next: Normalisation constraint Up: Practical details Previous: Practical details   Contents

Expansion coefficient derivatives

The support functions are expanded in spherical-wave basis functions:

\begin{displaymath}
{\phi}_{\alpha}({\bf r}) = \sum_{n \ell m} c^{n \ell m}_{(\alpha)}
~\chi_{\alpha , n \ell m}({\bf r}) .
\end{displaymath} (7.71)

For a functional of the support functions $f[\{ \phi_{\alpha} \}]$, the derivative with respect to the expansion coefficients is
$\displaystyle \frac{\partial f[\{ \phi_{\alpha} \}]}{\partial c^{n \ell m}_{(\beta)}}$ $\textstyle =$ $\displaystyle \sum_{\gamma} \int {\mathrm d}{\bf r}~
\frac{\delta f[ \{ \phi_{\...
...bf r})}
\frac{\partial \phi_{\gamma}({\bf r})}{\partial c^{n \ell m}_{(\beta)}}$  
  $\textstyle =$ $\displaystyle \sum_{\gamma} \int {\mathrm d}{\bf r}~
\frac{\delta f[ \{ \phi_{\...
...hi_{\gamma}({\bf r})}
\delta_{\gamma}^{\beta} \chi_{\gamma , n \ell m}({\bf r})$  
  $\textstyle =$ $\displaystyle \int {\mathrm d}{\bf r}~\frac{\delta f[ \{ \phi_{\alpha} \} ]}
{\delta \phi_{\beta}({\bf r})}
\chi_{\beta , n \ell m}({\bf r}) .$ (7.72)

For example, for the derivative of the total energy,
\begin{displaymath}
\frac{\delta E[\rho]}{\delta \phi_{\alpha}({\bf r})} =
4 K^{\alpha \beta} {\hat H} \phi_{\beta}({\bf r}) ,
\end{displaymath} (7.73)

we obtain
$\displaystyle \frac{\partial E[\rho]}{\partial c^{n \ell m}_{(\beta)}}$ $\textstyle =$ $\displaystyle 4 K^{\beta \gamma} \int {\mathrm d}{\bf r}~
\chi_{\beta , n \ell m}({\bf r})
{\hat H} \phi_{\gamma}({\bf r})$  
  $\textstyle =$ $\displaystyle 4 K^{\beta \gamma} \sum_{n' \ell' m'} \langle \chi_{\beta , n \el...
...t
{\hat H} \vert \chi_{\gamma , n' \ell' m'} \rangle c^{n' \ell' m'}_{(\gamma)}$ (7.74)

in which $\langle \chi_{\beta , n \ell m} \vert
{\hat H} \vert \chi_{\gamma , n' \ell' m'} \rangle = {\cal H}_{\beta , n \ell m;
\gamma , n' \ell' m}$ denotes the matrix element of the Kohn-Sham Hamiltonian with respect to the spherical-wave basis functions.
next up previous contents
Next: Normalisation constraint Up: Practical details Previous: Practical details   Contents
Peter D. Haynes
1999-09-21