Materials discovery with artificial intelligence

Gareth Conduit

TCM Group, Department of Physics
Approaches to materials design

- Simulation
- Physical intuition
- Experiment
- Materials selection
Schematic of a jet engine
Artificial intelligence

Composition

Yield stress
Hardness
Melting point
Oxidation resistance
Cost
Density
Fatigue life
Fracture toughness
Creep
Processibility
Artificial intelligence

Composition

Yield stress
Hardness
Melting point
Oxidation resistance
Cost
Density
Fatigue life
Fracture toughness
Creep
Processibility
Artificial intelligence

Composition

Yield stress
Hardness
Melting point
Oxidation resistance
Cost
Density
Fatigue life
Fracture toughness
Creep
Processibility
Testing the yield stress

Proposed theory
Testing the yield stress

![Graph showing yield stress vs temperature for RR1000 material. The graph includes a curve representing the proposed theory and data points for different temperatures.](image-url)
Testing the yield stress

![Graph showing yield stress over temperature with proposed theory and experiment data.]
Testing the oxidation resistance

- RR1000
- Proposed theory
- Proposed expt
Alloys discovered

Cr-Cr₂Ta alloys
Intermetallics, 48, 62

Combustor alloy
GB1408536

RR1000 grain growth
Acta Materialia, 61, 3378

Discovery algorithm
EP14153898
US 2014/177578

Ni disc alloy
EP14157622
US 2013/0052077 A2

Mo-Hf forging alloy
EP14161255
US 2014/223465

Mo-Nb forging alloy
EP14161529
US 2014/224885
Materials databases

<table>
<thead>
<tr>
<th></th>
<th>Ni</th>
<th>Al</th>
<th>W</th>
<th>Ti</th>
<th>Yield stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Fragmented databases

<table>
<thead>
<tr>
<th>Composition</th>
<th>Comp. YS</th>
<th>UTS</th>
<th>Hardness</th>
<th>Yield stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>X</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
<td>X</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
<td>X</td>
<td>X</td>
<td>✔</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>X</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
<td>X</td>
<td>✔</td>
<td>X</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
<td>X</td>
<td>✔</td>
<td>X</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
<td>X</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
<td>X</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
<td>X</td>
<td>✔</td>
<td>X</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
<td>X</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Merging simulation and experiment
Merging simulation and experiment
Merging simulation and experiment

Combine

YS

X

YS

X

YS

X
Exploiting material correlations

Lithium cathode materials

Experiment \hspace{2cm} DFT
Database verification

Database contains $>10^7$ separate entries
Example: polymers
Summary

Used artificial intelligence to discover materials

Proposed four new alloys, experimentally verified, now real-world testing

Merge simulations and experiments into holistic design tool

Materials database verification and analysis