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We provide numerical evidence for composite fermion pairing in quantum Hall bilayer systems at

filling � ¼ 1
2 þ 1

2 for intermediate spacing between the layers. We identify the phase as px þ ipy pairing,

and construct high accuracy trial wave functions to describe the ground state on the sphere. For large

distances between the layers, and for finite systems, a competing ‘‘Hund’s rule’’ state, or composite

fermion liquid, prevails for certain system sizes.
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The bilayer quantum Hall system at filling fraction � ¼
1
2 þ 1

2 has been an active topic of research for over a decade

[1,2]. In the limit of small layer spacing d there is a
superfluid phase, whereas in the limit of infinite d the
two layers form independent compressible composite fer-
mion (CF) seas [3]. Much less well understood, however, is
the nature of the state at intermediate d. Even in simplified
models with spinless electrons at zero temperature, no
disorder, and no tunneling between layers (simplifications
we will adopt throughout this Letter), there are a wide
range of theoretical calculations, predictions, and scenerios
[4–7] attempting to address the transition. One of the most
interesting possibilities [6] is that, even for very weak
interaction between layers, the interaction between the
two CF seas may cause BCS pairing between the layers
to form a superconducting state: an ‘‘interlayer paired CF-
BCS state’’. Unfortunately, this suggestion was based on a
highly approximate perturbative Chern-Simons approach
whose validity at higher order is impossible to test. In the
current Letter we provide highly accurate numerical evi-
dence that for a range of distances between the layers, the
ground state is indeed such a CF-BCS state. We further
show that the pairing symmetry is in the px þ ipy channel

in contrast to the theoretical arguments of Ref. [5] which
suggest px � ipy. We construct and numerically verify the

first explicit wave functions describing this phase. For
finite systems for very large d we also identify the ground
state to be a ‘‘Hund’s rule’’ or composite fermion liquid
state. For certain shell fillings (number of particles) this is
precisely the weak-interaction limit of the CF-BCS state,
whereas for other fillings, it is a distinct state. Finally, we
argue that, when the two possibilities are distinct, the range
in d for which the Hund’s rule state prevails over the CF-
BCS state becomes smaller as we go to larger systems
while the paired state becomes more predominant.

Since many of our technical details are similar to that of
Ref. [8], where single-layer pairing is considered, we will
be brief with our discussion. We start by considering the

wave function
Q

kð1þ gke
i’cyk"c

y
�k#Þj0i which represents

a BCS paired wave function [9] for a bilayer spinless

fermion system in zero magnetic field (where " , # represent
the layer index). Fourier transforming with respect to ’we
project to precisely N=2 fermions (N assumed even) in
each layer [9], yielding �BCS ¼ det½Gðri;" � rj;#Þ� where
Gðri;" � rj;#Þ is an N=2 by N=2 matrix with indices i and j.

Gðri;" � rj;#Þ, the wave function of a pair, can be written in

terms of gk as

Gðri;" � rj;#Þ ¼
X

k

gk�kðri;"Þ��kðrj;#Þ; (1)

where �kðrÞ ¼ eik�r are the simple single fermion plane
wave orbitals, such that Eq. (1) is just a Fourier transform.
BCS theory is fundamentally variational [9], and one uses a
form of gk which minimizes the energy given a particular
interparticle interaction. The ‘‘symmetry’’ or relative an-
gular momentum of the pairing wave function is deter-
mined by the phase winding [10] of G. If the phase of
Gðri;" � rj;#Þ wraps by 2M� as ri;" is taken clockwise
around rj;#, we say the wave function has angular momen-
tum M (or M-wave symmetry) where M ¼ 0, �1 are also
known as s, px � ipy, respectively. (While some prior
literature uses ‘‘px þ ipy’’ imprecisely to denote either

chirality). Note that the limit of noninteracting fermions
can be achieved with this form by taking gk > 0 for all
jkj< kF and gk ¼ 0 otherwise (with kF the Fermi mo-
mentum). Thus, the BCS paired state can be deformed
smoothly into a noninteracting Fermi liquid (a limit point
outside of the superconducting phase).
Our calculations are performed on a spherical geometry.

We remind the reader that with a magnetic monopole of
flux 2q at the center of the sphere (with q half integer), the
single particle eigenstates [11] are the spherical monopole
harmonics Yq

l;mðrÞ where l ¼ q, qþ 1; . . . , and m ¼
�l;�lþ 1; . . . ; l and the energy of these states depend
on l only. From these orbitals we construct a general pair
wave function

Gðri;"; rj;#Þ ¼
X

l;m

glð�1ÞqþmYq
l;mðri;"ÞYq

l;�mðrj;#Þ; (2)

where again the gl are variational parameters that control
the (radial) shape of the pair wave function. It is easy to
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show that this pairing wave function has M-wave symme-
try with M ¼ 2q. Indeed, one can show that in order to
have a BCS ground state with M-wave symmetry on the
sphere with no vortex defects, one must have a monopole
of fluxM at the center of the sphere, and the pairing form is
always expressible in the form of Eq. (2).

