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1 Absolute position and the geocentric universe

The geocentric model of the universe (Figure 1) places the Earth at the center of the universe
while the Sun, Moon, planets and stars go around it. This was the dominant model of the universe
until the renaissance when more accurate measurements of the motions of the planets made it
clear that the planets, including the Earth, rotate about the Sun — Figure 2. In a geocentric
universe it makes sense to talk about the absolute position of an object. We can set up a special
coordinate system based on the centre of the Earth and ascribe physically meaningful coordinates
to every point in space. This means that in our geocentric universe we can reasonably expect the
laws of physics to depend on position — maybe for example there is a force that pulls everything
towards the centre of the Earth (that is, to the centre of the Universe), and the strength of the
force depends on how far out from the centre you are (your absolute position). In this case, if
you find yourself in a sealed box at some point in space so you can’t see out, you can still work
out how far you are from the centre of the universe by measuring the inwards force on a particle.
By looking at how the force varies in time you could also deduce whether the box you are in
is moving. This is the sense in which, in a geocentric universe, both position and velocity are
absolute — even in a sealed box with no windows you can deduce both your position and your
velocity by conducting some experiments.

Figure 1: A geocentric universe Figure 2: A heliocentric universe

At first glance the heliocentric model of the universe, which puts the Sun at the centre and
has the Earth and planets revolving around it, is just as absolute as the geocentric model. The
only difference it that the special coordinate system is based on the Sun rather than the Earth.
However, the Earth is moving around the Sun at great speed — about 30km/s — and yet on Earth
it is very difficult to detect this. For example, we might think we could tell by throwing a ball
straight up into the air and watching where it lands. If the ball flies for 1s, the Earth should have
moved 30km during the balls flight, so we might have expected the ball to land several kilometers
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from where we threw it, but this does not happen. Nor do we feel ourselves being pulled towards
the centre of the universe. During the renaissance these objections lead to the heliocentric model
being very controversial — if the Earth isn’t at the centre of the universe and is moving fast, why
can’t we tell?

2 The principle of relativity

To counter these objections to the heliocentric universe, Galileo pointed out that even on Earth,
if you are below deck on a ship, it is impossible to detect whether the ship is moving without
looking out of the porthole. Specifically he wrote:

“Shut yourself up with some friend in the main cabin below decks on some large ship,
and have with you there some flies, butterflies, and other small flying animals. Have
a large bowl of water with some fish in it; hang up a bottle that empties drop by drop
into a wide vessel beneath it. With the ship standing still, observe carefully how the
little animals fly with equal speed to all sides of the cabin. The fish swim indifferently
in all directions; the drops fall into the vessel beneath; and, in throwing something
to your friend, you need throw it no more strongly in one direction than another, the
distances being equal; jumping with your feet together, you pass equal spaces in every
direction. When you have observed all these things carefully (though doubtless when
the ship is standing still everything must happen in this way), have the ship proceed
with any speed you like, so long as the motion is uniform and not fluctuating this way
and that. You will discover not the least change in all the effects named, nor could
you tell from any of them whether the ship was moving or standing still. In jumping,
you will pass on the floor the same spaces as before, nor will you make larger jumps
toward the stern than toward the prow even though the ship is moving quite rapidly,
despite the fact that during the time that you are in the air the floor under you will be
going in a direction opposite to your jump. In throwing something to your companion,
you will need no more force to get it to him whether he is in the direction of the bow
or the stern, with yourself situated opposite. The droplets will fall as before into the
vessel beneath without dropping toward the stern, although while the drops are in the
air the ship runs many spans. The fish in their water will swim toward the front of
their bowl with no more effort than toward the back, and will go with equal ease to
bait placed anywhere around the edges of the bowl. Finally the butterflies and flies
will continue their flights indifferently toward every side, nor will it ever happen that
they are concentrated toward the stern, as if tired out from keeping up with the course
of the ship, from which they will have been separated during long intervals by keeping
themselves in the air. And if smoke is made by burning some incense, it will be seen
going up in the form of a little cloud, remaining still and moving no more toward one
side than the other. The cause of all these correspondences of effects is the fact that
the ship’s motion is common to all the things contained in it, and to the air also.
That is why I said you should be below decks; for if this took place above in the open
air, which would not follow the course of the ship, more or less noticeable differences
would be seen in some of the effects noted.”

