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ABSTRACT 

Imputation machine learning (ML) surpasses traditional approaches in modeling toxicity data.  

The method was tested on an open-source data set comprising approximately 2500 ingredients 

with limited in vitro and in vivo data obtained from the OECD QSAR Toolbox. By leveraging 

the relationships between different toxicological endpoints, imputation extracts more valuable 

information from each data point  compared to well-established single endpoint methods like 

ML-based Quantitative Structure Activity Relationship (QSAR) approaches. The inclusion of 

extraneous  chemical  or  experimental  data  in  the  imputation  models  does  not  impact  their 

performance.  This  finding  is  significant  because  such  additional  data  usually  introduces 

considerable noise and limits performance of single endpoint QSAR modeling. Consequently, 

imputation models eliminate the need for laborious manual pre-processing tasks such as feature  

selection,  reducing the  effort  required  to  prepare  data  for  ML analysis.  This  successful  test 

conducted on open-source data validates the efficacy of imputation approaches in toxicity data 

analysis.  This  work  opens  the  way  for  applying  similar  methods  to  other  types  of  sparse 

toxicological data matrices and so we discuss the development of regulatory authority guidelines 

to accept imputation models.
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Introduction

In the past decade industry, academia, and regulatory scientists have invested significant effort  

to promote next generation risk assessment (NGRA). Their goals are to develop new approach 

methodologies (NAMs) for animal testing that have more human relevance for chemical toxicity 

testing and that reduce the numbers of animals used. By 2035 the US EPA plans to eliminate all  

mammalian study requests and funding (Gwinn et al., 2020). Similar efforts are ongoing in the 

European Union where guidance from the European Chemical Agency (ECHA) is encouraging 

the  use  of  alternative  methods such as  Quantitative  Structure  Activity  Relationship  (QSAR) 

modeling and in vitro testing instead of animal testing (Westmoreland et al., 2022). NAMs open 

many perspectives in risk-based metrics as well as chemical prioritization and screening in a fast 

and cost-efficient way. However, with the development of NAMs, regulatory authorities such as 

the  Organization  for  Economic  Co-operation  and  Development  (OECD)  have  established 

guidelines for the validation of QSAR models for regulatory purposes that are more constrained 

compared to general QSARs used primarily for R&D purposes (OECD, 2014).

Combining  in  vitro with  in  silico modeling to  impute  data  is  one of  the  NAMs methods 

currently in development. in vitro assays often lack comprehensive chemical testing and quality 

control  leading  to  a  rather  sparse  database  from which  to  perform a  complete  and  holistic 

toxicological  risk  assessment.  QSAR  models  are  now  being  leveraged  to  impute  the  data 

(DiMaggio et al., 2010; Kensert et al., 2018; Kovarich et al., 2019). 

As an alternative to single-endpoint traditional QSAR models, various imputation approaches 

have been developed, ranging from empirical read-across methods or simple statistical models to 

complex machine or deep learning based approaches, or even encapsulating frameworks such as 
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conformal prediction or transfer learning (Kensert et al., 2018; Kovarich et al., 2019; Norinder et 

al., 2014; Pradeep et al., 2019; Simm et al., 2015; Simões et al., 2018; Sun et al., 2022)

Previous efforts have demonstrated that imputation allows for the combination of molecular 

descriptors  with  sparse  bioactivity  responses  to  enrich  the  QSAR training  set  and  improve 

overall prediction for a specific endpoint (Whitehead et al., 2019)(Walter et al., 2022). However, 

none of these imputation models have been discussed in terms of their ability to fit within the 

current guidelines for potential use for regulatory purposes.  

In this study we develop a data imputation model for ingredients that are recognized by the EU 

as part of the human health toxicological risk assessment for exposure routes such as inhalation 

or dermal uptake. Data were gathered from all the available information from publicly available 

sources using the OECD QSAR Toolbox. The sparsity of the available data already makes it 

challenging to perform the initial hazard assessment step, which provides a great case study for 

imputation. A particular emphasis will be placed on considering routes to regulatory acceptance. 
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Material

We used a set of ingredients covered by EU Regulation 872/2012  (EU Commision, 2012) 

(https://eur-lex.europa.eu/eli/reg_impl/2012/872/oj). Chemicals were extracted using their CAS 

Registry Number (CAS RNs). To obtain the chemical structures, we conducted a batch search on 

the US EPA chemical dashboard (Williams et al., 2017) extracting the structures represented by 

their QSAR ready Simplified Molecular Input Line Entry System (QSARr SMILES). Chemicals 

without QSARr SMILES as well as duplicate based on their CAS RNs were omitted resulting in 

a set of 2,363 chemicals.