To convert our simple BCS wave function into a paired
composite fermion [3,12] wave function appropriate for
modeling the bilayer quantum Hall state at � ¼ 1

2 þ 1
2 , we

must multiply by Jastrow factors such that electrons ‘‘see’’
flux attached to electrons only within the same layer. To
achieve this, we replace the single particle orbitals Yq

l;m

with composite fermion orbitals defined as
~Yq
l;mðui;�; vi;�Þ ¼ P ½Ji;�Yq

l;mðri;�Þ� where ui;�, vi;� is the

usual spinor representation of the coordinate ri;� on the

sphere, � ¼" , # is the layer index, Ji;� ¼ Q
j�iðui;�vj;� �

vi;�uj;�Þ is the composite fermionization factor, and P is

the projection to the lowest Landau level. Note that in our
present notation, the Jastrow factor J is absorbed within the
composite fermion wave function ~Y (as opposed to
Refs. [12]). As usual, ~Yq

l;mðui;�; vi;�Þ is implicitly a func-

tion of all the particle coordinates, although we only denote
it explicitly as a function of particle i.

We substitute these composite fermion orbitals ~Y in
place of the orbitals Y in Eq. (2) to generate the pairing

wave function which we will correspondingly call ~G. Our
trial wave function for the bilayer quantum Hall state is

then � ¼ det½ ~Gðri;"; rj;#Þ�, completely analogous to the

case of simple BCS theory discussed above. The generated
trial wave function (forN=2 electrons in each layer) occurs
on the sphere with a monopole flux N� ¼ 2ðN=2� 1Þ þ
M for the case of M-wave symmetry (this ‘‘shift’’ of M is
caused by the small addition ofM flux quanta necessary to
avoid having vortices, as discussed above). The different
possible pairing symmetries can then be easily identified
by their shifts.

Our numerical analysis is founded on exact diagonaliza-
tions on the sphere. The interelectron interaction is taken to

be Vðri;�; rj;�Þ ¼ e2=r for � ¼ � and e2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2

p
for

� � �, where d represents the ‘‘spacing’’ between layers
(�, � ¼" , # are the layer indices). We have defined the
magnetic length to be unity, and r is the chord-distance
between ri and rj. In Table I we examine the stability of the

bilayer system at different shifts (different values of the
magnetic monopole flux). We recall that quantum Hall
states correspond to ground states at angular momentum
L ¼ 0 which have a strong gap. While it is obvious that
there should be a gap and an L ¼ 0 ground state when each
individual layer is gapped with an L ¼ 0 ground state
(which is the case for N ¼ 12 for both M ¼ þ1, �1), it
is less trivial in the other cases where the individual layers
have L � 0 ground states. We find that the M ¼ þ1 case
has an L ¼ 0 ground state with a strong gap for all values
of the interlayer spacing d, while this is not the case for
other values of M (M ¼ 0, �1, �2 have been examined).

We thus suspect that if a BCS paired state of CF’s exists, it
is in the px þ ipy channel (M ¼ þ1). We will thus focus

on trial CF-BCS wave functions with this pairing
symmetry.
Using the above described approach, we generate trial

CF-BCS wave functions with px þ ipy pairing.

Calculations are performed by Monte Carlo, and at each
value of the interlayer spacing d, the shape of the pairing
wave function is optimized by varying the parameters gl to
maximize the overlap with the exact ground state (See
Ref. [8] for details of the calculational scheme). Very
good agreement with the exact diagonalization is obtained
by only varying the first few such parameters. In Fig. 1(a)
we show overlaps of our trial wave functions with the exact
ground state for several different sized systems (N ¼ 10,
12, 14) over a range of d. For d * 1 the overlaps of the trial
state with the exact ground state are excellent. Since these
wave functions are variational, one might worry that a
large number of variational parameters is required to obtain
such good agreement. However, the dimension D of the
L ¼ 0 Hilbert space is D ¼ 38, 252, 1559 for N ¼ 10, 12,
14, and we have used only 3, 4 and 4 variational parameters
gl respectively, so these agreements are highly significant.
Also shown in Fig. 1(a) is the overlap of the exact

ground state with the CF-Fermi sea trial wave function,
as well as that with the 111-state. For the N ¼ 12 case, the

