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Abstract

The properties of a transmon qubit inside a 3D supercon-
ducting microwave cavity are investigated in the disper-
sive limit. It is found that the behaviour of the system
maps well to a two-state quantum bit (qubit) modelled by
the Jaynes-Cummings Hamiltonian. The effective tem-
perature of the qubit is measured as 138.5±20mK, corre-
sponding to an average occupancy of state |1〉 of 10±4%.
An upper limit of 144.5mK is placed on the effective
cavity temperature for low power (10−10W) experiments,
corresponding to a single photon occupancy of less than
3.1%. The effects of decoherence are investigated both at
base temperature and when photons are artificially put
into the cavity. The T2 decoherence times of the qubit
are found to be on the order of µs when the cavity con-
tained an average of ∼ 0.1 photons. The T2 times are
found to decrease with the inverse photon number in a
dramatic fashion, consistent with theoretical predictions.
It is found that for the device investigated an average
number of photons of 0.36 is sufficient to decrease the
T2 time to the sub-microsecond regime and that in low
power experiments we have a potential T2 time ∼ 8µs.

1 Introduction

The search for ever better implementations of two-state
quantum systems (or quantum bits) has been a quickly
growing area of research in many fields of physics. The
ability to accurately control a collection of such quantum
systems is essential to building a quantum computer, a
device which carries out logical operations on qubit states
(we denote the single qubit states |0〉 and |1〉). Any sys-
tem possessing a conserved observable quantity, with at
least two sufficiently spaced eigenvalues, is a candidate
for implementing a qubit. As a result, realizations of
qubits are possible in many areas of physics (for example
successful implementations of qubits have used ion traps,
NMR and photon polarization states [1]).

A good candidate for an architecture for quantum
computing has to fulfil many requirements. In order for
operations to be carried out successfully on a set of qubits,
they must remain in a well-defined quantum state for the
duration. The coupling of such systems to their envi-
ronment causes them to lose this state information in a
process known as quantum decoherence. An important
measure of the decoherence of a qubit is the T2 coherence
time. The T2 time is the characteristic timescale on which
the relative phase information for the state a |0〉+ b |1〉 is
lost (i.e the timescale beyond which the phase difference
between the complex numbers a and b is not well known).

As well as having long enough coherence times, it is
desirable for a candidate architecture for quantum com-
putation to be scalable in the number of qubits, without
sacrificing control fidelity or the ability to prepare them
in an ensemble ground state. One promising field for
improved qubit designs is the study of superconducting
circuits. Because these are solid state systems they lend
themselves to scalability in much the same way as mod-
ern electronics. These superconducting systems use the
charge states of a small superconducting island as the
qubit states, in what is known as a charge qubit. Charge
qubits were first suggested in 1997 [3] and significant work
has since been done on improving their T2 coherence times
[2].

In this study we consider a particular type of charge
qubit known as a transmon [11] coupled to a 3D super-
conducting microwave cavity. Such systems have been
demonstrated to be capable of T2 times of ∼100µs [4],
approaching the regime where the T2 time is sufficiently
long compared to the gate operation time (103−104 times
the gate operation time, corresponding to T2 ∼ 20−200µs
for typical systems [4] [13]).

An important source of decoherence is the presence of
photons in the cavity, either as a result of thermal excita-
tion or from the measurement signals themselves. As well
as this, thermal excitations of the qubit itself contribute
significantly to decoherence. We investigate the effects of
photons in the cavity on the coherence of the qubit system
and put limits on the effective temperature of the system
components in an effort to better understand how signif-
icant each of these effects is. Low effective temperatures
are also of critical importance to the task of preparing
the qubit in state |0〉, which it is essential to be able to
do in order to carry out logical operations.

Section 2 covers some of the theory behind the cou-
pling of a qubit to a microwave cavity and explains how
this enables measurement of the state of the system, some
of the theory behind the transmon qubit design is also ex-
plained. In section 3 the experimental setup that enables
measurements is explained. Then in section 4 the results
and analysis of experiments that characterize the proper-
ties of the qubit-cavity system are presented including an
investigation into the aforementioned decoherence effects.
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2 Theoretical background

In order to model the interaction of a qubit with a mi-
crowave cavity, we derive an appropriate Hamiltonian
(adapting a derivation given in [5]). The first stage is
to derive the Hamiltonian describing quantized electro-
magnetic excitations of the cavity (without a qubit).

2.1 Cavity field quantization

We begin with the case of a radiation field confined to
a one-dimensional cavity with perfectly conducting walls
at z = 0 and z = L.

Figure 1: A cavity

We solve the (sourceless) Maxwell’s equations within
the cavity subject to the boundary condition that the
electric field must vanish at the cavity walls:

~E(z = 0, L) = ~0 (1)

Assuming an electric field polarized along the x axis, we
obtain the single-mode solution

Ex(z, t) =

(
2ω2

c

V ε0

) 1
2

q(t) sin(kz). (2)

Where wc is the frequency of the mode, k = wc/c is the
corresponding wavenumber and V is the effective volume
of the cavity. q(t) is some arbitrary time dependent func-
tion with the dimensions of length which will play the
role of a canonical position. The magnetic field is then
polarized along y:

By(z, t) =
µ0ε0
k

(
2ω2

c

V ε0

) 1
2

q̇(t) cos(kz) (3)

Note the appearance of q̇, which will play the role of a
canonical momentum. The field energy is given by

H =
1

2

∫
d3~r

[
ε0E

2
x(~r, t) +

1

µ0
B2
y(~r, t)

]
. (4)

It is straightforward to show that

H =
1

2
(q̇2 + w2

cq
2). (5)

We see that this system is formally equivalent to a har-
monic oscillator of unit mass. Promoting the canonical

quantities to operators (q → q̂, q̇ → p̂) and introducing
the annihilation and creation operators:

â = (2~ωc)−
1
2 (ωcq̂ + ip̂) (6)

â† = (2~ωc)−
1
2 (ωcq̂ − ip̂) (7)

We obtain an expression for the free cavity Hamiltonian:

Ĥc = ~ωc(â†â+
1

2
). (8)

Where the operator â†â ≡ n̂ is the number operator for
photons in the cavity, each having energy ~ωc. The elec-
tric and magnetic field operators then become:

Êx(z, t) =

(
~ωc
ε0V

) 1
2

(â+ â†) sin(kz) (9)

B̂y(z, t) =
µ0

k

(
ε0~ω3

c

V

) 1
2

i(â† − â) sin(kz) (10)

2.2 Coherent cavity excitations

A natural way to think about exitations of a cavity is in
terms of the photon number states |n〉 defined by n̂ |n〉 =
n |n〉. The states |n〉 are clearly energy eigenstates with
energies En = ~ωc(n + 1

2). However from equation 9 we
see that

〈n| Êx(z, t) |n〉 = 0. (11)

These states do not obey the correspondence principle, as
in the classical limit we require 〈Êx〉 to be given by equa-
tion 2. This classical limit corresponds to the operators
â, â† being replaced by some continuous variables α, α∗

(i.e. the reverse of what we did in section 2.1). From
equations 9 and 10 we see that this replacement is nec-
essary to produce a classical field. One way to make this
replacement is to seek states |α〉 such that â |α〉 = α |α〉,
i.e. eigenstates of the annihilation operator. We call these
states ‘coherent’ states. It can be shown that (see ap-
pendix A.1):

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉 (12)

〈α| Êx |α〉 = 2Re[α]

(
~ωc
ε0V

) 1
2

sin(kz) (13)

〈α| n̂ |α〉 ≡ n̄ = |α|2 (14)

Equation 13 shows that the states |α〉 indeed correspond
to classical excitations of the cavity, equation 14 is the
expression for the expected number of photons in the cav-
ity for a particular coherent state. It is also interesting to
note that the probability of observing n photons in the
cavity is given by the Poisson distribution:

