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We study theoretically the low-temperature phases of a two-component atomic Fermi gas with
attractive s-wave interactions under conditions of rapid rotation. We find that, in the extreme quantum
limit, when all particles occupy the lowest Landau level, the normal state is unstable to the formation of
charge density wave (CDW) order. At lower rotation rates, when many Landau levels are occupied, we
show that the low-temperature phases can be supersolids, involving both CDW and superconducting order.
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The experimental achievement of condensation of pairs
of atoms in two-component Fermi gases with resonant
s-wave interactions [1–4] has allowed studies of interact-
ing Fermi systems in regimes not accessible in solid-state
systems: notably the transition from a BCS superfluid to a
Bose-Einstein condensate and regimes of large density
imbalance between the two species. The ability to rotate
the gases, revealing a lattice of quantized vortices [5], has
provided an important diagnostic of superfluidity in these
phase-coherent condensates.

A very interesting regime arises in atomic Fermi gases
under conditions of rapid rotation (high vortex density).
Noting the analogy between rotation and magnetic field in
a superconductor, one might anticipate the BCS phase to
revert to a normal state above a critical rotation frequency
(analogous to Hc2 in superconductivity), as predicted by
BCS theory within a semiclassical approximation [6–8].
Yet, going beyond this approximation to include Landau
level (LL) structure, one finds that the normal phase can be
unstable to ordered phases involving high-field supercon-
ductivity (SC) [9], ‘‘charge’’ density wave (CDW), or spin-
density wave (SDW) order [10].

In this Letter, we investigate the low-temperature phases
of a two-component atomic Fermi gas with attractive
s-wave interactions under conditions of rapid rotation.
The regime of interest for atomic gases differs substantially
from regimes studied in solid-state systems: the rotation
does not lead to any ‘‘Zeeman’’ splitting which might
suppress high-field SC order; the short-range interactions
allow density wave order to develop (this is suppressed in
solid-state systems by Coulomb interactions). We show
that the low-temperature phases of an atomic Fermi gas
with attractive interactions involve an interesting interplay
between CDW and superconducting phases. In the extreme
quantum limit, when only the lowest Landau level (LLL) is
occupied, we show that the system is unstable to CDW
order along the rotation axis. At lower rotation rates, we
show that CDW and SC can coexist, leading to ‘‘super-
solid’’ behavior.

We study a rapidly rotating gas of two-species fermions,
of equal densities, in the uniform limit: the number of

vortices is assumed large, so the rotation frequency, �, is
close to the trap frequency, and the confinement along the
rotation axis is assumed weak. Our results for the infinite
system can be used to infer the properties of a finite cloud
within the local density approximation. In the rotating
frame, the Coriolis force mimics a magnetic field and leads
to a Landau level structure with cyclotron frequency !c �

2�. The single particle states then have energies �� �
�2n� 1�@�� @

2k2

2m , where � � �n; x; k� stands for the LL
index n, the momentum in the Landau gauge x [11], and
the wave vector along the rotation axis k. For a noninter-
acting gas with Fermi energy �F, the nth Landau level has a
1D Fermi surface with Fermi momentum @kFn �
f2m��F � �2n� 1�@��g1=2 and kinetic energy relative to
the bottom of the band �Fn � @

2k2
Fn=2m. We describe the

instabilities of these Fermi surfaces arising from weak
interactions. (We focus on results for attractive interactions
but also report on the repulsive case.)

First, we analyze the effect of rotation on the SC phase,
applying BCS theory in the presence of Landau level
structure [6,7,9,13–15]. For contact interactions, the gap
equation requires regularization at high energies. For solid-
state systems, the Debye frequency provides a natural cut-
off for phonon-mediated attractive interactions. In a cold
atomic gas, a natural regularization arises from the (small)
length scale of the interparticle forces. Using a two-
channel model for the Feshbach interaction, this length
scale enters as the size of the ‘‘closed channel’’ boson
(see e.g. [8,16,17]) and can be taken to zero with the
introduction of appropriate counterterms. Following
Ref. [16], the parameters of the model are the boson energy
�B � @�� �� C and the coupling �S��0 between a
closed channel boson and fermions with quantum numbers
� and �0. Here, � is the physical detuning of the bosons and
C a counterterm which is set to cancel the boson self
energy ��!! 0� � �2P

��0 jS��0 j
2=��� � ��0 �, such that

the model reproduces the scattering properties at low en-
ergy and �! 0 [16,18]. The physical scattering parame-
ters are related via��2=� � 4�@2as=m � g. Treating the
ensuing two-channel Hamiltonian within mean field, and
assuming a wide Feshbach resonance, yields the linearized
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gap equation [16]
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with Bn
0

n � �
n�n0
n �2

�n�n0 , �� � �� ��, and the magnetic
length ‘0 � �@=2m��1=2. The solutions to (1) determine
the critical temperature Tc for superconductivity.