TABLE I. Data for bilayer electrons on a sphere near � ¼
1
2 þ 1

2 for various interlayer spacings d (in units of the magnetic

length ‘0). The table shows energy gaps (in units of e2=‘0) for
cases where the ground state is angular momentum zero (non-
bold), and angular momentum L of the ground state (bold) when
it is not zero. Data is shown with N=2 electrons per layer with
flux N� ¼ N � 2þM for M ¼ �1, 0, þ1 corresponding to the

pairing symmetries px � ipy, s, and px þ ipy. Only the case of

px þ ipy consistently shows a strong gap at zero angular mo-

mentum characteristic of a quantum Hall state. Data forM ¼ �2
(not shown) also does not suggest a quantum Hall state. We thus
identify px þ ipy as the most likely pairing symmetry. Note that

the strong gap for N ¼ 12 in the M ¼ �1, þ1 case both
correspond to filled shells of composite fermions. In nonfilled
shells, the gap drops with increasing d as the interlayer interac-
tion is reduced.

M N d ¼ 1:0 1.5 2.0 2.5 3.0

�1 10 1 2 2 2 1
�1 12 0.09687 0.1519 0.1739 0.1813 0.1844

�1 14 2 1 1 1 0.0004

�1 16 0.0074 3 0.0008 0.0019 0.0017

0 10 0.0222 0.0133 0.0108 0.0077 0.0054

0 12 1 1 0.0019 0.0040 0.0036

0 14 2 2 2 1 0.0004

0 16 3 1 1 1 1
þ1 10 0.1517 0.1070 0.0508 0.0254 0.0138

þ1 12 0.1438 0.1048 0.1466 0.1486 0.1495

þ1 14 0.1373 0.0828 0.0334 0.0151 0.0080

þ1 16 0.1316 0.0754 0.0246 0.0089 0.0042
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CF-Fermi sea state is uniquely defined as filling two CF
shells in each layer (at this flux, the pth CF shell has 2p
orbitals) [3,12]. At large d this CF-Fermi sea has virtually
perfect overlap with the exact ground state. Furthermore,
the bilayer CF-Fermi sea in this case is simply a limit of the
CF-BCS wave function (as described above). However, at
smaller d, where the CF-BCS wave function achieves al-
most perfect agreement with the exact ground state, the
CF-Fermi sea has very poor overlap.

For values of N which are not filled shell situations,
the CF-Fermi sea needs to be more carefully defined. We
recall that for a single-layer system (at least for small
systems), the ground state of a partially filled shell satisfies
Hund’s rule by filling degenerate CF orbitals to maximize
the total angular momentum [13]. We thus propose that the
ground state of the bilayer at very large d is obtained by
combining two single-layer states, each of which satisfies
Hund’s rule individually, into an overall angular momen-
tum singlet (adding up the wave functions of the two
individual layers into the unique Ltotal ¼ 0 state using
appropriate Clebsch-Gordan coefficients). We call this
construction the ‘‘Hund’s rule’’ bilayer state. We see in

Figs. 1(a) and 1(b) that the Hund’s rule state always
becomes extremely accurate at large d. In cases where
there is either one CF in the valence shell in each layer
(such as N ¼ 14) or one CF-hole in the valence shell in
each layer (such as N ¼ 10), it can be shown that the
Hund’s rule state is again precisely the large d limit of
the CF-BCS state. Indeed, the Hund’s rule and CF-BCS
state become identical in this limit (and both become
almost perfect). However, in other cases where there is
an incompletely filled shell [N ¼ 8, 16 shown in Fig. 1(b)],
the Hund’s rule state cannot be written as a limit of the CF-
BCS state. To understand that these must be different, we
note that for the Hund’s rule state, each layer is an eigen-
state of L2, whereas for the BCS state this is only true in the
limit where the pairing becomes infinitely weak and when
it is a filled shell situation, or there is a single electron or
single hole in each valence shell.
As seen in Fig. 1(b), for N ¼ 8, 16, the Hund’s rule state

becomes extremely accurate in the large d limit, and the
CF-BCS state becomes inaccurate. Remarkably, as we go
to smaller d, the CF-BCS state again becomes extremely
accurate whereas the Hund’s rule state fails. This is an
extremely important result: even when the large d limit is
not of the CF-BCS pairing form, when the interaction
between layers is increased, the pairing form again be-
comes accurate. (For N ¼ 8, 16 the dimension of the L ¼
0 Hilbert space is D ¼ 12, 12 774 and we have used 2, 4
variational parameters, so again the agreement is signifi-
cant. In all cases, the 111-state which describes the inter-
layer coherent phase is accurate only at small d & 0:5‘0,
where its overlap with the exact ground state plummets and
the CF-BCS states become the best trial states. Thus, we
argue that there is a region of intermediate d where a CF-
BCS phase is the ground state.
We further conjecture that as we go to larger systems,