Pn = |〈n|α〉|2 = e−n̄
n̄n

n!
(15)
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2.3 Interaction with a qubit

Having derived the Hamiltonian for the cavity alone in
section 2.1, we now wish to determine the interaction
Hamiltonian, ĤI , coupling the cavity to a qubit inside.
Denoting the qubit electric dipole d̂, ĤI is given by

ĤI = −d̂ · Ê = d̂s(â+ â†). (16)

where

s = −
(
~ωc
ε0V

) 1
2

sin(kz) (17)

and d̂ = d̂ · x̂. Introducing the qubit states |0〉 and |1〉
and using 1̂ =

∑
n∈{0,1} |n〉 〈n|,

d̂ =
∑

n,m∈{0,1}

|n〉 〈n| d̂ |m〉 〈m| . (18)

We note that by parity 〈1| d̂ |1〉 = 〈0| d̂ |0〉 = 0, so that
the above becomes

d̂ = |0〉 〈0| d̂ |1〉 〈1|+ |1〉 〈1| d̂ |0〉 〈0| . (19)

By considering equation 16 we see that d̂ is necessarily
Hermitian and so we may write d ≡ 〈1| d̂ |0〉 = 〈0| d̂ |1〉
and obtain

d̂ = d |0〉 〈1|+ d |1〉 〈0| = d(σ̂− + σ̂+). (20)

Where we have defined the qubit raising and lowering
operators σ̂+ = |1〉 〈0| and σ̂− = |0〉 〈1|. Defining the
coupling strength g ≡ 1

~ds, the interaction Hamiltonian
is then

ĤI = ~g(σ̂+ + σ̂−)(â+ â†). (21)

2.4 The Jaynes-Cummings Hamiltonian

The last piece of the puzzle is the free-qubit Hamiltonian.
Introducing the operator σ̂3 = |1〉 〈1|−|0〉 〈0| and defining
the zero of the qubit to be halfway between the levels |1〉
and |0〉, the free qubit Hamiltonian is

Ĥq =
1

2
~ωqσ̂3. (22)

Where ωq is the transition frequency |0〉 → |1〉. Combin-
ing the free field (dropping the zero point energy), free
qubit and interaction terms we obtain the full Hamilto-
nian for the system:

Ĥ = Ĥc + Ĥq + ĤI (23)

= ~ωcâ†â+
1

2
~ωqσ̂3 + ~g(σ̂+ + σ̂−)(â+ â†). (24)

We see that the term proportional to σ̂+â
† corresponds

to exiting both the qubit and the cavity. Similarly the
term σ̂−â corresponds to de-exiting both. It is clear that

these terms do not conserve energy and so we shall ignore
them (this is equivalent to making a rotating wave ap-
proximation). This leads to the Jaynes-Cummings (JC)
Hamiltonian:

ĤJC = ~ωcâ†â+
~
2
ωqσ̂3 + ~g(σ̂+â+ σ̂−â

†). (25)

2.5 Interpreting the JC Hamiltonian

In order to obtain some insight into the properties of the
JC Hamiltonian and how it may be probed experimen-
tally, it is useful to make the unitary transformation [10]:

Û = exp
[ g

∆
(âσ̂+ − â†σ̂−)

]
. (26)

Where ∆ ≡ ωq −ωc is the detuning of the qubit from the
cavity. We take g

∆ � 1 (large detuning) and obtain to
second order in g

∆ :

ÛĤJCÛ
† ≈ ~ωcâ†â+

~
2
ωqσ̂3 +

~g2

∆

(
â†â+

1

2

)
σ̂3 ≡ Ĥ ′JC

(27)
This is known as the dispersive limit. It is easiest to

interpret the interaction term ~g2
∆ (â†â + 1

2)σ̂3 in this ex-
pression by grouping it with the other terms in different
ways, leading to the two following forms:

Ĥ ′JC = ~
(
ωc +

g2

∆
σ̂3

)
â†â+

~
2
ω′qσ̂3 (28)

Ĥ ′JC = ~ωcâ†â+
~
2

(
ω′q +

2g2

∆
â†â

)
σ̂3 (29)

where ω′q ≡ ωq + g2

∆ is the lamb-shifted qubit frequency.

Equation 28 shows how the interaction term can be in-
terpreted as the qubit shifting the cavity frequency by

δ ≡ 2g2

∆ as it transitions between |0〉 (σ̂3 = −1) and
|1〉 (σ̂3 = 1). Equation 29 shows how the same term can
also be interpreted as each photon in the cavity shifting
the qubit frequency by δ. We see that these properties al-
low us to construct an experimental setup that can both
probe the qubit state by measuring the cavity frequency,
as well as probe the photon occupancy of the cavity by
measuring the qubit frequency.

2.6 The effect of cavity photons on T2 times

A major aim of this project is to demonstrate the rela-
tionship between the average photon number in the cavity
and the T2 time of the qubit. This will enable us to get
a feel for how dramatically these photons cause the deco-
herence of the system. The theoretical decay of the qubit
phase decoherence is proportional to [12]:

exp

[
−(n̄+ + n̄−)κδ2t

κ2 + δ2 + 4∆2
r

]
(30)
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Where n̄± is the average number of photons in the cavity
when the qubit is exited(+) or in the ground state(−), κ
is the rate of loss of photons from the cavity and ∆r is the
detuning of the drive that is exiting the cavity photons
from the cavity frequency ωc. In our investigation ∆r = 0
and n̄− ≈ n̄+. We expect the phase coherence to scale as
exp(−t/T2), combining this with equation 30 we obtain
a theoretical relationship between n̄ and T2:

T2 ∝
1

n̄
(31)

2.7 The transmon qubit

The qubit design that we will be using is called a trans-
mon [11]. The design of the transmon is closely derived
from a Cooper pair box (fig. 2.a), a superconducting
island formed between the plate of a capacitor (the gate
capacitor Cg) and one side of a Josephson junction (a thin
insulating barrier between two pieces of superconductor).
The transmon is a modified version of this design (fig.
2.b), modified in order to reduce the effect of fluctuations
in the gate capacitor charge ng = VgCg/2e.

Figure 2:
a) Cooper pair box effective circuit
b) Transmon effective circuit
Both with superconducting island
highlighted
(figure reproduced from [7] with
modifications)

The mechanics of this system is analysed in detail in
appendix A.2, leading to the energy levels shown in 3.
Adding the capacitance Cs in parallel with the Joseph-
son junction has the effect of increasing the ratio of the
Josephson energy Ej to the energy of a single cooper pair
on the island (the charging energy Ec). This leads to the
modification of the energy levels shown in progression in
figure 3.

Figure 3: The energy levels of a charge qubit, from the
Cooper pair box regime (EJ/EC ∼ 1) to the transmon
regime (EJ/EC ∼ 50). Figure reproduced from [7].

In order to use the simple Cooper pair box as a qubit,
it is necessary to set a working point or “sweet spot”,
by setting Vg to choose a particular value of ng. We see
that noise in the value of ng (charge noise) will cause us
to stray from this working point and modify the energy
levels of the system; this contributes significantly to deco-
herence. By increasing the ratio of EJ/EC (moving into
the transmon regime) we eliminate this problem, as the
energy levels are approximately independent of ng in this
limit.

We also see that the levels of this system contain an
anharmonicity, meaning that the |0〉 → |1〉 transition is
well isolated from the |1〉 → |2〉, and higher, transitions.
This means that the system is well approximated by the
simple two-level description used so far.