The essential observation here is that you can’t conduct an experiment to determine where
you are or how fast you are moving. Since our experiments are governed by the laws of physics,
this means that the laws of physics must also not depend on where you are or how fast you are
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moving. This is an experimental observation, not a philosophical deduction. We encapsulate this
thought in the principle of relativity which we can write informally as

“if you are stuck in an isolated box with no windows you can’t tell how fast the box
is moving or where the box is”

or more formally as

“The laws of physics are the same in all inertial frames’.’

We define an inertial frame to be one in which free particles move in straight lines. It is
important to notice that the principle of relativity applies to position and velocity, but not to
to linear acceleration or rotation. This is because, as anyone who has been in a plane at take-
off or sat on a roundabout will know, it is perfectly possible to detect that you are rotating or
accelerating.

3 Galilean relativity and Newton’s Laws

To probe whether a physical theory obeys the principle of relativity described above, we have to
establish how the same events are seen by observers who are at different places and moving at
different speeds, so that we can see whether the different observers can explain the events using
the same physical laws. To describe a set of events, an observer must say where and when the
various events happened. To do this each observer sets up a coordinate system consisting of an x,
y and z axis so that they can record where the evens happen, and a clock so that they can record
when the events happen. We give all our observers a standard meter ruler to mark the scale on
their spatial axes and a standard clock to measure time with.

We typically consider two observers who set up coordinate systems S and S′, such that S′ is
moving at a speed v with respect to S. The coordinate systems are in the “standard” configuration,
meaning the x axis in S is parallel with the x axis in S′ (which we call the x′ axis), and similarly
for the y and z axes. Furthermore, the relative velocity between the two coordinate systems is in
the x direction, and both clocks are started at the moment the two origins are in the same place,
so if the observer in S sees an event at x = y = z = t = 0, then the observer in S′ also sees it at
x′ = y′ = z′ = t′ = 0. This is illustrated in the figure below.

x
x’

y y’

frame S

frame S’

with speed v
frame S’ moving
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If the observer in the frame S observes an event with spatial coordinates (x, y, z) at time t,
where and when is it according to the observer in S′? The Galilean answer to this question is
simple and intuitive. Both observers started their clocks simultaneously, so the time on the clock
in S′, which we call t′ will be the same as the time on the clock in S. The frame S′ will have
moved a distance vt in the x direction since the origins were in the same place, as pictured in
Figure 3, so the coordinates (x′, y′, z′) observed in the S′ frame will be

Figure 3: Left: Two frames S and S′ in the standard configuration at t = t′ = 0, at which point the two
frames lie exactly on each other, although S′ is moving at a speed v with respect to S. Right: A time t
later S′ has moved a distance vt in the x direction.

x′ = x − vt (1)

y′ = y (2)

z′ = z (3)

t′ = t. (4)

Conversely, if we know the primed coordinates observed in S′, the coordinates according to
the observer in S will by

x = x′ + vt (5)

y = y′ (6)

z = z′ (7)

t = t′. (8)

The Newtonian laws of physics obey the principle of relativity using these Galilean transfor-
mations. This is simple to see — Newton’s third law states that the acceleration of a body (a) is
given by the force the body is subject to (F) divided by the mass of the body (m). Taking the
derivatives of the transformation laws with respect to time (since t = t′ there is nothing to worry
about here) we see that, since v is constant,

ẋ′ = ẋ − v (9)

ẏ′ = ẏ (10)

ż′ = ż (11)

(12)
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which are the Galilean velocity transformation laws. Taking a second derivative to get acceleration
transformation laws gives,

ẍ′ = ẍ (13)

ÿ′ = ÿ (14)

z̈′ = z̈. (15)

(16)

This means the acceleration of a particle observed in S will be the same as the acceleration
of the particle observed in S′. Furthermore, the distance between two particles observed in S
is the same as the distance between the two particles observed in S′. Therefore, if an observer
in S can predict the forces on a group of particles by using force laws that only depend on the
distances between the particles (such as Newton’s law of gravity), and apply F = ma to work out
the accelerations, and observes that the predicted accelerations match the observed accelerations,
then so can an observer in S′ watching the same events. This is clear since the observer in S′

sees the particles separated by the same distances, so he calculates the same forces, and he also
observes the same accelerations. If Newton’s laws of motion are obeyed in one frame, it will
also be obeyed in the other. This means that Newtonian physics already obeys the principle of
relativity1.

