Alloys by design

Gareth Conduit

TCM Group, Department of Physics
Alloys – where are they used?

• Potential energy in elastic band:

\[E = \frac{1}{2} kx^2 = \frac{1}{2} Fx = \frac{1}{2} \times 10 \times 0.1 = 0.5 \text{ J} \]
Alloys – where are they used?

- Potential energy in elastic band:
 \[E = \frac{1}{2} kx^2 = \frac{1}{2} Fx = \frac{1}{2} 10 \times 0.1 = 0.5 \text{ J} \]

- Kinetic energy in handgun bullet:
 \[E = \frac{1}{2} mv^2 = \frac{1}{2} 0.005 \times 400^2 = 400 \text{ J} \]
Alloys – where are they used?

- Potential energy in elastic band:
 \[E = \frac{1}{2} kx^2 = \frac{1}{2} Fx = \frac{1}{2} 10 \times 0.1 = 0.5 \text{ J} \]

- Kinetic energy in handgun bullet:
 \[E = \frac{1}{2} mv^2 = \frac{1}{2} 0.005 \times 400^2 = 400 \text{ J} \]

- Potential energy in enormous band:
 \[E = \frac{1}{2} kx^2 = \frac{1}{2} Fx = \frac{1}{2} 100 \times 10 = 500 \text{ J} \]
Alloys – where are they used?
Jet engine: military jet
Jet engine: commercial jet
Jet engine: turbine discs
Certification – fan blades & birds!

- **Small bird**: Number based on area of front of engine, maximum 16, mass 55 - 110g (e.g. starlings)
- **Medium bird**: Number based on area of front of engine, maximum 10, mass 0.7 kg (e.g. seagull)
- **Large bird**: 1 bird, mass at least 1.8 kg at speeds up to 2500ms$^{-1}$
Aircraft fuel efficiency over the past 50 years

![Graph showing fuel efficiency improvements over time](image-url)
Designing a new alloy – what is required?

Required properties for new alloy:
- Fracture toughness
- Yield strength
- Processibility
- Cost
- Density
- Fatigue life
- Corrosion resistance
- Oxidation resistance
- Creep
- Yield strength
- Fatigue life
- Processibility
- Cost
- Density
- Fracture toughness
- Oxidation resistance
- Creep
Types of property models

• For efficient development, predictions must take seconds or less
 ✗ Experimental data (weeks/months)
 ✓ Neural networks (nano/micro seconds)

• Combine estimates of individual properties to give overall probability of success
Multidimensional design space

<table>
<thead>
<tr>
<th>Cr</th>
<th>Co</th>
<th>Mo</th>
<th>W</th>
<th>Ta</th>
<th>Nb</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>Fe</td>
<td>Mn</td>
<td>Si</td>
<td>C</td>
<td>B</td>
<td>Zr</td>
</tr>
<tr>
<td>Cu</td>
<td>N</td>
<td>P</td>
<td>V</td>
<td>Hf</td>
<td>Mg</td>
<td>Ni</td>
</tr>
</tbody>
</table>

and 4 different manufacturing processes
Selection of design space
Selection of design space
Automated sampling - parallel optimization
Predicted material

- Processed according to model predictions
- Property assessment underway
Conclusions: scientific

- Developed new algorithms to optimize a material’s properties
- Manufactured proposed alloy with testing underway
Conclusions: why work in material sciences?

- Varied roles that combine analytics, numerics, and experiments
- Close connection to real-world problems
- Strong academic funding and well-paid industrial jobs