3 Experimental setup

3.1 Refrigeration

To perform cavity QED experiments, the qubit-cavity
system would ideally be prepared with the qubit in state
|0〉 and with no photons in the cavity. In order to get as
close to this as possible the system must be cooled such
that kbT � ~ωq, ~ωc. In our case ωq < ωc with ωq/2π ≈
6.525GHz so the critical temperature Tc = ~ωq/kb ≈
313mK. In order to achive this a Helium dilution refrig-
erator is used, with several cooling stages (see figure 4.a).
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Figure 4: a) The Helium dilution refrigerator, without
radiation shielding. b) The input line attenuation.
(figure reproduced from [8] with modifications)

The main sources of thermal noise at the coldest stage
are radiation and thermal noise being transmitted along
the measurement cables used to send signals to the sys-
tem. In order to reduce the radiation noise the entire
fridge assembly is surrounded by a radiation shield (which
doubles as a vacuum chamber). As well as this the indi-
vidual cavity-qubit systems are surrounded by their own
radiation shields made from a special alloy Amumetal
that is annealed in a dry Hydrogen atmosphere for op-
timum magnetic permeability at cryogenic temperatures.
The thermal noise from the cables is reduced by atten-
uating the input cables at each cryogenic stage, so that
the black-body radiation from components at one stage
is attenuated before it reaches the next stage (see figure
4.b).

3.2 Readout

In order to measure the absorption spectrum of the cavity-
qubit system (and thus measure the qubit-cavity states
using the results of section 2.5), we need to be able to send
in microwave signals at a range of frequencies. As well
as this, we need to be able to send qubit control pulses
into the cavity (in the form of π pulses etc.) to carry
out more complicated experiments (such as the Ramsey
experiments carried out in section 4.7). To complicate
matters, because we operate the cavity in the few-photon
regime, these signals need to be extremely small by the
time they reach the cavity (on the order 10−17W). As a re-
sult, we need to be able to send very precisely controlled
microwave signals to the cavity-qubit system. Control-
ling and measuring such small signals in the GHz regime
is a reasonably complex signal processing task, which we
achieve using a combination of techniques including IQ-
Mixing, high quality amplification and Heterodyne detec-
tion. These are explained in more detail in appendix A.3.

As a result of the transmitted signal being extremely
small as it leaves the cavity, it is dominated by noise
picked up on its way out of the fridge. This means that
we must average the results of several tens of thousands
of experiments to achieve acceptable signal to noise ra-
tios (most of the measurements carried out in this study
were averaged hundreds of thousands of times). As a re-
sult a single run could take days. In order to reduce this
somewhat we take advantage of a method that we call
‘high power readout’. This method relies on the fact that
the absorption of the cavity at high powers (far beyond
the regime where the models derived in section 2 work)
exhibits a bifurcation as a result of the qubit state. The
result is that we can run a high power absorption spec-
trum and see a different result if the qubit is in |1〉 rather
than |0〉 (see figure 5). This acts as a method of measur-
ing the qubit state.

The physical mechanism behind this bifurcation is not
well-understood, but because it happens at higher pow-
ers it gives a much better signal to noise ratio. Obviously,
the power required is far too high to be present whilst the
experiment is underway, so we must use a pulsed measure-
ment scheme. This scheme consists of carrying out the
experiment at low power and then sending in a readout
pulse at high power immediately afterwards, to collect
the results.

3.3 Device parameters

In our case the qubit is designed with a |0〉 → |1〉 tran-
sition frequency of ωq/2π ≈ 6.525GHz. The qubit is in-
stalled inside an aluminium cavity engineered with a sin-
gle resonant mode with ωc/2π ≈ 10.43GHz.

4 Measurements

4.1 A note on errors

Because of the averaging procedure mentioned in section
3.2 the error bars on a particular data point in all of the
plots are exceedingly small (and hence not shown). How-
ever, there remains a non-zero amount of noise between
the individual data points (as can be seen on the plots).
This noise could not be removed by increasing the num-
ber of averages taken. In fact, one of the experiments
actually showed an increased noise level with more av-
eraging. This leads to the conclusion that the noise is
due to effects that fluctuate on a similar timescale to the
measurements (several hours), things like fluctuation in
the temperature of the lab. This noise level is treated as
the error for the purpose of fitting. Derived quantities
are quoted with their standard fitting errors.
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Figure 5: The high-power absorption spectrum of the cavity. From left to right; with the qubit in state |0〉, with the
qubit in state |1〉, the difference in absorption (with arrows indicating example working points for measurements).
The color on the left two figures indicates the absorption strength, white being strong absorption and blue being
weak absorption. On the rightmost figure, blue indicates the largest difference

4.2 Measuring ωq, ωc

In order to carry out experiments investigating the dy-
namics of our system it is necessary to know ωq and ωc
accurately. To find these values we carry out a microwave
absorption experiment, expecting to see resonant peaks
at the qubit and cavity frequencies. We expect these
resonances to be lifetime broadened to a Lorentzian (see
appendix A.4).

The absorption spectrum of the qubit is measured in
the vicinity of the |0〉 → |1〉 transition frequency and the
results are shown in figure 6. The Lorentzian fit gives
ωq/2π = 6.524865 GHz ± 2.3 kHz. Similarly, the absorp-
tion spectrum of the cavity is measured in the vicinity of
its resonance and the results are shown in figure 7. The
Lorentzian fit gives ωc/2π = 10.42862 GHz ± 15.7 kHz.
This means that our detuning ∆ = ωq − ωc is given by
∆/2π = -3.90374 GHz ± 15.9 kHz (Note the minus sign
as ωc > ωq).
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Figure 6: Qubit absorption sepctrum with Lorentzian fit.
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Figure 7: Resonator absorption sepctrum with
Lorentzian fit.

4.3 Measuring the cavity shift 2g2

∆

Now that we know the qubit and cavity frequencies it is
possible to carry out more interesting experiments. Driv-
ing the qubit by sending in a signal at ωq, we can cause
transitions |0〉 → |1〉 so that the qubit has a non-zero
probability to be in state |1〉. According to equation 28 an
absorption measurement on the cavity should then show
two absorptions, one at the unshifted frequency ωc corre-
sponding to the qubit in state |0〉 and one at ωc + 2g2/∆
corresponding to the qubit in state |1〉. Note that in our
case ∆ < 0 so we expect the cavity frequency to be de-
creased when the qubit is in state |1〉. The results of
such an experiment are shown in figure 8, fit to a pair of
Lorentzians. We see that the resonator has indeed been
split by the qubit. The fits give a splitting 2g2/2π∆ = -
3.21 MHz ± 32 kHz. Combined with the known detuning
∆ we obtain a value for the coupling strength |g|/2π =
497.345 MHz ± 8.9 kHz. This allows us to confirm that
we are indeed in the dispersive regime, as |g|/∆ ≈ 0.02
�1 as we assumed in section 2.5.
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Figure 8: Resonator absorption sepctrum, qubit driven,
with double Lorentzian fit.

4.4 Measuring the qubit shift

Similarly to the cavity shift experiment carried out in
section 4.3 we may measure the shift in qubit frequency
due to photons in the cavity predicted by equation 29.
In order to do this we drive the cavity at its resonant
frequency ωc, at different drive powers. As the power
increases we should see more photons in the cavity, and
thus see sequential peaks all separated by 2g2/2π∆. The
results of this experiment are shown in figure 9.

Qubit drive frequency (GHz)  

Absorption (Arb. Units)   

Coherent
drive power  
(nW)

1.00

2.51

6.31

10.00

12.59

15.85

19.95

n = 0.08

n = 0.54

n = 0.73

n = 1.05

n = 1.11

n = 1.43

n = 1.80

Figure 9: Qubit absorption for different coherently driven
powers, with fits to equation 32.

We clearly observe the splitting of the qubit frequency
into multiple peaks due to photons in the cavity. The
amplitude of each absorption peak will be proportional to
the probability that the cavity contains the corresponding
number of photons. As we are driving the cavity coher-
ently, we expect to see a Poisson distribution of photon
number states as predicted by equation 15. To investigate
this the data in figure 9 are fit to the function:

A(f) = A0

nmax∑
n=0

e−n̄
n̄n

n!