4 Electromagnetism and the speed of Light

Significant problems with classical physics first arose with the discovery of the laws of electromag-
netism by Maxwell. Maxwell was able to write down four equations that described all the behavior
of electric and magnetic fields, and his equations made a striking prediction — there should be
traveling electro-magnetic waves. The speed of these waves, c, is predicted by the equations, and
matches the observed speed of light, so Maxwell concluded that light was an electro-magnetic
wave.

The difficulty reconciling electromagnetism with the principle of relativity arises because it is
very unclear what the speed predicted by the equations is with respect to. If we derive a theory
of sound waves in air, it is clear that the speed we predict is with respect to the stationary bulk of
the air. If we derive a theory of bullets coming out of a gun, it is clear that the speed we derive for
the bullets is with respect to the gun. The simplest interpretation of the speed of electro-magnetic
waves is that it is with respect to some supporting medium called the “ether”. This would mean
that it is possible for an observer to detect whether he is moving with respect to the ether by
measuring the speed of light. Consider the following scenario (illustrated in Fig. 4), a stationary
alien (A) fires a laser pulse at Bob (B) who, rather naturally, is running away at a speed v. What
is the speed of the laser pulse with respect to the Bob and the Alien? Assuming the Alien is
stationary with respect to the ether, the light will propagate through the ether and away from
the Alien at the full speed of light c. The speed of the pulse with respect to the Alien is therefore
c. However, Bob is running away from the pulse at a speed v, so the speed of the pulse relative
to Bob should only be c − v. If Bob is fast enough the laser pulse will take a very long time to
catch him up, if he is faster than the speed of light it never will. If Bob treats this situation as an
opportunity to measure the speed of light, he will record the answer c − v and hence know that
he is moving with respect to the ether because this is slower than c.

Question: What would the speed be with respect to Bob and the Alien, if the laser was replaced

by a standard gun that ejected bullets with a speed c? What if it was a sound gun and Bob is

stationary in the Air?

1Notice that we have assumed that all observers agree on the mass of an object.
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Figure 4: A stationary Alien fires a laser pules at Bob, who is running away at a speed v.

Question: What are the transformation laws for velocities in Galilean Relativity?

The problem with the ether conjecture is that, experimentally, the speed of light does not
depend on the speed of the observer. In the above scenario, the light approaches Bob at a speed
c with respect to Bob and departs from the Alien at a speed c with respect to the Alien, making
running away a pretty fruitless exercise. This defies our Newtonian intuition since it means that
light does not obey the Galilean rule for transforming velocities, but it is pleasingly relativistic —
it is not possible to use the observed speed of light to work out whether you are moving or not.

Michelson and Morley experiment

It is fair to ask how we know that the speed of light does not depend on the speed of the observer.
The historically decisive experiment was conducted by Michelson and Morley. In their experiment,
pictured below, a beam of light is split into two perpendicular beams using a half silvered mirror
(Z). These perpendicular beams (X and Y) propagate in their given directions until they are
reversed by a pair of mirrors and returned to the half silvered mirror (Z). Half the light from each
of these beams is then directed by the half silvered mirror towards a screen where interference
fringes between the two beams are observed. The key idea is that the Earth is moving round the

Mirror

Mirror

Fringes on Screen

d

d

v

Z

Y

X

6
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Sun at a very substantial speed, and therefore presumably moving through the ether. The length
of time it takes the light to travel up and down one of the arms of the apparatus will depend on
the angle between the arm in question and the velocity the apparatus is making through the ether
(calculating the time difference is one of the questions on the examples sheet), so the X and Y
beam will take different amounts of time to reach the screen. If the apparatus is rotated this time
difference will change and therefore the interference pattern observed on the screen will change.
This is not observed, leading us to conclude that either the apparatus is not moving through the
ether or there is no ether. The first possibility is largely eliminated by doing the experiment again
12h later, so the direction of the Earths rotational velocity has reversed, and 6 months later so
that the direction of the Earths orbital velocity has reversed.