Within a semiclassical approximation to (1), Tc vanishes
for @� * �2=� (� is the zero field gap) [6–8,19]. The full
gap Eq. (1) admits solutions even in this regime. Then,
when Tc is small, the dominant contributions arise from
integrating the ‘‘diagonal’’ terms (n � n0) [14], which
diverge logarithmically at low T for occupied LLs.
Provided kBTc 	 ��� @��2nmax � 1��, the off-diagonal
terms (n � n0) can be neglected, and one finds

 Tc 
 �
@�

kB
exp

�
�

2�
�askF0

G����1

�
; (2)

where � � ��� @��=�2@��, nmax � b�c, and

 G��� �
1

�

Xnmax

n�0

�2n�!

�2nn!�2

�
1�

n
�

�
�1=2

: (3)

The critical temperature (2) is a strongly oscillating func-
tion of �=@�, with a peak each time a LL depopulates and
G��� diverges. The sharp peaks predicted by (2) are
rounded in a full of solution of (1) which is required for
strong coupling. The evolution from weak to strong cou-
pling is shown in Fig. 1, which we have computed by
solving (1) using a numerical root-finding routine.

Consistent with previous studies of BCS theory in solid-
state systems [6,7,9,13–15], we find that LL quantization
leads to a stable SC state at any value of the field [9]. For

jasjkF & 1 the critical temperature has a minimum value
Tmin
c �askF�. For temperatures T * Tmin

c �askF�, mean-field
theory results predict a series of reentrant SC to normal
transitions as the rotation rate increases. Our results differ
from those presented in Ref. [16]: the (reentrant) super-
conductivity at rapid rotation was not found in that work;
the critical rotation frequency has an important
temperature-dependence, especially for strong coupling.

The superconducting phase competes with other ordered
phases. To determine the nature of the ground state one
must work beyond mean-field theory. We analyze the
competition between SC and other ordered phases within
a single LL, for example when all particles occupy the
LLL. Owing to the quasi-1D dispersion within this LL, any
response function that connects opposite sides of the Fermi
surface diverges at low temperatures as a power of

 � �
jgj

�2��3@vFn‘
2
0

ln
�
�Fn
kBT

�
: (4)

Identical divergences occur in both particle-particle (p-p)
and particle-hole (p-h) diagrams [20] and in diagrams of
higher orders. The resulting ensemble of ‘‘parquet’’ dia-
grams, obtained by mutual insertion of p-p and p-h blocks
into one another [21], is most easily analyzed in terms of a
renormalization group (RG) approach [12]. This scheme
has been applied to spinless electrons in a magnetic field
[12]. We generalize this approach to a two-component
rotating atomic Fermi gas and consider particles in the
nth LL. Particles at the two Fermi points k � �kFn are
represented by separate fermionic field operators â�y� and
b̂�y�. States at the first Fermi point are expanded in terms of
the LL wave functions [11]

  nxk�X; Y; Z� �N nHn�X� x�e
ixY��X�x�2=2�ikZ; (5)

with lengths measured in units of ‘0, the Hermite poly-
nomials Hn, and normalization N n � �LyLz�

1
22nn!��1=2.

At the other Fermi point we use the transformed basis

 

~ nyk�X; Y; Z� �
1

N	

X
x

e�ixy nxk�X; Y; Z�: (6)

For weak coupling, the kinetic energy can be linearized
around the Fermi points, �kFn. The (logarithmically di-
vergent) part of the contact interaction (amplitude g) de-
scribing scattering between opposite Fermi surfaces is
 

H I �
g

LxLyLz

X
��
�

X
k1 ;k2 ;k3
x;x0 ;y;y0

������
 � ��
����ei�xy
0�x0y�

� ��n�0 �x� x
0; y� y0�

� âyn;x;k1;�
b̂yn;y;k2;�

b̂n;y0;k3;�ân;x0;k1�k2�k3;
: (7)