Γn/2π
1
4Γ2

n + (f0 − nδ − f)2
(32)

Where the widths Γn are given (see [12]) by

Γn = γ0 + Γ∆(n+ n̄) (33)

With the fitting parameters

A0, f0, δ, n̄, γ0,Γ∆. (34)

This function is a series of (normalized) Lorentzians cen-
tred at the shifted qubit frequencies fn = f0 − nδ with
widths given by Γn, each occupied according to the Pois-
son distribution prdicted by equation 15. The shift δ
should be given by the value prodicted by the JC Hamil-
tonian (i.e δ = |2g2/2π∆|) and the unshifted frequency
f0 should correspond to the value found in section 4.2.
The results of these fits are shown in figure 9, along with
the derived value of n̄. The standard fitting errors on n̄
are around 3%.

The fits in figure 9 give us a relationship between cav-
ity drive power P and the best fit n̄. This relationship
is plotted in figure 10. From equations 13 and 14 we see
that n̄ ∼ |α|2 ∼ |Ex|2 ∼ P . This explains the linear
relationship.

5 10 15 20
Coherent drive power (nW)

0.5

1.0

1.5

n

Figure 10: The fitted values for n̄ vs drive power, with
linear fit

From figure 10 that there is an extrapolated residual num-
ber of photons in the cavity when we are not artificially
driving the cavity, given by the y intercept of the fit. This
is given by n̄R = 0.18 ± 0.08. These residual photons
might be due to a combination of thermal noise being

7



transmitted down the cables, both from environmental
sources and from residual heating due to the drive sig-
nal. We do not investigate the source of these residual
photons here, but this would be a good topic for further
investigation.

Another interesting aspect of the fits in figure 9 is
the relationship between the fitted value for the unshifted
qubit frequency f0 and the cavity drive power (i.e. the
relationship between the frequency of the qubit spectral
line corresponding to n = 0 and the cavity drive power).
This is shown in figure 11. The fitted value of f0 exhibits
a decrease with increased power. This behaviour is due
to the classical stark shift of the qubit frequency and is
inconsequential to our investigation.

5 10 15 20
Coherent drive power (nW)

6.5244

6.5246

6.5248

Fitted f (GHz)

Figure 11: The fitted values for f0 vs drive power

4.5 Limits on the effective cavity tempera-
ture

The effective cavity temperature Tc can contribute to de-
coherence in the form of thermal cavity excitations, it is
also an important measure of how well the system has
been cooled. This temperature may be extracted using
qubit spectroscopy, with the same experiment as in sec-
tion 4.2. At higher temperatures we expect to see cav-
ity photons appearing, causing a shift in the qubit fre-
quency. From figure 6 we see that this effect is unresolv-
able, if it were resolvable we would be able to distinguish
a secondary peak at lower frequencies (similar to figure
8). This is because the second peak is attenuated by the
boltzmann factor e−~ωc/kbTc .

The fact that a second peak isn’t resolvable allows us
to place a limit on the effective temperature by consider-
ing the noise level in figure 6. The maximum temperature
that would be unresolvable is the temperature when the
attenuation is equal to the ratio, r, of the noise level to
the height of the first peak. This then gives an upper
bound on the effective cavity temperature Tc <

−~ωc
kbln(r) .

As a further correction, the fact that the width of the
n = 1 peak is greater than the n = 0 peak (and therefore
the n = 1 peak will appear shorter for a given amplitude)

is taken into account using equation 33 and the results
of the fit of figure 9. This correction effectively takes
account of the fact that we want r to be the photon num-
ber probility ratio r = p1/p0, not simply a ratio of peak
heights. This gives r = Γ1N/Γ0H, where N is the noise
level and H is the height of the unshifted peak. From the
fits in figure 9 the ratio Γ1/Γ0 ≈ 1.71. If we use the RMS
of the residuals of the fit from figure 6 as our noise level,
we obtain Tc < 144.5mK. This corresponds to a single
photon occupation of less than 3.1%.

4.6 Measuring the effective qubit tempera-
ture

The effective temperature of the qubit, Tq, contributes to
decoherence in much the same way as the effective cav-
ity temperature. Because it also responsible for thermal
excitations |0〉 → |1〉 a low Tc is important for proper
initialization of the qubit in state |0〉. Similarly to the
analysis performed in section 4.5 we look at the thermal
exitation of the qubit causing a shift in cavity frequency.
From figure 7 it is clear that we indeed do see a (small)
secondary peak caused by the thermal exitation of the
qubit. Fitting this with two Lorentzians produces figure
12.

We can see immediately that this is a better fit than in
the preliminary investigation in section 4.2. The resulting
ratio of peak amplitudes then gives the effective temper-
ature Tq =

~ωq

−kbln(r) where r is the amplitude ratio of the
shifted and unshifted peaks. The fit gives r = 0.10± 0.04
which results in Tq = 138.5 ± 20mK. This corresponds
to a probability to be in |1〉 of 10 ± 4%.

10.420 10.425 10.430 10.435
Frequency (GHz)

Absorption (Arb. units)

Figure 12: The cavity response with double Lorentzian
fit

We expect Tc = Tq as the qubit is inside of the cav-
ity and system has had ample time to thermalize. It is
therefore reassuring to note that the value for Tq obtained
here is compatible with this expectation given the results
of section 4.5 (Tc < 144.5mK).
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4.7 Measuring the T2 time of the qubit

An important property of the qubit is the decoherence
time T2. This is the timescale beyond which superposition
states of the qubit (such as |0〉+|1〉√

2
) are no longer stable. In

order to measure the T2 time of the qubit we use a Ramsey
interferometric experiment. The experiment consists of
applying a π/2 pulse to the qubit in state |0〉 followed by a
variable wait time ∆t, followed by a further π/2 pulse and
subsequent readout of the qubit state. This experiment is
best described by manipulations of the bloch sphere (see
figure 13). The qubit can be initialized to |0〉 by waiting
for t� T1 where T1 is the characteristic decay time from
|1〉 → |0〉.

Figure 13: The Ramsey experiment
a) Qubit initialized to |0〉
b) Apply π/2 pulse
c) Wait for some time ∆t
d) Apply π/2 pulse

The wait time ∆t will induce a phase difference between
the states of ∆φ = ωqt. This phase difference will then
mean that the subsequent π/2 pulse will not take the
qubit all the way to |1〉. Consequently, as the phase dif-
ference precesses around the Bloch sphere (as we increase
∆t), we will see oscillations of the qubit inversion. As the
time ∆t increases the effects of decoherence will cause the
phase difference to tend towards randomness, destroying
the coherent oscillations. As a result the inversion oscil-
lations will be enveloped by a factor e−t/T2 . Obviously
the oscillations at ωq are too fast to directly observe on
the same timescale as T2. In order to see oscillations we
also drive the qubit at a detuned frequency ωq + ∆ω, as
a result we actually see oscillations at the detuning fre-
quency ∆ω. We choose ∆ω = 10MHz.

We carry out such an experiment whilst driving the
cavity at various coherent drive powers (as we did in sec-
tion 4.4). The results of this experiment are shown in fig-
ure 14, with fits to an exponential envelope∼ exp(−t/T2).
The data was truncated before extreme decoherence for
the purpose of fitting (for example just before 2µs for a
drive power of 6.31 nW).