5 Einstein’s Postulates

Einstein proposed that the principle of relativity was correct and that the Maxwell laws of elec-
tromagnetism were fundamental physical laws, which lead him to make two postulates:

1. the laws of Physics are the same in all inertial frames;

2. the speed of light is the same in all inertial frames.

The theory of special relativity that he introduced allows both these postulates to be held
simultaneously by modifying the Galilean transformation laws discussed above.

6 Time dialation

One immediate consequence of Einstein’s postulates is that observers moving at different speeds
with respect to each other do not agree on the time interval between two events. We can see this
by considering a clock consisting of a pulse of light bouncing between two mirrors — see Figure
5.. One tick of the clock is the time for the light to go right round the clock, which is to say the
time for it to travel from one mirror to the other, be bounced of the second mirror and return to
the first. If the length between the mirrors is ℓ then this will take a time t = 2ℓ/c.

2 /cl

S
mirror

period

l

Figure 5: Measuring time using a light clock — a beam of light bouncing between two mirrors.

We now consider two identical light clocks, one at rest in a frame S and one at rest in a frame
S′ which is moving at a speed v with respect to S in the standard configuration. In both frames
the time period observed for the clock that is stationary in that frame is still 2ℓ/c. However, if
we consider the clock in S′ as seen by an observer in S — Figure 7 — the clock is now seen to be
moving. This means that the mirrors are not always in the same place when they are struck by
the light beam, rather, if the time period of the clock observed in S is t then the top mirror will
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l

l

S
S’

v

(as seen in S )’

Figure 6: Two light clocks, one (left) stationary in S and one (right) stationary in S′, both drawn as seen
in the frame they are stationary in.

move a distance vt/2 while the light travels from the bottom mirror. This is illustrated below
Figure 7.

lS

S’

v

v t/2

ct/2

Figure 7: The light clock that is stationary in S′ as seen according to an observer in S. The clock moves
with a speed v and therefore travels a distance vt in one period of the clock.

The total distance, d, traveled by the light in one period of the clock as observed in S is, by
Pythagoras, d = 2

√

ℓ2 + (vt/2)2. Since according to Einstien’s postulate, the speed of light must
still be c, the time period observed in S is

t =
d

c
=

2
√

ℓ2 + (vt/2)2

c
. (17)

If we square both sides of this equation move all the terms involving t the the left hand side we
get

t2

4

(

1 −
v2

c2

)

=
ℓ2

c2
(18)

. However, we know that the time period for the clock observed in the S′ was t′ = 2ℓ/c, so we
can replace the right hand of this equation by (t′2)/4 giving

t2

4

(

1 −
v2

c2

)

=
t′2

4
, (19)

We write this result as

t = γt′ (20)

where we have introduced the so called “gamma-factor”

γ =
1

√

1 − v2/c2
=

1
√

(1 − v/c)(1 + v/c)
. (21)
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Exercise: Sketch a graph of the gamma factor as a function of velocity v.
This is a remarkable result. The two observers measure a different time interval between the

same ticks of the same clock if they are moving at different speeds. This result is known as
time dilation since the time between ticks appears to be longer in S (γ is always greater than
one), leading us to the general statement that moving clocks run slow according to stationary
observers. We call the time between ticks as measured in the clocks stationary frame the proper

time between the two events (ticks), which we normally write as T0. The proper time between
two events is the time between them as measured in a frame in which they happen in the same
place, and is the shortest time that can be measured between them. The time between them
measured in a different frame moving at a speed v is

T = γT0. (22)

Although our analysis made use of a very specific light clock, this result must hold for any pair
of events since, if the time between any pair of events did not behave in this way, we could use
use a light clock to measure the discrepancy and hence infer that we were moving.

6.1 Mysterious muons

The γ factor is very close to one unless the velocities involved are similar to the speed of light,
so time dilation is not noticed in day-to day life. One close-to-home phenomenon that depends
on time dialation is the arrival of muons (a type of elementary particle similar to but heavier
than an electron) generated in the upper atmosphere at the surface of the Earth. The muons are
generated when cosmic rays strike the upper atmosphere about 60km above the surface of the
Earth, as shown below.

top of atmosphere

E
h m~ 6x10

4

m cosmic ray

Figure 8: Muons are generated when cosmic rays strike the upper atmosphere. The they travel through
the atmosphere to the surface of the Earth. Not to scale!

