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We study interacting bosons on a lattice in a magnetic field. When the number of flux quanta per

plaquette is close to a rational fraction, the low-energy physics is mapped to a multispecies continuum

model: bosons in the lowest Landau level where each boson is given an internal degree of freedom, or

pseudospin. We find that the interaction potential between the bosons involves terms that do not conserve

pseudospin, corresponding to umklapp processes, which in some cases can also be seen as BCS-type

pairing terms. We argue that in experimentally realistic regimes for bosonic atoms in optical lattices with

synthetic magnetic fields, these terms are crucial for determining the nature of allowed ground states. In

particular, we show numerically that certain paired wave functions related to the Moore-Read Pfaffian

state are stabilized by these terms, whereas certain other wave functions can be destabilized when

umklapp processes become strong.
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Recent advances in the field of topological phases and
their potential application in implementing an intrinsically
fault-tolerant quantum computer [1,2] have revitalized
interest in fractional quantum Hall (FQH) states as the
most prominent examples of topologically ordered phases
of matter [3]. Even though it has only been observed in
(fermionic) solid state systems, the FQH effect can also
exist for bosons [4–7]. Promising candidates are systems of
interacting ultracold atoms, where the necessary magnetic
fields are simulated by rapid rotation [8,9] or by laser-
induced synthetic gauge fields [10]. At low temperatures
when the filling fraction � (the ratio of the particle density
n to the magnetic flux density n�) is sufficiently small,

one can expect to observe bosonic versions of the FQH
effect [5]. For example, the exact ground state of bosons
with contact interaction at filling fraction � ¼ 1=2 is the
Laughlin state [4,11], while at � ¼ 1 the ground state
is in the same topological phase as the non-Abelian
Moore-Read Pfaffian state [5,12].

A major advantage of optical and atomic systems over
conventional solid-state systems is the possibility of creat-
ing and controlling quasiparticle excitations more naturally
and with higher precision (e.g., by shining focused laser
beams on the atomic gas) [11]. A number of proposals
suggest that the FQH regime for cold atoms can be most
easily achieved using optical lattices [13–17]. The question
naturally occurs whether there is new physics that may
arise for a system of interacting bosons in the FQH
regime due to the effects of an underlying lattice. It has
been shown that in the limit when the flux density n�, or

equivalently the number of flux quanta per lattice pla-
quette, is small, one can ignore the existence of the lattice
and treat the system in the continuum limit [15,18]. When

n� is large, however, the presence of the lattice can

potentially lead to new correlated states of matter that are
absent in the continuum [19–21]. This is the limit we will
focus on.
The starting point for our analysis of the many-body

physics in this problem is the observation that when n� is

close to a rational fraction, the lowest energy bands in the
Hofstadter butterfly (a fractal structure realizing the single-
particle energy spectrum of particles hopping on a lattice in
a magnetic field [22]) are reminiscent of Landau levels in
the continuum. This resemblance can be formalized by
mapping the single-particle states of the system to a con-
tinuum model when the flux density is near simple rational
fractions [19].
The main result of this Letter is the following. In agree-

ment with [19], we find that for flux per plaquette close to a
rational fraction, n� ¼ p=qþ � with p, q small integers,

and � sufficiently small, one can map the system to an
effective continuum model with Landau levels and an
added degree of freedom for the particles, a sub-band index
or pseudospin, which can take q possible values. However,
in addition to the density-density interactions between
bosons of different pseudospin found in [19], we find
anomalous ‘‘pairing’’ interactions that do not conserve
the number of particles of each pseudospin species. We
find that these pairing terms, which become increasingly
strong as � is increased, are crucial in determining the
possible ground states of the system for realistic values
of the parameters of the problem.
As a detailed example, we consider the most (experi-

mentally) realistic case n� ¼ 1=2þ � and study several

effective filling fractions ~� ¼ n=�. We find a new FQH
state at ~� ¼ 1, which does not exist without the pairing
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interactions but becomes stabilized by the increase in � and
the concomitant increase in these interactions. This new
state is related to two copies of the non-Abelian Moore-
Read Pfaffian state [12]; however, it is a topologically
distinct phase of matter. In contrast, we find that the pairing
terms destabilize the states predicted at fillings ~� ¼ 2=3
previously discussed by [19], ~� ¼ 4=3 [20] and ~� ¼ 2 [21].
We present detailed numerical evidence for our conclu-
sions and argue that experiments are most likely to be in a
regime where these pairing terms are important.