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●
●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●●
●

●

●

●
●
●

●

●●
●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●

●

●
●●

●

●

●
●
●

●

●

●
●●

●

●

●

●●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●●

●

●
●

●●

●

●

●
●●
●

●

●

●●

●

●

●
●●

●

●

●

●●
●

●

●
●
●

●

●

●

●●●

●

●

●
●
●
●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●●
●

●

●

●
●
●

●

●

●
●
●

●
●

●

●
●

●

●
●
●
●

●

●

●●
●

●
●

●●
●
●

●

●
●
●

●

●

●●
●
●

●

●
●●
●

●

●●●

●

●

●
●●

●

●

●●●

●

●
●

●
●

●

●

●●●

●

●

●
●●
●

●

●
●
●

●

●
●
●●

●

●

●
●●
●

●

●
●
●

●

●

●●●

●
●
●

●●

●

●

●●●

●

●
●
●
●●

●

●●
●
●

●
●
●●

●
●

●●
●
●
●
●●●

●●

●●●●

●

●●●

●
●
●
●●●

●●
●
●●
●

●●●●
●
●
●●
●

●●
●
●
●●
●

●●●

●
●

●●●
●

●
●●●
●
●

●●
●●

●
●
●●●

●

●●●●

●●

●●

●●

●
●●●●●

●●
●

●●

●

●●
●●
●●
●
●●
●●●

●
●●●●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●●

●

●

●
●●

●

●

●

●●

●

●

●
●●

●

●

●

●
●

●

●

●
●●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●●●

●

●

●

●●

●

●

●
●●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●●
●

●

●
●●
●

●

●

●
●

●

●

●

●●●

●

●

●
●

●

●

●

●●●
●

●

●
●●

●

●

●
●●

●

●

●
●●

●

●

●
●
●
●

●

●
●
●

●

●

●
●●
●
●

●

●●

●

●

●
●●

●

●

●
●●
●

●

●
●
●
●

●

●

●
●
●

●

●
●●
●

●

●

●
●

●

●

●

●
●

●

●

●
●●
●

●

●

●
●

●

●

●
●●
●

●

●
●●
●

●

●
●●●

●

●

●●
●
●

●
●
●
●

●

●
●●
●

●

●

●●●

●

●

●
●

●
●

●
●●●
●

●
●●●
●

●
●

●

●

●
●

●●●

●
●

●
●●

●

●
●●●

●
●●

●
●

●
●

●●●●
●
●

●●

●
●

●
●●
●

●
●

●●
●

●
●
●●

●

●
●
●●
●

●
●●●

●

●
●
●●

●
●
●
●
●
●●

●●●
●

●
●●
●
●
●
●●
●●

●●
●
●●

●
●●●●

●●
●
●●●

●●
●

●●
●
●●●
●
●
●
●
●
●

●●
●●

●●
●●●
●
●
●●●
●
●
●
●●
●
●
●●
●
●
●●●●

●
●
●
●
●●
●
●●●
●
●

●●
●
●
●
●
●●●
●
●●●●

●
●
●●
●●
●
●●●
●●
●
●●
●●
●●
●●
●●●●

●
●
●
●●
●●

●
●●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●

●
●●

●

●

●

●●

●

●

●
●●
●

●

●

●
●
●

●

●
●●
●

●
●

●
●●

●

●●●●

●

●

●
●
●

●

●

●●
●

●
●

●●●

●

●

●●
●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●●●

●

●

●●●

●

●

●
●

●
●

●

●
●●

●
●

●
●
●
●

●

●●●

●
●

●

●
●
●

●

●
●●

●

●

●●●
●

●●

●●

●
●

●

●
●

●
●

●

●
●
●
●

●
●●

●

●
●

●●

●

●

●●●

●

●

●
●●
●

●

●
●●

●
●

●
●
●
●
●

●
●●
●

●

●●●●

●

●

●●
●●

●

●
●●

●
●
●●
●
●
●

●
●●

●

●●
●
●

●

●
●
●
●
●

●
●
●
●

●
●
●
●
●
●

●
●
●●

●
●
●●●

●

●●
●
●
●●

●●

●

●●

●
●
●

●

●
●●

●●

●

●
●
●
●●

●
●
●

●
●
●
●●●

●
●
●●
●

●
●●●

●●
●●
●●
●

●
●●
●
●
●●●●

●

●●●●
●

●●●
●

●
●
●●●
●
●●●

●
●
●
●●
●
●
●
●●
●●
●
●●●
●●●●●

●
●●●●●

●●●●

●●
●
●●
●●

●
●●

●●
●●●●

●
●●
●
●
●
●
●
●

●
●
●●●
●
●
●

●

●
●

●
●

●
●●
●●
●
●
●
●●●
●●●
●●
●●

●
●
●●●
●
●

●

●

●●

●

●

●

●
●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

●

●●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●●

●

●

●

●●

●

●
●

●
●

●

●

●
●●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●●●
●

●

●

●
●

●

●

●
●
●
●

●

●

●●
●

●

●
●●●

●

●

●
●

●

●

●

●
●
●

●

●

●
●

●

●●

●●●

●●

●
●●

●●

●
●
●
●

●
●

●●

●

●
●
●
●
●

●

●
●

●
●

●

●
●
●

●

●
●
●●

●

●●●

●

●

●●●
●

●

●●

●●

●
●

●●
●

●●

●

●

●●

●●

●
●●
●

●
●●
●●

●
●
●●
●

●
●
●

●

●

●●●

●●
●

●

●●

●

●
●●●

●
●
●●
●
●

●
●●

●
●●
●

●

●●

●
●●●

●

●●●
●
●
●
●
●●

●

●●
●

●●

●
●

●

●
●

●
●●
●

●●

●●

●
●
●●●●

●●
●
●

●●

●●●●●

●
●
●●
●

●●●
●
●
●●
●
●
●●
●
●
●
●
●
●●
●
●

●
●●●●●●

●

●
●
●●
●
●
●
●
●
●●
●
●
●●
●
●
●

●
●●●

●●●●●●●
●

●●●●●●
●●
●
●
●
●

●●
●●
●●
●●●
●
●
●●●
●●
●●●●

●●
●●

●
●●●●

●
●

●
●●●
●●●●

●
●●
●
●
●●●●●●

●
●●●●

●
●

●

●
●

●

●
●●
●●

●●●●

●●
●

●

●

●●
●
●●

●●

●●●
●●●●

●●●●●●●●●
●

●●
●
●

●

●

●

●

●

●●●

●

●

●●
●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●
●●

●
●

●

●

●●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●●
●

●

●●

●●
●●

●

●●
●●
●

●
●
●
●●

●
●

●

●

●

●
●

●

●

●

●

●
●
●●

●●

●

●●

●
●
●●

●

●●

●

●
●

●●●
●

●
●

●●

●
●●

●●
●
●

●
●●●
●

●●
●
●●

●
●
●●
●
●
●
●
●●
●

●●
●●

●
●
●
●●

●

●●●
●

●
●
●●

●
●
●
●
●●

●

●
●
●●

●
●
●
●

●●

●
●●●
●

●●
●●

●

●●●
●●

●●
●

●
●
●●●
●

●●
●●
●●
●
●●
●
●
●●●●●

●

●
●
●

●
●
●
●
●
●
●
●
●●

●●●●

●
●
●

●●
●●
●

●●

●
●
●
●●
●
●

●●
●●
●

●
●

●
●

●

●
●●
●
●

●
●●●●

●

●
●
●
●

●
●
●

●
●●

●

●
●
●●●

●

●●●
●
●
●
●
●

●

●●
●

●●
●

●
●●
●
●●
●●
●
●
●●

●●
●
●
●
●
●●
●●
●
●●
●
●
●●●

●●●●

●●
●

●
●

●

●

●

●●
●●
●
●

●

●
●
●
●

●

●●●

●
●●

●●
●

●
●
●●
●

●

●