They are created with a huge amount of energy, so they travel towards the Earth at a speed
very close to the speed of light and their travel time is approximately h/c = 200µs. However,
when we make muons in the lab they decay with a half life of τ0 = 1.5µs, so the journey to the
surface of the Earth takes 133 half lives, and therefore and we should only expect 1 in 2133 muons
to get through. In fact about 1 in 8 gets through, so there is an easily measurable flux of muons
at the surface of the Earth.

We can use time dilation to explain how the muons get through the atmosphere. If 1 in 8 get
through then, in the muons rest frame, 3 half lives must have elapsed between the muon being
created and arriving at the surface (8 = 23). The time for these three half lives (which are like
ticks of a clock) to elapse in the Earth’s frame will then be 3γτ0, which must be equal to the time
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we observe the muons to take traveling through the atmosphere in the Earth’s frame, namely h/c.
This allows us to find γ and hence the speed of the muons.

Notice that the muons clock appears to be running slowly according to observers on Earth
because the muon is moving. As we said before, moving clocks run slow according to stationary
observers.

6.2 Doppler shifts

In classical physics, the frequency of a wave depends on the speed of the emitter with respect
to the receiver. This is why the pitch of a fire engine’s siren appears to change when the engine
drives past you. The classical doppler shift is easy to analyze — consider a moving source (a
fire engine?) that emits a regular series of clicks separated in time by T0 = 1/f0 (so f0 is the
frequency of the clicks). The clicks travel through the air with speed c, which here we are using
as the speed of sound waves in air. If the source is stationary then the clicks will be spaced in the
air by a distance cT0 because each click will move a distance cT0 away from the source before the
next click is released — see Figure 9. If the source is moving at a speed v away from the observer
then it will move a distance vT0 between the emission of two clicks, so the total distance between
the clicks in the air will be (c + v)T0. This is also illustrated in Figure 9.

Figure 9: Left: A stationary source (thick black bar) emits a click (dotted line) that moves through the
air at a speed c. The three diagrams show the positions of the clicks and the source immediately after the
emission of the first second and third click. Right: Exactly the same diagram, but with a source moving
at a speed v, increasing the spacing between the clicks.

A stationary observer will here the clicks arrive more slowly if the source is moving away from
him. The time between clicks observed by a stationary observer is simply the distance between
them divided by the wave speed (c), so the observed frequency in the moving case is

f =
c

T0(v + c)
= f0

1

1 + v/c
. (23)

If the source had been moving towards the observer then the new frequency observed at the origin
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would be

f =
c

T0(c − v)
= f0

1

1 − v/c
. (24)

The above classical analysis is perfectly adequate for fire engines, but breaks down if the source
is moving at a speed close to the speed of light. This is because, as well as the classical doppler
shift, we also need to take into account the time dilation that the source undergoes because it is
moving at a relativistic speed — if the time period between clicks is T0 in the sources rest frame,
then it will be γT0 in the observers rest frame. If we now assume that rather than a fire engine
emitting sound pulses, we have a rocket emitting light pulses, we can use the previous analysis
but with an effective time period γT0 to see that the observed frequency will be

f =
c

γT0(v + c)
= f0

1

γ(1 + v/c)
= f0

√

1 − v2/c2

1 + v/c
(25)

= f0

√

(1 − v/c)(1 + v/c)

1 + v/c
(26)

= f0

√

1 − v/c

1 + v/c
. (27)

Similarly, if the source is moving towards the origin we have

f =
c

γT0(c − v)
= f0

1

γ(1 − v/c)
= f0

√

1 − v2/c2

1 − v/c
(28)

= f0

√

(1 − v/c)(1 + v/c)

1 − v/c
(29)

= f0

√

1 + v/c

1 − v/c
. (30)

The frequency of a light source is lowered if it is moving away from us. Astronomers call this
“red-shift” and can use it to work out how fast astronomical objects are moving. This is possible
because certain atoms are known to emit at certain frequencies/waveleghts which can be measured
on Earth, so if a collection of such atoms is seen emitting at a lower frequency it must be because
they are moving and have been doppler shifted. The red shift is defined as

r =
λ

λ0

=
f0

f
=

√

1 + v/c

1 − v/c
. (31)

Question: Why “red-shift” not “blue-shift”? Why are almost all sources moving away from

us?

