next up previous contents
Next: Total energy Up: Support function derivatives Previous: Kinetic and pseudopotential energies   Contents

Hartree and exchange-correlation energies

Again this gradient is derived by considering the change in the electronic density.

\begin{displaymath}
\frac{\partial n({\bf r'})}{\partial \phi_{\alpha}({\bf r})}...
..._i({\bf r'}) \delta({\bf r} - {\bf r'}) K^{i \alpha} \biggr] .
\end{displaymath} (7.34)

Therefore
\begin{displaymath}
\frac{\delta E_{\mathrm{Hxc}}}{\delta \phi_{\alpha}({\bf r})...
...K^{\alpha \beta} {\hat V}_{\mathrm{Hxc}} \phi_{\beta}({\bf r})
\end{displaymath} (7.35)



Peter D. Haynes
1999-09-21