●

●
●

●

●●●

●●●
●●

●

●●

●●●●●●

●
●

●●●●●●
●●
●

●
●●●
●●●

●

●

●
●
●●
●●●●●●●

●●●●●●
●●●
●
●●●

●● ●● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●●

●

●●
●
●

●
●
●●

●

●●
●●

●

●

●
●

●

●●

●

●
●

●

●

●
●●

●

●
●
●

●

●
●

●

●
●

●

●●
●
●

●
●●●●

●

●
●
●

●
●

●

●

●●

●

●●
●

●

●

●
●
●●

●

●●
●

●●

●
●●●

●●

●
●

●●

●
●
●●
●

●
●
●

●

●
●

●
●
●

●
●

●

●

●
●

●
●
●
●

●

●

●
●●
●

●●●
●
●
●

●
●●

●
●

●●●
●

●

●●

●
●
●
●

●●
●

●●●●

●●
●
●●●
●
●●

●
●●
●

●

●

●●
●

●
●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●●●
●

●

●
●
●●●

●
●●

●
●

●●

●●
●

●

●
●
●●●●

●
●●
●

●●
●●●●

●●

●
●●

●
●●
●

●
●
●
●
●
●●

●●

●●●
●

●

●●

●

●
●
●

●

●

●●
●
●
●●
●
●●●
●

●●
●
●

●

●●
●
●
●
●●
●

●●●●
●●
●

●

●
●
●●
●

●
●
●
●●●●●

●
●●
●●●●

●
●●
●●
●●●
●●●
●
●●●●●●●●●●

●●
●●●●

●
●
●●

●●
●

●●●●●●
●●●
●

●●
●●
●
●●

●
●
●
●●●●●●●●

●●●●●●
●●●●

●
●●
●●

●
●
●
●●●●

●
●●

●●

●
●
●

●●●
●
●

●

●

●

●

●
●
●
●
●
●

●●●

●●●
●●

●

●
●

●●

●
●●●●

●●
●
●●

●

●

●
●

●

●

●
●

●●
●●●●

●

●● ●● ●● ●● ●● ●●

●

●●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●
●

●

●●

●

●
●

●●●

●
●

●
●
●

●

●

●
●
●
●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●
●●

●

●●

●
●

●●

●
●●

●●

●

●●

●
●

●
●

●

●●

●
●

●
●

●

●●

●●●

●

●●

●

●●
●
●
●

●●●●

●●
●

●

●
●
●

●●●

●
●●●●●

●
●
●
●●●

●
●●
●
●

●●
●●●

●●
●●●
●
●●●
●
●
●
●●

●

●●
●●
●

●●
●●●

●

●
●

●
●

●
●●●

●

●●●
●
●
●

●
●

●

●

●

●

●●
●
●●

●
●
●●

●
●●
●●

●●●●
●●

●

●
●●●●

●
●

●

●

●●
●●
●●

●

●
●

●

●

●

●

●

●
●●

●●

●

●
●
●

●
●

●●●

●
●●●●

●

●●

●

●●

●
●●●●

●

●

●

●●●●
●●
●
●

●

●●
●●●
●

●
●

●
●

●
●
●●●
●
●
●
●
●●
●●●●

●●●
●

●

●●

●

●
●●
●
●
●●●●●

●●
●●●
●
●
●

●

●
●
●●
●
●

●

●●

●
●●
●●●●

●●●

●●●
●

●

●

●●

●

●
●

●

●

●●
●
●●

●

●●●
●●
●

●
●●
●
●

●

●●●
●
●●
●
●●
●●
●
●
●

●
●
●
●
●
●●
●
●●●●

●
●
●●

●●
●●●
●
●
●
●●
●
●●
●
●●

●

●●
●

●●

●

●

●
●
●●●●

●
●
●
●●●
●

●
●

●●

●●●●●

●●

●
●
●●

●
●●●●

●
●●
●●
●

●●●
●
●
●

●●

●

●

●

●

●●

●●●

●
●
●
●●

●

●

●●

●● ●● ●●

●

●

●●
●

●

●

●

●
●

●

●
●●

●●

●

●●●

●
●

●●●

●

●

●
●
●

●

●

●

●●

●

●

●
●

●

●●

●●
●

●

●

●
●

●
●

●
●

●

●

●●
●

●

●

●
●
●

●
●

●

●

●
●
●
●

●

●
●
●

●

●●
●●●

●
●●

●●

●●

●

●
●

●●
●

●●●
●
●

●

●

●
●●
●●

●

●●

●
●

●
●

●

●
●

●

●

●
●●
●

●
●●
●

●
●

●

●
●
●
●●

●
●●●
●

●●
●
●

●●

●●●
●
●●
●●●
●
●●
●●
●

●
●
●

●

●

●●

●
●
●
●●

●

●●●●
●

●
●●

●●

●

●●●
●●
●●
●
●
●●
●

●●
●●●
●

●

●●

●

●

●
●●

●

●●●
●

●
●

●

●●●●
●●●
●●

●

●●
●
●
●

●●

●

●

●●
●
●
●

●

●

●

●

●

●

●●
●●

●

●
●●

●

●

●
●

●

●
●
●●

●●
●
●

●●●

●●●

●

●

●
●
●

●

●

●●
●
●●

●

●

●
●
●

●

●

●

●

●

●

●
●
●●
●●●

●

●

●

●

●
●●
●

●

●

●
●●
●
●
●

●●
●

●
●●
●●●
●●

●

●●●

●●●

●

●●●

●●
●

●

●
●

●

●

●●

●●
●

●

●
●

●

●
●

●
●●

●●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●●●

●

●●

●

●
●

●●●

●
●

●
●●●

●
●

●●●●
●

●
●
●
●
●

●
●
●
●

●

●

●

●

●
●

●●

●

●
●

●●
●●

●
●

●

●

●●
●●

●
●●

●
●
●

●

●

●
●

●●

●●
●
●●

●

●●
●
●
●
●●
●

●

●
●●

●

●●

●
●

●●●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●●●
●

●

●
●

●

●
●

●●

●

●
●
●

●

●
●
●

●
●●

●

●
●●

●

●
●
●
●
●

●

●

●

●

●●

●

●
●

●
●
●
●
●

●●●
●

●
●

●
●

●

●●

●●
●
●

●

●
●
●
●

●
●

●●

●

●
●●
●
●●

●
●

●●●

●
●
●
●
●●
●
●●

●●
●

●●
●
●●

●

●●●
●●

●
●●
●
●●

●

●
●
●

●
●●●
●
●
●

●●

●
●

●

●
●

●

●
●●
●
●●

●
●
●

●
●

●
●

●
●

●
●

●

●●●
●●●
●
●
●●●●

●
●
●
●●

●
●●
●●

●
●

●●

●
●
●
●
●
●
●

●

●●

●

●
●
●

●
●

●

●

●
●

●●

●
●

●

●
●●
●

●●

●●●

●

●

●

●

●
●

●

●

●
●
●
●

●

●●

●

●

●

●
●

●
●

●●●●

●
●
●

●

●

●●

●●

●●
●
●
●
●

●
●

●

●

●
●
●

●
●

●
●●

●

●●

●
●●
●

●

●

●●
●

●

●
●

●

●

●
●●

●

●

●
●●

●

●●●●

●

●
●
●
●

●

●

●

●●

●

●●●

●
●
●●

●

●

●●●
●
●
●

●

●
●

●●

●

●

●

●
●

●

●
●
●

●
●
●●

●

●

●

●

●

●●
●

●

●

●
●
●
●●

●●●
●

●

●
●
●
●

●
●●

●
●●
●

●●

●

●

●

●●

●

●●
●

●

●

●
●
●

●

●

●

●

●
●
●●

●

●
●

●

●
●●

●

●
●

●
●
●
●●●
●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●●

●

●
●
●●
●

●

●
●●
●
●

●●

●
●

●

●●●●
●

●

●
●●

●

●
●
●

●●●

●

●

●

●
●●
●●

●

●●●

●●●

●
●
●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●●

●

●

●

●● ●●

  
1 2 3 4 5

Wait time (μs)  

Inversion (Arb. Units)
Coherent 

drive power (nW)
6.31 

5.01 

3.98 

3.16 

2.51 

2.00 

1.58 

1.26 

1.00 

Figure 14: Ramsey oscialltions for different coherent drive
powers, with T2 envelope fit.