7 Length Contraction

Returning to the atmospheric muons, we have understood that in the Earth’s frame the muons
travel through the atmosphere at a speed v ≈ c, causing the muons clock to appear to run slow
according to observers on Earth. Applying the time dilation result, if the journey takes a time tm
in the muons rest frame and a time tE in the Earths rest frame, γtm = tE. This allows the muon
to travel through the atmosphere in a small number of half lives according to its own clock, even
though it took many half lives according to clocks on Earth. Suppose we now watch the same
events from a frame moving with the muon. The muon is stationary in this frame, and the Earth
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is heading towards it at a speed v. Since the muon is stationary, in this frame its clock is running
at full speed, so how does the muon explain how it got through the atmosphere?

The answer to this problem is simple but profound. During the journey in the muon’s frame
the Earth moves a distance vtm, so the atmosphere has height h′ = vtm. In the Earths frame, the
height of the atmosphere is h = vtE = vγtm, so the height of the atmosphere in the muons frame
is less than the height of the atmosphere in the Earths frame. The two are related by

h′ =
h

γ
. (32)

This means that the atmosphere appears shorter by a facto of γ in the muon’s frame because it is
moving. The length of the moving atmosphere is shortened by the same amount as the clock on
the moving muon ran slow. This is the famous length contraction effect — a body with length L0

in its rest frame appears to have a length L0/γ according to observers moving with a velocity v.
The contraction only occurs along the direction of the velocity. The longest that an object ever
appears is its length in its rest frame, which is called its proper length.

8 Lorentz Transformations

We have shown that Einstein’s postulates require us to abandon the notion that all observers can
agree on the time interval between events or the length of objects — rather observers moving at
different speeds will record different answers. However, our reasoning so far has been rather ad-

hoc. We would really like to write down new transformation laws so that if we know the space-time
coordinates of an event in one frame (x, y, z, t), we can find the space-time coordinates observed in
another frame (x′, y′, z′, t′). These are the relativistic equivalent of the Galilean transformations
we discussed at the start of the course. As before we will restrict ourselves to frames that are
in the standard configuration — Figure 3 — meaning that S′ is moving at a speed v in the x
direction with respect to S and that the clocks in both frames are started at the instant that the
origins of the two frames are in the same place.

8.1 Transformation of x

Imagine that a man is standing at rest in S a distance x along the x axis and holding a piece of
chalk. At a time t he makes a mark on the axis of the frame S′. The coordinates of this event in
S are simply x and t since y = z = 0. Where on the x′ axis is the mark made? — this will be
the x′ coordinate of the event. If an event happens at a time t and at a position x in the frame
S then the origin of the frame S′ is at x = vt, so the distance between the event and the origin
of S′ as measured in S is simply x − vt. This is illustrated in Figure 10.

However, the x′ axis of S′ has been length contracted by a factor of γ (think about the axis
as a long physical ruler), so the distance from the event to the origin of S′ will be γ(x− vt) when
measured in S′, giving us the transformation rule

x′ = γ(x − vt). (33)

We can repeat the analysis with an event that occurred at x′ and t′ as measured in S′ and ask
what the coordinates of the event are in S. Since this is exactly the same situation as above,
except now S is moving at −v and with respect to S′, the answer must simply be

x = γ(x′ + vt′). (34)
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Figure 10: Two frames, S and S′, in the standard configuration at t = t′ = 0 (left) and a time t later
as measured in S (right). A man waits at coordinate x in S and makes a mark on the x′ axis at time t.
Where is the mark on the x′ axis?