We consider bosons, with on-site repulsive interaction,
hopping on a two-dimensional square lattice, subject to
a uniform perpendicular effective magnetic field. This
system is described by a modified Bose-Hubbard
Hamiltonian [23],

H ¼ �J
X
hiji

ðei�ijcyi cj þ H:c:Þ þU
X
i

cyi c
y
i cici; (1)

where cyi and ci are boson creation and annihilation op-
erators on lattice site i, J is the hopping energy, andU is the

strength of the onsite interaction. Here �ij ¼
Rj
i
~A � d~l is

the phase acquired by a particle hopping from site i to the

neighboring site jwith ~A being the vector potential, and we
work in units where @ ¼ 1, and the effective electric charge

coupled to ~A is also set to unity. The kinetic term in the
Hamiltonian then indicates that a particle hopping around a
lattice plaquette acquires a phase of 2�n�.

We start by considering the kinetic term of the
Hamiltonian only. This is the well-known single-particle
Hofstadter problem, which we review only briefly. We
assume the lattice is in the x, y-plane, with lattice spacing
set to unity for simplicity, and choose the Landau gauge

so that ~A ¼ ð0; 2�n�x; 0Þ. The wave function becomes

c ðx; yÞ ¼ �ðxÞeiky where �ðxÞ satisfies Harper’s equation
�ðxþ1Þþ�ðx�1Þþ2cosð2�n�x�kÞ�ðxÞ¼ ðE=JÞ�ðxÞ
and k is the momentum in the y-direction. Note that x and y
are both integers.

Consider the case of n� ¼ � � 1, where a continuum

approximation of the discrete Harper’s equation can be
used for the low-energy eigenstates. In this limit, it is
convenient to use a Wannier basis localized near minima
of the cosine potential. These Wannier functions can be
approximated by harmonic oscillator (Landau level) solu-

tions with oscillator length (magnetic length) l0¼1=
ffiffiffiffiffiffiffiffiffi
2��

p
centered at xk ¼ k=ð2��Þ, i.e.,�kðxÞ�½exp���ðx�xkÞ2�.
The bandwidth of the lowest band arises from tunneling
between adjacent minima of the potential and for small � it

scales as �e�C=� where the constant C � 1:166 can be
obtained by the WKB approximation [24]. Note that for
small �, the bandwidth is much smaller than the band gap
� ¼ 4J��, making this limit of the Hofstadter problem an
example of an (almost) flat Chern band [25].

Now let us consider flux densities close to a rational
fraction. For simplicity, we focus on n� ¼ 1=2þ �, for

which Harper’s equation becomes�ðxþ 1Þ þ�ðx� 1Þ þ
2ð�1Þx cosð2��x� kÞ�ðxÞ ¼ ðE=JÞ�ðxÞ. This form sug-
gests a Wannier solution analogous to the above case, but
with a two-site form factor to account for the rapidly
oscillating factor ð�1Þx. We propose the ansatz solution,

�ksðxÞ � ð1þ Að�1ÞxþsÞe���ðx�xksÞ2 ; (2)

where we have defined xks ¼ ðk� s�Þ=ð2��Þ and s ¼ 0, 1
is a sub-band index. Thus for each momentum k, there are
two possible wave functions, which are spatially separated
(due to the shift in the center of the oscillator) and also have
theirmainweight on either the even or odd sites of the lattice.

Choosing the value A ¼ ffiffiffi
2

p � 1þ ��ð ffiffiffi
2

p � 2Þ=2 solves
Harper’s equation to order Oð�Þ and higher order terms can
be added to A to satisfy the equation to still higher order.
If we interpret the sub-band index s as a quantum

number representing a new degree of freedom, the low-
energy bands in the lattice at n� ¼ 1=2þ � are equivalent

to the energy bands of a two-species system at n� ¼ �,

which is the continuum (Landau level) limit. Thus at n� ¼
1=2þ �, we can understand � as the effective flux density
giving rise to an effective filling fraction defined as ~� ¼
n=�. Similarly, for general n� ¼ p=qþ � (with p and q

coprime), q solutions can be found and the system can be
treated as a q-species model with effective flux density �
[19,20]. With increasing q, the bandwidth increases as

�e�C=ðq2�Þ whereas the band gap, while remaining propor-
tional to �, decreases with increasing q.
In order to be in the FQH regime, it is necessary that the

interaction energy be larger than the bandwidth (so that the
interaction dominates over the kinetic energy). In addition,
we would like the interaction to be smaller than the band
gap so that all of the physics occurs within the lowest
Landau band; however, this requirement may not be crucial
[26]. Finally, the temperature must be less than the energy
gap of the FQH state, which is typically set by the inter-
action energy (although it could also be set by the band gap
if that is smaller). States competing with quantum Hall
liquids include Bose-Einstein condensates: these describe
the physics at n� ¼ 1=2, for example [27,28].