It is clear to see the decoherence of the qubit occurring
at earlier times for higher coherent drive powers. This
is to be expected due to the increased source of decoher-
ence from the increased average photon number. Fitting
an exponential of the form e−t/T2 to the envelope of the
Ramsey oscillation gives the T2 times shown in figure 15.
As a result of the coherent power being proportional to
the average photon count (see figure 10) we expect the
T2 times to scale as 1/power from equation 31.

2 4 6

1

2

3

Qubit T2(μs)

Coherent drive power (nW)

Figure 15: The T2 coherence times of the qubit for differ-
ent coherent cavity driving powers (with 1/power fit).
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4.8 The effects of cavity photons on qubit de-
coherence times

The T2 vs power data from figure 15 may be combined
with the n̄ vs power data from figure 10 obtained in sec-
tion 4.4 to obtain the relationship between T2 and the
average number of photons in the cavity. This is a useful
result as it allows one to check if the expected number
of photons in the cavity will lead to acceptable coherence
times, an essential property of the qubit system. The re-
sult of combining the fits of figure 10 and 15 are shown
in figure 16.

0.5 1.0 1.5
n

0.5

1.0

1.5

2.0

2.5

QubitT2 (μs)

Figure 16: The expected relationship between T2 coher-
ence times of the qubit and the average photon number
in the cavity, from combining the fits of figures 10 and
15. Restricted to the n̄, T2 range that we actually probed
in experiment.

It is important to note that this plot is only valid when
the photon number is the dominant effect in reducing the
T2 time. We see that the T2 time of the qubit decreases as
one over the average number of photons in the cavity, in
agreement with equation 31. The effect is dramatic, with
the presence of 0.36 average photons being sufficient to
reduce the T2 time to the sub-microsecond regime. The
photon occupancy in our device at base temperatures was
shown in section 4.5 to be < 3.1%, corresponding to a
potential T2 time of ∼ 8µs for this device.

5 Conclusion

We have observed and classified the quantum behaviour
of a transmon qubit inside a 3D superconducting mi-
crowave cavity. We found that the theoretical models
for a two state qubit map well onto the behaviour of the
first two levels of the transmon and demonstrated shifts in
the qubit and cavity consistent with the dispersive limit
of the Jaynes Cummings Hamiltonian. Using the disper-
sive shifts of the qubit, we demonstrated the coherent
state population of the cavity and showed that it agreed
with the theoretical model.

We went on to place limits on the effective cavity tem-
perature and found for extremely low power (10−10W) ex-
periments Tc < 144.5mK corresponding to a single pho-
ton occupancy of less than 3.1%. This results in a po-
tential T2 time of ∼ 8µs for the device studied. Similarly
we investigated the effective qubit temperature and found
Tq =138.5±20mK corresponding to a probability of being
in state |1〉 of 10±4%. We investigated the T2 coherence
times of the transmon qubit when the cavity was driven
at order nW, modelling accidental driving in experiments,
and found them be on the order of µs. We classified the
dependence of the T2 time of the qubit on the average
number of coherent photons in the cavity and found that
the effects were dramatic. We observed the T2 time of
the qubit scaling as 1/n̄ as theoretically predicted, with
an average photon occupancy of 0.36 being sufficient to
reduce the T2 time to the sub microsecond regime.

The results of this study show that if acceptable T2 co-
herence times are to be achieved, it is imperative that the
number of photons in the readout cavity must be kept to
a minimum. The source of these photons in this study is
artificial, intending to model accidental excitation of the
cavity during other experiments. An interesting exten-
sion to this work would be to investigate photon numbers
induced as a result of carrying out qubit operations, and
to see how far readout powers can be pushed before they
create too many photons. Investigation into the thermal-
isation of different stages of the fridge would also be inter-
esting as despite the base temperature of 5mK, the effec-
tive temperatures of the qubit and cavity are still as much
as 140mK. It would also be interesting to investigate these
effects in multi-qubit systems, where qubit-qubit correla-
tions may come into effect and readout methods become
more complicated.
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A Appendix

A.1 The coherent cavity states

We derive various results concerning the coherent exi-
tation states |α〉 of a cavity that satisfy â |α〉 = α |α〉.
Expanding in the basis {|n〉} we can write

|α〉 =
∞∑
n=0

Cn |n〉 . (35)

Then using â |n〉 =
√
n |n− 1〉

â |α〉 =

∞∑
n=1

Cn
√
n |n− 1〉 !

= α

∞∑
n=0

Cn |n〉 (36)

The orthogonality of the states |n〉 then implies that the
coefficients of |n〉 are the same on both sides:

Cn =
α√
n
Cn−1 =⇒ Cn =

αn√
n!
C0 (37)

Requiring normalization 〈α|α〉 = 1 sets the constant C0

and we obtain

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉 . (38)

We also wish to find the value of 〈α| Êx |α〉 where Êx
is the electric field in a cavity with coherent states |α〉.
Substituting the expressions from equations 38 and 9 and
defining S ≡ (~ωc/ε0V )

1
2 sin(kz) we have:

〈α| Êx |α〉 = Se−|α|
2
∞∑
n=0

∞∑
m=0

αn√
n!

(αm)∗√
m!
〈m| â+ â† |n〉

= Se−|α|
2
∞∑
n=0

∞∑
m=0

αn√
n!

(αm)∗√
m!

(δm,n−1

√
n+ δm−1,n

√
m)

= Se−|α|
2

[ ∞∑
m=0

αm+1√
(m+ 1)!

(αm)∗√
m!

√
m+ 1

+

∞∑
n=0

αn√
n!

(αn+1)∗√
(n+ 1)!

√
n+ 1

]
(39)
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We note that the two terms in the square brackets are
complex conjugates of one another and write

〈α| Êx |α〉 = 2Se−|α|
2
Re

[ ∞∑
m=0

αm+1√
(m+ 1)!

(αm)∗√
m!

√
m+ 1

]

= 2Se−|α|
2
Re

[
α

∞∑
m=0

|αm|2

m!

]
= 2SRe[α]

= 2Re[α]

(
~ωc
ε0V

) 1
2

sin(kz)

(40)

We see that if we make the associaiton

Re[α] =
1

2

(
2ωc
~

) 1
2

2q(t) (41)

We recover the expression in equation 2 for the classical
electric field (it may be useful to note that our harmonic
oscillator has unit mass, so dimensionally factors of mass
may have crept in, or crept out). It is also interesting to
note that:

〈α| n̂ |α〉 = e−|α|
2
∞∑
n=0

∞∑
m=0

αn√
n!

(αm)∗√
m!
〈m| â†â |n〉

= e−|α|
2
∞∑
n=0

∞∑
m=0

αn√
n!

(αm)∗√
m!

nδnm

= e−|α|
2
∞∑
n=0

|αn|2

n!
n

= e−|α|
2
∞∑
n=1

|α|2 |α
n−1|2

(n− 1)!

= |α|2

(42)

A.2 Transmon mechanics

The energy level structure of the Transmon is derived,
starting from a classical model of the cooper pair box
(with reference to figure 2).

The classical dynamics of the Cooper pair box may be
derived using an appropriate Lagrangian. Defining the
node flux φj(t) =

∫ t
−∞ Vj(t

′)dt′, where Vj is the voltage
across the junction, our Lagrangian will have a kinetic
term given by the charging energies:

T =
Cg
2
φ̇2
j +

Cj
2
φ̇2
j ≡

CΣ

2
φ̇2
j (43)

The potential term will include the energy of the source

Vg and a Josephson energy term−Ejcos
(

2π
φj
φ0

)
[6], where

φ0 is the flux quantum h/2e. The source energy is VgQg

where Qg is the charge on the source side of the gate ca-
pacitor. This charge can be written as the voltage across
the capacitor (−φ̇j) times the capacitance Cg. Putting
this together the potential is:

U = −Ejcos
(

2π
φj
φ0

)
− vgCgφ̇j (44)

So our classical Lagrangian is:

L = T − U =
CΣ

2
φ̇2
j + Ejcos

(
2π
φj
φ0

)
+ VgCgφ̇j (45)

The conjugate momentum is the charge on the island plus
an effective offset charge created by the source:

Qj =
∂L

∂φ̇j
= CΣφ̇j + VgCg. (46)

The classical Hamiltonian is then:

H = Qjφ̇j − L = Ec(n− ng)2 − Ejcos(δ) (47)

Where we have defined the gate charge ng = CgVg/2e,
the charging energy Ec = (2e)2/2CΣ and the supercon-

ducting phase difference δ = 2π
φj
φ0

. In this expression,
n corresponds to the number of cooper pairs present in
the superconducting island. By adding an additional ca-
pacitance CS in parallel with the Josephson junction (see
figure 2.b) we effectively have C∆ → C∆ +Cs, increasing
the ratio Ej/Ec. The limit Ej/Ec � 1 is the transmon
regime.