8.2 Transformation of t

Eliminating x′ between these two equations gives us

x = γ(γ(x − vt) + vt′), (35)

which can be rearranged (Tricky! Do this as an exercise) to give

t′ = γ(t − vx/c2) (36)

and similarly
t = γ(t′ + vx′/c2). (37)

8.3 Transformations of y and z

The transformations for y and z are unchanged:

y′ = y (38)

z′ = z. (39)

This can be understood using a simple symmetry argument. If y′ was not equal to y it would
have to be either larger or smaller than y, and the sign of the correction would have to depend
on the sign of v (so that transforming and then inverse transforming y returns y). However, the
apparent sign of v can be changed by reversing the labeling on the x axis so that x increases
moving left not right. Since relabeling x should not change the y coordinates, there can be no
such correction. Exactly the same arguments can be applied to the z transformation.

8.4 Use of Lorentz Transformations

Rather than write down separate space and time coordinates for objects, we must always write
down the space and time coordinates of events, since when the event is viewed in a different frame
the new time coordinate will depend on the old space coordinate and vice versa. However, rather
than specify the coordinates of an event with respect to the origin of a frame, it is often useful to
specify the difference in coordinates between two events. If event one happens at (x1, y1, z1, t1)
and event 2 at (x2, y2, z2, t2) then we are generally interested in the separations between the two
events, ∆x = x2 − x1, ∆t = t2 − t1 etc. These differences transform in exactly the same way as
the coordinates,2

2Which is obvious since really the coordinates are just differences between the event we are interested in and a

reference event that happened at t = x = y = z = 0
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10 ADDITION OF VELOCITIES

∆x′ = γ(∆x − v∆t) (40)

∆t′ = γ(∆t − v∆x/c2). (41)

Exercise: Prove the time dilation and length contraction results using the Lorentz transforma-

tions. For length contraction, remember we measure length by making simultaneous measurements

of the position of the two ends of our object.

9 Loss of simultaneity

An immediate consequence of the Lorentz transformations is that observers moving at different
speeds do not just disagree on the time interval between events, they can also disagree about the
order of events. If two events are simultaneous in S but separated in space by a distance ∆x
along the x axis then what happens, then the separation in time of the two events in S′ is simply
(applying the Lorentz transformation for ∆t)

∆t′ = −γv∆x/c2, (42)

so events that are simultaneous is S are not simultaneous in S′. This emphasizes the importance
of giving the full space-time coordinates of events, since even the order of events need not be
agreed upon by different observers.

We can illustrate the loss of simultaneity with a simple example: two clocks are placed a
distance ∆x apart and at rest in a frame S, and a light source is placed half way between them.
The light source emits a short pulse and each clock is activated when the light from the source
hits it. In the frame S these events are simultaneous, so the clocks tick in time, and start ticking
a time ∆x/(2c) after the pulse is turned on. However, in a frame S′ moving with speed v with
respect to S the light pules still moves at speed c and is still emitted from a point half way between
the clocks but, because one clock is moving towards this point and one is moving away from it,
the light reaches the two clocks at different times, and hence the clocks do not tick together.

Exercise: Show from first principles that the time ∆t′ between the light hitting the two clocks

in S′ agrees with the general Lorentz transformation result stated above.

10 Addition of velocities

If, in a frame S a particle is moving with a speed u along the x axis, how fast does the particle
appear to move in S′? This question can be answered straightforwardly using the difference forms
of the Lorentz transformations, since if we measure the position of the particle at two different
times

u =
∆x

∆t
. (43)

The speed observed in S′ will simply be

u′ =
∆x′

∆t′
=

γ(∆x − v∆t)

γ(∆t − v∆x/c2)
. (44)

We can simplify this considerably by canceling γ and dividing through by ∆t to get

u′ =
u − v

1 − vu/c2
. (45)
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12 CAUSALITY AND THE UNIVERSE’S SPEED LIMIT

This transformation law for velocities has two interesting properties. The first is that if u = c
then u′ = c whatever the value of v. This means that a particle that moves at the speed of light
in one frame moves at the speed of light in every frame. The second is that if u < c then it is
impossible to get u′ > c if v < c, so, unlike in Galilean relativity, it is impossible to add up lots
of velocities which are smaller than the speed of light to get one that is larger than the speed of
light.