Given these restrictions, and given that experimentally
obtaining low temperatures will always be a challenge, it is
clear that the FQH effect is most likely to be observed in
the regime of intermediate �, where the band gap is not too
small and the bandwidth is not too large. Indeed, it is
perhaps optimal to work in a regime where bandwidth
and band gap are comparable. One can simply look at the
Hofstadter spectrum to see where these inequalities are
best satisfied [22]. The most experimentally favorable
case occurs for n� ¼ � � 1. Here, � might be as large

as 0.3 before the bandwidth is on the order of the band gap,
and the band gap may be as large as J. This particular case
has been studied extensively previously [15,18].
The case of n� ¼ 1=2þ �, which we focus on here, is

also fairly favorable for the observation of FQH effect.
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The parameter � can be as large as 0.1 before the band gap
is on the order of the bandwidth, and the band gap may be
as large as about 0:3J. While n� ¼ 1=3þ � is still experi-

mentally plausible, the cases of n� ¼ p=qþ � with q > 3

have extremely tiny band gaps and, hence, seem less
accessible. We note that despite the fact that these inequal-
ities of energy scales are harder to satisfy for n� ¼ 1=2þ
� than for n� ¼ �, the former has richer physics associated

with the new quantum number, the sub-band index intro-
duced above.

We now turn to consider the effect of the interaction
term in the Hamiltonian Eq. (1). Using any basis of (single-
particle) states c aðx; yÞ with corresponding creation and

annihilation operators ĉ y
a and ĉ a, the interaction may be

decomposed as,

Û ¼ X
abcd

Uabcd ĉ
y
a ĉ

y
b ĉ c ĉ d; (3)

where

Uabcd ¼ U
X
x;y

c �
aðx; yÞc �

bðx; yÞc cðx; yÞc dðx; yÞ: (4)

For n� ¼ � � 1 we use the basis for the lowest band,

i.e. c kðx; yÞ ¼ �kðxÞeiky with �kðxÞ the Gaussian form
as described above (properly normalized). In this limit
we may convert the sums into integrals, then, projected

to the lowest energy band, we obtain Uk1k2k3k4 ¼ffiffiffi
�

p
Ue

�P4
i<j¼1

ðki�kjÞ2=ð16��Þ�k1þk2�k3�k4 , where the function

�p is defined to be unity if the argument p is an integer

multiple of 2� and is zero otherwise. The Gaussian factor
enforces ki � kj so that total momentum k1þk2�k3�k4
must be zero, not just 0mod 2�. This derived form of the
interaction is precisely what we expect for continuum
bosons in the lowest Landau band with short-range contact
interaction [29].

For n� ¼ 1=2þ �, we can use the basis c ksðx; yÞ ¼
�ksðxÞeiky with �ksðxÞ given by Eq. (2). Projecting to the
lowest Landau level, we correspondingly find,

Uk1s1k2s2k3s3k4s4

¼ ffiffiffi
�

p
UGs1s2s3s4e

�P4
i<j¼1

½ki�kj��ðsi�sjÞ�2=16���k1þk2�k3�k4 ;

(5)

where the matrixG results from summing over the discrete
form factors in the expressions for the corresponding wave
functions. Note that the functional form of the interaction
Eq. (5) is identical to contact interactions for a continuum
Landau level up to the band index dependent matrix G out

front once we redefine the momentum as ~k ¼ k� �s. In

terms of these new variables, the Gaussian enforces ~ki �
~kj which now allows k1 þ k2 � k3 � k4 ¼ �2� (allowed

by �) if s1 þ s2 � s3 � s4 ¼ �2.

Given the precise resemblance to a two-species contin-
uum model, we may employ exact diagonalization, which
is well established as a numerical technique for the study of
interacting particles in continuum Landau levels [29]. We
chose to formulate the effective problem obtained from our
preceding analysis in a finite spherical geometry [30,31],
which eliminates edge effects and thus allows direct access
to the physics of the bulk. This problem is defined entirely
within the lowest energy band by the interaction, Eq. (5), as
the kinetic energy is assumed to have small bandwidth
compared to the interaction scale U.