To quantize this system we must enforce the canon-
ical commutation relation [φ̂, Q̂] = i~. In our case it is
more convenient to use the equivalent commutation rela-
tion [δ̂, n̂] = i. We work in the charge basis {|n〉} where
n̂ |n〉 = n |n〉. The charge operator n̂ and the supercon-
ducting phase difference operator δ̂ are the fundamen-
tal objects of importance, obeying the canonical com-

muatation relation [δ̂, n̂] = i. We show that [n̂, e±δ̂] =

±e±iδ̂ and therefore that the operators e±iδ̂ are the rais-
ing and lowering operators of the charge states {|n〉} such

that e±iδ̂ |n〉 = |n± 1〉. Using the identity [Â, B̂Ĉ] =
B̂[Â, Ĉ] + [Â, B̂]Ĉ it is easily shown that

[Â, B̂n] =

n−1∑
m=0

B̂m[Â, B̂]B̂n−1−m. (48)

From which it follows

[n̂, (±iδ̂)n] =
n−1∑
m=0

(±iδ̂)m[n̂,±iδ̂](±iδ̂)n−1−m

= ±
n−1∑
m=0

(±iδ̂)n−1 = ±n(±iδ̂)n−1.

(49)
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Then we have

[n̂, e±iδ̂] =
∞∑
m=0

[n̂, (±iδ̂)m]
1

m!

=

∞∑
m=0

±m(±iδ̂)m−1 1

m!

= ±
∞∑
m=1

(±iδ̂)m−1 1

(m− 1)!
= ±e±iδ̂.

(50)

Using this we have

[n̂, e±iδ̂] |n〉 = (n̂e±iδ̂ − e±iδ̂n̂) |n〉 = ±e±iδ̂ |n〉 =⇒

ne±iδ̂ |n〉 = (n± 1)e±iδ̂ |n〉

∴ e±iδ̂ |n〉 = |n± 1〉 .
(51)

So we see that the operators e±iδ̂ are the raising and
lowering operators for charge states. Using the fact that

cos(δ̂) = 1
2(eiδ̂ + e−iδ̂) we obtain our quantized Hamilto-

nian:

H =
∑
n

Ec(n̂− ng) |n〉 〈n| −
Ej
2

(|n〉 〈n+ 1|+ |n+ 1〉 〈n|)

(52)
In the charge basis this Hamiltonian can be written as:

H =



. . .

Ec(−1− ng)2 −Ej

2

−Ej

2 Ec(0− ng)2 −Ej

2

−Ej

2 Ec(1− ng)2

. . .


(53)

This can be easily diagonalized numerically to obtain the
energy levels shown in figure 3.

A.3 Signal Processing

A.3.1 Signal generation

Controlling our signals to the required level of precision in
the GHz regime directly is difficult so instead we control
the in-phase (I) and quaderature (Q) components of our
signal in a method known as IQ-mixing. This works by
noting that for an arbitrary sinusoidal signal S we have

S = Acos(ωt+ φ)

= Acos(φ)cos(ωt)−Asin(φ)sin(ωt)

= Icos(ωt)−Qsin(ωt)

= Icos(ωt) +Qcos(ωt+
π

2
).

(54)

This enables us to accurately control the signals that we
send into the fridge by using an IQ mixer as shown in fig-
ure 17. We see that the signals SI and SQ are multiplied

by SIN (ωt) and SIN (ωt+ π/2) respectively to reproduce
the desired signal in the same way as equation 54.

Figure 17: An IQ mixer [7]

In order to properly measure and control the system we
have two such mixers, one for the readout signal and one
for the qubit control pulses. The qubit control IQ is gen-
erated by an arbitrary waveform generator and the read-
out IQ is generated by an FPGA with a DAC as shown
in figure 18.

Figure 18: The signal generation setup [7]

A.3.2 Signal measurement

The transmitted signal that leaves the cavity is very small
and is dominated by noise as it propagates out of the
fridge. As a result, to obtain a reasonable signal to noise
ratio many repetitions of the experiment must be aver-
aged (we do this on the FPGA). The readout signal that
we send in is in the GHz regime, which is too high to be
digitized. As a result the signal must be mixed down to a
lower frequency. This is achieved by mixing the incoming
readout signal (at a frequency ωR) with another signal
at a frequency ωo using an IQ mixer ‘in reverse’. The
resulting I and Q signals will then have two components
at ωR +ωo and ωR−ωo. The signal at ωR +ωo is filtered
out by a low pass filter and the result is down-converted
quadratures at a frequency ωd = ωR−ωo, which can then
be digitized. This down-conversion is shown in figure 19.
This method is known as heterodyne detection.
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Figure 19: The signal down-conversion setup [7]

A.4 Lorentzian broadening

We show that the lineshape of a quantum state is broad-
ened into a Lorentzian as a result of a characteristic decay
time τ . Suppose the frequency of our state is ω0, then we
have ψ ∼ eiω0t. Introducing a characteristic decay time
τ such that |ψ|2 ∼ e−t/τ , we can write ψ ∼ eiω0t−t/2τ .
Taking the fourier transform we obtain:

ψ(ω) =

∫ ∞
0

ψ(t)e−iωtdt ∼
∫ ∞

0
ei(ω0−ω)t−t/2τdt

=
1

1
2τ − i(ω0 − ω)

=⇒ |ψ(ω)|2 ∼ 1
1

4τ2
+ (ω0 − ω)2

(55)

This is the characteristic Lorentzian lineshape. To nor-
malize it we write

|ψ(ω)|2 =
A

1
4τ2

+ (ω − ω0)2
(56)

where A is some normalization constant to be found. We
then require: ∫ ∞

0
dω

A
1

4τ2
+ (ω − ω0)2

!
= 1 (57)

Making the variable substitution z = ω − ω0 we have

1

A

!
=

∫ ∞
−ω0

dz
1

1
4τ2

+ z2
≈
∫ ∞
−∞

dz
1

1
4τ2

+ z2

=

∫ ∞
−∞

dz
1(

z − i
2τ

) (
z + i

2τ

)
= lim

R→∞

∮
Γ
dz

1(
z − i

2τ

) (
z + i

2τ

)
(58)

Where Γ is the contour in the complex plane:

Figure 20: The contour Γ in the complex plane, with
poles of the integrand labeled

This integral becomes just the integral along the real line
as the contribution from the curved section → 0 as R→
∞. It can be easily evaluated using the Cauchy residue
theorem ∮

Γ
f(z)dz = 2πi

∑
k

Rf,pk . (59)

Here the sum runs over the poles pk of f contained within
the contour Γ and Rf,pk is the residue of f at the pole
pk. The only relevant pole is at +i

2τ with residue −iτ .
Applying this we have:

1

A
≈ lim

R→∞

∮
Γ
dz

1(
z − i

2τ

) (
z + i

2τ

) = 2πτ =⇒ A =
1

2πτ

(60)
As a result our normalized Lorentzian reads

|ψ(ω)|2 =
(2πτ)−1

1
4τ2

+ (ω − ω0)2
. (61)
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