the shell-filling effects, and Hund’s rule, should become
less important whereas the pairing effects will remain the
same strength. This conjecture is simply based on the fact

that only � ffiffiffiffi
N

p
particles are in the valence shell, whereas

all particles within some gap energy of the Fermi surface (a
number�N) contribute to pairing. To make this statement
more concrete we examine the range for which the CF-
BCS wave function provides a better trial state than the
Hund’s rule state. In Fig. 2 we show the energy difference
per particle between the two trial states as a function of
system size and layer separation. To differentiate between
the two possibilities most clearly, we have only shown
cases (N ¼ 8, 16, 20) where the large d limit of the CF-
BCS state is distinct from the Hund’s rule state. The varia-
tional CF-BCS wave function for N ¼ 20 electrons was
obtained using an energy minimization technique [14]. The
figure shows that with increasing N, the CF-BCS state
becomes more accurate out to somewhat larger d. While
our data strongly suggest that pairing survives in the ther-
modynamic limit it cannot establish that it extends to
arbitrary weak interactions, as suggested in Ref. [6], in
this limit (see inset).
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FIG. 1 (color online). Overlaps of our trial CF-BCS states with
the exact ground state on the bilayer sphere (solid), overlaps of
the Hund’s rule or CF-Fermi sea state with the exact ground state
(dashed) and overlaps with the 111-state (dotted). Error bars are
Monte Carlo error. In (a) data is shown for N ¼ 10, 12, 14 where
the large d limit of the Hund’s rule and CF-BCS state become
identical. Note the very high accuracy of these trial wave
functions for all d * 1. In (b) for N ¼ 8, 16 the two limits are
inequivalent. In this case it is clear that the Hund’s rule state
becomes more accurate at large d, but at smaller d there is a
regime where the CF-BCS state prevails. The 111 state is
accurate only at d & 0:5‘0.
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For large d, it is difficult to be confident of extrapolation
to the thermodynamic limit (small energy differences).
However, for intermediate ‘0 & d & 2‘0, our data
(Table I) clearly shows a strong gap which persists to large
N. At these values of d, it is also clear from our numerics
that the CF-BCS state provides an accurate trial wave
function which is not in the 111 phase. We can thus
conclude that a CF-BCS phase, contiguous to the 111
phase, does exist for a range of intermediate d.

We emphasize that the CF-BCS trial wave functions
contain interlayer correlations via the interlayer pairing
function G, whereas the intralayer correlations result
from the CF Jastrow factors. As such, these trial wave
functions should not have the same interlayer coherence
as the 111 wave function. Still, our CF-BCS states should
have quantized Hall drag exactly like the 111 phase, at
least at zero temperature (see [5,15]), although they should
not display resonant interlayer tunneling. Finally, we note
that, unlike the 111 phase, the CF-BCS state will be
strongly destabilized by layer imbalance (analogous to
spin imbalance for usual BCS states).

In a forthcoming paper [14] we will discuss the overall
phase diagram including the regime of very small d. In
brief, we find a second order phase transition near d * 1
from the CF-BCS phase at larger d, which has zero 111
order parameter (OP), to a phase with nonzero 111 OP at
smaller d. Note that the BCS OP and the 111 OP are
distinct. We find that both phases as well as the transition
can be very well described in the language of [4] where
CF’s mix with composite bosons (CB’s) and the presence
of CB’s yields nonzero 111 OP. Our work further suggests
that there may be a region of intermediate d where both
OPs (BCS and 111) coexist, although the results of [14] are
not definitive in this respect. Should this coexistence occur,

we argue [14] that px þ ipy is the only pairing channel

compatible with such coexistence.
To summarize, we have shown compelling numerical

evidence of px þ ipy pairing of composite fermions at

intermediate layer spacings d for quantum Hall bilayers
at � ¼ 1

2 þ 1
2 . We have proposed specific forms for the

actual wave functions that show excellent overlap with
the results of exact diagonalizations. While CF pairing
had been theoretically proposed earlier [6], other phases
had also been advocated [5,7] and there has previously
been no compelling numerical evidence to distinguish the
possibilities. Further we show that for finite size systems at
very large d, a Hund’s rule state is the ground state.
However, as we go to larger system sizes, the CF-BCS
(paired) state extends to larger d.
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FIG. 2 (color online). Energy difference between CF-BCS
wave function and Hund’s rule wave function as a function of
layer spacing d for shell fillings where CF-BCS and Hund’s rule
are distinct states in the large d limit. We show N ¼ 8, 16, 20.
Note that as N grows, the range of d where the CF-BCS wave
function is a better trial state extends to larger d. The inset shows
dc, the value of d where eBCS ¼ eHund to illustrates how it scales
with N�1; lines are guides to the eye.
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