Following [19] we switch to a new basis ~c k~s ¼ ðc k0 þ
~sic k1Þ=

ffiffiffi
2

p
, where ~s ¼ �1 (or up (" ) and down (#) in the

current text). We refer to this new form of the sub-band
index ~s as pseudospin. Using this basis, the nonzero

elements of the transformed matrix ~G become ~G"""" ¼
~G#### ¼ ~G"#"# ¼ ~G#"#" ¼ ~G#""# ¼ ~G"##" ¼ 1. In addition, we

also find two extra ‘‘pairing’’ terms: ~G##"" ¼ ~G""## ¼ ��.
These terms correspond to k1 þ k2 ¼ k3 þ k4 þ 2�,
which resemble umklapp scattering processes and do not
conserve pseudospin (~s1 þ ~s2 � ~s3 þ ~s4). These terms in-
dicate that a pair of pseudospin ups (downs) can be annihi-
lated while a pair of pseudospin downs (ups) are created
thus suggesting that a BCS-type pairing [32,33] could
occur between particles with the same pseudospin. While
these pairing terms vanish in the limit of � ! 0, as men-
tioned above, the experimentally relevant regime is likely
to be at finite � where these terms will be important.
The novel twist for lattice bosons near n� ¼ 1=2 is the

emergence of an umklapp scattering term between the two
emergent species. Consequently, the total pseudospin is not
conserved, and we need to take into account the full Hilbert
space containing all possible distributions of particles into
the two sub-bands. We examine the spectrum of the
Hamiltonian Eq. (5) for the occurrence of incompressible
ground states that are characterized by translational invari-
ance (angular momentum L ¼ 0 on the sphere) and a finite
FQH gap. Our search yields four candidates at effective
filling fractions ~� ¼ n=� ¼ 2=3, 1, 4=3 and 2 where n� ¼
1=2þ � [34].
For the effective filling fraction ~� ¼ 1, we find that the

energy gap between the ground state and the first excited
state rapidly opens up as one increases � [see Fig. 1(a)].

This indicates that the umklapp pairing terms, ~G##"" and
~G""##, which are the only terms in Eq. (5) that changewith �,
are responsible for producing an incompressible state at
this filling factor. On the contrary, the energy gaps at
effective filling fractions ~� ¼ 4=3 and ~� ¼ 2 close as �
increases, indicating that the pairing terms destabilize the
corresponding incompressible states [see Fig. 1(b)]. At
~� ¼ 2=3, as pointed out in [19], the 221 state is an exact
ground state, and this remains true even in the presence of
the pairing terms. However, as � increases, this gap also
closes, as excited states are sensitive to the pairing terms
[see Fig. 1(b)].
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Interestingly, the energy gaps of the ~� ¼ 2=3 and ~� ¼ 2
states have a very similar magnitude and dependency on �,
which may be unexpected in the current formalism. This,
however, is a natural conclusion in the composite fermion
(CF) theory for the lattice, which explains both these states
by the same energy gap in the CF spectrum [21].
Furthermore, our expansion of the effective model to linear
order in � predicts that the gap of these states closes near
the value, � ¼ 1=6, predicted by CF theory [21]. The case
of � ¼ 4=3 is clearly very different. Here, we find that the
ground state at small � has significant overlap of * 0:7
with the non-Abelian spin singlet (NASS) state [35] for
N ¼ 12 particles. However, this state is very fragile, and
we cannot ascertain that it persists in the thermodynamic
limit.

As was mentioned above, the presence of the umklapp

pairing terms in the Hamiltonian, ~G##"" and ~G""##, suggest a
BCS-type pairing between particles of the same pseudo-
spin. To further investigate the effect of these terms on the
nature of the ground state at ~� ¼ 1 we propose an explicit
trial wave function. We use the common conventions for
studying the FQH effect: we adopt the symmetric gauge
and write coordinates of particles on the plane in dimen-
sionless complex form z ¼ ðxþ iyÞ=l0. Our trial wave
function is given in the coordinates of N" bosons of up

type and N# bosons of down type (with both N" and N#
assumed to be even):

�ðfz"ig; fz#jgÞ ¼ Pf

�
1

z"i � z"j

�
Pf

�
1

z#i � z#j

� YN"

i<j¼1

ðz"i � z"jÞ

	 YN#

i<j¼1

ðz#i � z#jÞ
YN"

i¼1

YN#

j¼1

ðz"i � z#jÞ

	 e�
PN"

i¼1
jz"ij2=4�

PN#
i¼1

jz#ij2=4: (6)