11 Space-Time

The Lorentz transformations mix up the time and space coordinates, so that different observers
cannot agree on the distance between events, the time between events or even the order of events.
It is natural to wonder whether there is anything all observers can agree on. We can make a
very informative analogy with rotations of coordinate systems. If we consider two points with
coordinates (x1, y1, z1) and (x2, y2z2), we can construct a vector that points between these two
positions, ∆r = (x1 − x2, y1 − y2, z1 − z2). If we then rotate the coordinate system while keeping
the points and hence the vector fixed then the values of x1, y1 and z1 etc. will all change. However,
the length of the vector given by |∆r|2 = (x1−x2)

2 +(y1−y2)
2 +(z1−z2)

2 will not have changed.
We could call this unchanging quantity the space-interval between the two points, although in fact
it is just the distance between them. The distance between two events does change if a Lorentz
transformation is used rather than a rotation, but there in an equivalent unchanging quantity
called the space-time interval between two events, which is defined as

∆s2 = c2∆t2 − |∆r|2, (46)

where ∆t is the time between the events and |∆r| is the distance between the two events. This
looks much like normal Pythagoras, but the sign is different. If two observers in different frames
observe the same two events, they may well disagree on the separation of the two events in time
and the spatial distance between them, but they will agree on the space-time interval between
the two events ∆s2. This suggests that we should think of events as points in a four dimensional
space-time, in which the distances between points are not given by the usual Euclidean Pythagoras
result but by the space-time interval.

Important Exercise: Use Lorentz transformations to show that two observers in different

frames agree on the space-time interval between two events, even if the disagree about everything

else.

12 Causality and the Universe’s Speed Limit

Since observers can no longer agree on the order of events, we might justifiably be concerned
about causality. If one observer sees one event cause another, how can a second observer explain
this if he sees the two events occur in the other order? Surely an event cannot cause an event that
happens before it. If the time interval between two events in a frame S is ∆t (which, without loss
of generality, we take to be positive), and they are spatially separated by a distance ∆x along the
x axis then we know that the time interval in another frame S′ is given by

∆t′ = γ(∆t − v∆x/c2). (47)

The observers will disagree on the order of the two events if ∆t′ has the opposite sign to ∆t. This
is only possible if

v∆x/c2 > ∆t. (48)
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12 CAUSALITY AND THE UNIVERSE’S SPEED LIMIT

Assuming that our observers cannot exceed the speed of light (otherwise the γ factor would be
imaginary), the largest possible value of the left had side is given by setting v = c. This means
that an observer can be found who sees the order of the events reversed if and only if

∆x > c∆t. (49)

Squaring this inequality, we see that this is equivalent to demanding that the space-time interval
between the two events be negative. If the space-time interval between two events is positive then
the order of the event is the same according to all observers, if it is negative then observers can
disagree about the order. We can also see this by considering the form of the space-time interval,

∆s2 = c2∆t2 − |∆r|2. (50)

Since both ∆t2 and |∆r|2 are positive (they are squared numbers) if the space-time interval is
positive then there can be no frame in which the events are simultaneous, while if the space-time
interval is negative then there can be no frame in which the two events occur at the same place.
If ∆t′ changes sign at some value of v then, since it is a smooth function, it must pass through
zero, which cannot happen if the space-time interval is positive.

For one event to cause another, a signal must pass from the first event to the second telling the
second event to happen. If the space-time interval between the events is positive then the speed
of such a signal, |∆x/∆t|, can be less than the speed of light, while if it is negative the signal
must travel faster than the speed of light. Thankfully this is consistent with our observations
about which events have a definite order. If the space-time interval is positive, all observers agree
on the order of two events and a signal traveling slower than the speed of light can pass between
them, so the first event can cause the second. If the space-time interval is negative then observers
disagree on the order of the events, so it must be impossible for one to cause the other. If one
was to cause the other, it would need to send a signal faster than the speed of light. Since we
cannot tolerate a theory in which events in the future cause events in the past, we conclude that
no signal can travel faster than the speed of light.

Exercise: A space-time diagram is a two dimensional plot in which one axis is the spatial x
axis and the other is a time axis, so that an event is represented by one point on the diagram.

On the space-time diagram shown below, which regions represent events that can be caused by the

event at the origin, which represent events that can cause the event at the origin and which events

can have no causal relationship with the event at the origin?
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