The dependence on the LL index n arises only in
the form of the bare interaction vertex, ��n�0 �r� �
e��1=2�r2

�Ln�r2=2��2, where we introduce r � �x; y� and
Ln are the Laguerre polynomials. The interaction H I
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FIG. 1 (color online). The critical temperature calculated
within BCS mean field, for rotation frequency � and chemical
potential �. Arrows indicate critical frequencies �c2 to the left
of which Tc vanishes in the semiclassical approximation [7].
Dashed lines show Tc of the CDW state in the LLL as obtained
in the parquet approximation.
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can be viewed as two distinct vertices according to the way
spin is conserved and is denoted �1;2 in the usual notation
for quasi-1D systems [22]. From (7), these vertices have
the initial conditions

 ��n�1;2�r�j��0 � sgn�g���n�0 �r�: (8)

Renormalization of the vertices �1;2 leads to corrections
that can be expressed as a power in � (4) [21]. The one-
loop RG equations can be obtained by adapting the ap-
proach of Ref. [23] to include the LL structure. We find

 

d�1

d�
� �2�1  �1 � 2�1  �2 � 2�1 � �2 (9)

 

d�2

d�
� 2�2  �2 � �1 � �1 � �2 � �2; (10)

where the operations  and � arise in p-h and p-p loops,
respectively, and are defined by

 ≡ γ i ∗ γ j ≡ d2r′γ i(r − r′)γ j (r′). (11)

 (12)

The phase factor in (12) is a consequence of the LL
structure.

We have solved the RG Eqs. (9) and (10) with initial
conditions (8) for arbitrary Landau level index n, using a
standard numerical routine with �1;2�jrj� discretized uni-
formly in jrj. (The initial conditions for �1;2 are radially
symmetric, and this symmetry is preserved by the RG
equations.) To identify instabilities, we calculate the re-
normalization of the response functions [23]. The RG
equations for the triangular vertices T in the (singlet)
SC, charge and spin-density wave (SDW) channels are
given in our case by

 d�T SSC � ���1 � �2� �T SSC (13)

 d�T CDW � ��2�1 � �2� T CDW (14)

 d�T SDW � �2 T SDW: (15)

Initial conditions for the triangular vertices can be chosen
as T ij��0 � ��r�, such that all Fourier components are
nonzero. We find the smallest value, �c, at which a sus-
ceptibility diverges: this indicates a transition into an or-
dered phase at a critical temperature [see (4)]

 Tc 

�Fn
kB

exp
�
�
�2��3@vFn‘2

0

jgj
�c

�
: (16)

In contrast to the full RG equations, the simplified
equations describing only p-h ladders can be solved ana-
lytically and provide a useful reference point for our nu-
merical evaluation. The solution for the p-h ladder

discussed in Ref. [12] can be generalized to arbitrary LL
index n and yields a transition at a critical temperature that
is independent of n and the sign of g, with �c � �2���1.
[For g < 0 (g > 0) the transition is to a CDW (SDW).] For
p-p ladders, the problem can be solved analytically for
n � 0, where the SC instability occurs for attractive inter-
actions also at �c � �2���1. By restricting the SC gap
equation in the presence of a magnetic field to a single
LL (see above and [14]), one can infer �c�n� �
�2nn!�2=�2��2n�!�, showing that SC order becomes weak
as n! 1. These analytic results are reproduced by our
numerical approach, when restricted to include p-p or p-h
diagrams only. Note that for n � 0 the CDW and SC
instabilities have the same critical temperature. Thus,
mean-field theory cannot determine which of these states
will form the low-temperature phase.

Our solution of the full RG Eqs. (9) and (10) shows that,
for attractive interactions, CDW order is the dominant
instability for all LLs. The critical temperature (16) de-
pends on the LL index, with exponents summarized in
Table I. Thus, for the LLL n � 0, the competition between
the identical instabilities in p-p and p-h channels [both at
�c � �2��

�1] is decided to the advantage of CDW order.
The order parameter diverges most strongly at zero in-
plane momentum, so the density waves are aligned with
the rotation axis. Thus, the CDW phase in the nth LL
involves a modulation of the particle density along the
rotation axis, with period CDW

n � �=kFn. Within one
period of the density wave the effective 2D particle density
(in that LL) is n2d;n � 1=��‘2

