next up previous contents
Next: Hartree and exchange-correlation energies Up: Support function derivatives Previous: Support function derivatives   Contents

Kinetic and pseudopotential energies

We define the kinetic energy operator ${\hat T} = -{\textstyle{1 \over 2}} \nabla^2$, whose matrix elements are

\begin{displaymath}
T_{ij} = \int {\mathrm d}{\bf r}~ \phi_i({\bf r}) {\hat T} \phi_j({\bf r}) .
\end{displaymath} (7.30)

Since the operator is Hermitian,
\begin{displaymath}
\frac{\delta T_{ij}}{\delta \phi_{\alpha}({\bf r})} =
\delta...
...\phi_j({\bf r}) + \delta_j^{\alpha} {\hat T}
\phi_i({\bf r}) .
\end{displaymath} (7.31)

Therefore
$\displaystyle \frac{\delta T_{\mathrm s}^{\mathrm J}}{\delta \phi_{\alpha}({\bf r})}$ $\textstyle =$ $\displaystyle 2 \frac{\delta}{\delta \phi_{\alpha}({\bf r})} \left( K^{ij} T_{ji} \right)
= 2 K^{ij} \frac{\delta T_{ji}}{\delta \phi_{\alpha}({\bf r})}$  
  $\textstyle =$ $\displaystyle 4 K^{\alpha \beta} {\hat T} \phi_{\beta}({\bf r}) .$ (7.32)

The derivation for the pseudopotential energy is identical with the replacement of ${\hat T}$ by the pseudopotential operator, and so the result for the sum of these energies is just
\begin{displaymath}
\frac{\delta E_{\mathrm{kin,ps}}}{\delta \phi_{\alpha}({\bf ...
... + {\hat V}_{\mathrm{ps,tot}} \right)
\phi_{\beta}({\bf r}) .
\end{displaymath} (7.33)



Peter D. Haynes
1999-09-21