As written, the up and down bosons are assumed distin-
guishable. Expanding this wave function in the original
bosonic basis, one obtains an expression that is fully sym-
metric in all coordinates.
Here, the two Pfaffian factors (Pf) are antisymmetrized

sums over pairs of particles with the same pseudospin
Pfð 1

zi�zj
Þ ¼ Að 1

z1�z2
1

z3�z4
� � �Þ with A the antisymmetriz-

ing operator. This Pfaffian form is precisely the real space
form of a BCS pairing wave function, which indicates
that particles with the same pseudospin form pairs.
Without the Jastrow factors, this type of pairing is analo-
gous to a 3He-A phase with a d-vector in the x, y-plane
[32]. As in the case of other paired Hall states, the topo-
logical properties are only trivially altered by restoring the
Jastrow factors [32].
Note that the wavefunction, Eq. (6), is the exact ground

state of H 2�3, the sum of a three-body delta-function for
interaction for particles with the same pseudospin and a
two-body delta-function interaction between particles of
opposite pseudospin.
To check the validity of this trial wavefunction (obtained

as the ground state of H 2�3 on the sphere), we calculate
its overlap with projection of the ground state of Eq. (5)
onto the sector with N" ¼ N#. As � is increased and the gap
opens up, we find increasing overlap between our trial state
and the exact ground state [see Fig. 1(c)]. The overlap for
� ¼ 0:1 is above 95% for N ¼ 12 particles, which is an
excellent indicator of the validity of our proposed wave
function. Note that, although outside the regime of validity
for our model, at � ’ 0:16, Eq. (6) is nearly an exact
ground state of the two-body interaction, Eq. (5), to an
accuracy of about 10�5. We also find that the inverse 1=z
dependence of the paired wave function in Eq. (6) is
optimal, as introducing variational parameters to change
its shape [33] does not increase the overlap significantly.
We have also studied the quasihole spectrum of Eq. (6)

in the presence of additional flux. For the model H 2�3

Hamiltonian, the quasihole spectrum is precisely that of
two decoupled Moore-Read layers—the quasiholes of each
layer corresponding to the so-called half-quantum vortices
of 3He-A. However, for our Hamiltonian of interest, Eq. (5),
the umklapp pairing terms lock the direction of the
d-vector, thus requiring that the quasiholes pair between
layers, confining the half quantum vortices and leaving the
system with effectively Abelian excitations. To establish
with clarity that this is the correct physics we have been
able to predict the entire low energy quasihole spectrum
of the 3He-Amodel, using a generalization of the approach
introduced in [36], which precisely matches the low-lying
spectrum of the microscopic Hamiltonian, Eq. (5), for
every case we could numerically access. These results
will be presented elsewhere.
Signatures for our proposed state can be derived

from a range of experimental probes for the detection of
quantumHall states in cold gases, such as measurements of
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FIG. 1 (color online). (a) The FQH gap E at effective filling
fraction ~� ¼ 1 as a function of �, where the flux density is n� ¼
1=2þ �. Data are shown for N ¼ 8, 10 bosons. Increasing �
increases the strength of the pairing terms of the Hamiltonian
and stabilizes this state. (b) The FQH gap for ~� ¼ 2=3 (N ¼ 10),
4=3 (N ¼ 12), and 2 (N ¼ 14) as a function of �. Increasing �
decreases the FQH gap and destabilizes the corresponding states.
(c) Overlap between the exact ground state of the system at
effective filling fraction ~� ¼ 1 and the trial wave function Eq. (6)
vs �. The overlap for � > 0:1 exceeds 95%.
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ground-state incompressibility [37], noise correlations
[20,38], and possibly a direct measurement of quasihole
statistics [11].

The methods described here can be generalized to flux
density n� ¼ p=qþ � although, as discussed above, FQH

effect with larger q is likely to be harder to realize in
experiments. In this case there would be a sub-band index
s ¼ 0; 1 . . . ðq� 1Þ and the umklapp terms of the interac-
tion would allow nonconservation of this sub-band index
via s1 þ s2 � s3 � s4 ¼ 0modq, which could lead to new
pairing terms and possibly new physics.

To summarize, we have shown that anomalous pairing
(umklapp) interaction terms are crucial to the physics of
FQH effect for interacting bosons on a lattice at flux
density n� ¼ 1=2þ �. We find that the pairing terms focus

on flux density n� ¼ 1=2þ � and find that the pairing

terms greatly modify the ground state at various effective
filling fractions ~� ¼ n=�. At ~� ¼ 1, we demonstrate
that these terms stabilize a new paired FQH state,
which is effectively two coupled copies of the Moore-
Read Pfaffian state. At ~� ¼ 2=3, 4=3, and 2, we find that
the incompressible states are destabilized by the pairing
terms.
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