0�, such that this LL is fully
occupied: its filling factor is �n � n2d;n2�‘2

0 � 2. Thus the
CDW phase is fully gapped. In the extreme quantum limit,
when @�< �F < 3@�, kF0 � �2n‘2

0, where n is the 3D
particle density, so the period is CDW

0 � 1=��n‘2
0�. In

Fig. 1 we show the transition temperature into this CDW
in the LLL (dashed lines). (For repulsive interactions, we
find that SDW order is dominant for all n. See Table I. At
strong coupling a period of the SDW can be thought of as
two separate layers of opposite spin at an effective filling
factor � � 1 each.)

Our results show that CDW order always prevails for
attractive contact interactions when dynamics are re-
stricted to a single LL. However, at low rotation rates,
the ground state is the BCS superconducting state (with
dilute vortices). How does one reconcile these conclu-

TABLE I. With dynamics restricted to a single Landau level,
the analysis of the parquet diagrams reveals a CDW instability
for attractive interactions g < 0 and a SDW instability for g > 0.
While the CDW is enhanced by scattering in the p-p channel,
SDW order is weakened. As n! 1 the critical values, �c,
converge to the result for p-h ladders, �c � �2���1.

n 0 1 2 3 4 1

2��cjg<0 0.726(4) 0.86(1) 0.91(1) 0.93(1) 0.95(1) 1
2��cjg>0 1.556(4) 1.24(1) 1.16(1) 1.13(1) 1.11(1) 1
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sions? The answer lies in the coupling between LLs. Since
the periods of the CDWs, CDW

n , differ between LLs, we
find that the CDW does not gain from inter-LL couplings:
there are CDW instabilities at the temperatures set by our
calculations for individual LLs (Table I). On the other
hand, a SC state can benefit from coherence between
LLs, as the Cooper pairs all have the same (zero) momen-
tum. Thus, although SC within a single LL is less relevant
than CDW, the ‘‘Josephson’’ coupling between LLs can
stabilize a collective SC state. That said, as the topmost LL,
nmax, depopulates, our results show that the CDW insta-
bility in this LL can occur at a higher temperature than the
SC state of the entire system. In this case, the first insta-
bility (as T is reduced) is to a CDW in the Landau level
nmax, and one expects a second instability, at lower T, to a
SC state formed from the other Landau levels. (The loss of
the highest LL from the SC makes little difference to its
condensation energy.) In this way, we predict a supersolid
ground state, involving both CDW of the topmost LL and
SC order in the lower LLs. Ultimately, at sufficiently high
rotation rate (or low particle density), when all particles
occupy the LLL, the ground state is a CDW without super-
conducting order.

A striking consequence of our results is that for a rapidly
rotating atomic Fermi gas, there should appear spontane-
ous density wave order, with a period CDW

n that grows as
the particle density in the topmost Landau level decreases.
This can be a long length scale, so could be measured in
experiment directly by in situ absorption. Clearly, the
observation of the density waves requires a trap with
oscillator length ‘k > CDW

n . For ‘k < CDW
n there will be

a single period of the wave, leading to a quasi-2D regime
with 2D particle density in this LL equal to n2d;n �

1=��‘2
0�. This (incompressible) filled LL will appear as a

step in the transverse density profile, as measured in situ or
in an expansion measurement [24].

The results that we have presented are accurate far from
the resonance on the BCS side, where interactions are
weak. We expect the qualitative behavior to survive as
the resonance is approached. While the detailed energetics
of both phases cannot be relied upon for strong coupling,
we find that SC is stabilized relative to CDW order for
chemical potentials above the LLL as the coupling in-
creases. Presumably, this leads to the suppression of
CDW states in any but the lowest LL as one approaches
the resonance. Furthermore, we note that the density wave
state(s) we find on the BCS side of the resonance cannot
evolve smoothly to the Bose-Einstein condensate side. A
CDW of atoms, with �atom � 2 per period, could evolve, to
retain the same period, into a CDW of tightly bound
molecules with �mol � 1=2 per period [25]. However, there
must be a phase transition separating these two states,
owing to the different edge structures of the phases [26].
Thus, in contrast to the SC phase at low rotation rate, in the
extreme quantum limit (at high rotation rate) tuning the

interactions across the Feshbach resonance must involve a
phase transition.
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