Experimental  data  to  impute  were  extracted  from the  OECD QSAR Toolbox  version  4.5 

(QSAR Toolbox, n.d.) (referred to hereafter as ‘QSAR Toolbox’ data). The 89 Human Health 

Hazard endpoints  taken as  targets  were all  the  endpoints  under  the ‘Human Health Hazard’ 

category in the OECD QSAR Toolbox data with 2 or more experimental  datapoints present  

among the compounds considered. Of these endpoints, 69 were continuous and 20 were binary 

(positive/negative). Where data for binary endpoints was marked as ‘equivocal’ it was removed 

from the analysis: this removed 49 total data points from seven targets. Summary statistics are 

only reported on those endpoints with 10 or more data points present to minimize noise in the 

results.

The  modelling  data  was  further  subdivided  into  modeling  datasets  focused  on  different 

modeling strategies and data. 

First, three distinct sets of data focused on purely describing chemical structures: (i) Molecular 

Descriptors (MolDesc) using 121 calculated chemical properties using RDKit Python library 
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(version  2022.09.1),  including  molecular  weight,  SlogP,  substructure  counts,  etc;  Morgan 

Fingerprint (MorganFP) using structural fingerprints calculated with RDKit; and (iii) Tox Print 

fingerprint (ToxPrintFP) using structural fingerprints specifically deemed relevant for toxicity 

(Yang et al., 2015) computed using the EPA Chemical Dashboard. 

Second, two sets focused on describing physico chemical properties: (iv) sparse calculated data 

from the  US  EPA CompTox  Chemicals  Dashboard  (CompToxPhysChem)  and  (v)  physical 

chemistry  properties from the QSAR Toolbox data (ToolBoxPhysChem). 

Finally, the last set (vi) consisted of ecotoxicological data (EcoTox) extracted from the QSAR 

Toolbox (ToolBoxEcoTox).  

These datasets were combined in a hierarchical manner to examine the effect of different data 

types (computation vs  experimental;  molecular  descriptor  vs  fingerprint  vs  physico-chemical 

information; etc.). These sets were combined into a dataset called “CombinedAll”. Combination 

of these modeling sets are presented in Figure 1 and the data volume of each combination is 

presented in Table 1  
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Figure 1: Graphical representation of the datasets used in modelling and their relationships. Square boxes are computationally  
calculated data;, rounded boxes are experimental data. Dark blue represents complete input data; light blue represents sparse  
input data; orange represents (sparse) target data.

Table 1: data volumes used in each of the modelling datasets. 

Modelling dataset Number of 
compounds

Number of 
complete 
input 
variables

Number of 
sparse input 
variables

Number of 
non-target 
experimental 
endpoints

Number of 
target 
experimental 
endpoints

MolDesc 2363 113 0 0 89

MorganFP 2363 1020 0 0 89

ToxPrintFP 2363 276 0 0 89
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MolDesc+MorganF
P

2363 1133 0 0 89

ToxPrintFP+CompT
oxPhysChem 

2363 278 32 0 89

MolDesc+MorganF
P+ToolBoxPhysChe
m

2363 1133 112 0 89

ToxPrintFP+CompT
oxPhysChem+ToolB
oxPhysChem

2363 278 144 0 89

MolDesc+MorganF
P+ToolBoxPhysChe
m+ToolBoxEcoTox

2363 1133 112 657 89

ToxPrintFP+CompT
oxPhysChem+ToolB
oxPhysChem+ToolB
oxEcoTox

2363 278 144 657 89

CombinedAll 2363 1411 144 657 89
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Methods

Machine learning methods

We used random forest (RFs) for the QSAR models, using the implementations in scikit-learn 

(Pedregosa  et  al.,  2011).  Random Forest  (RF)  is  a  powerful  and versatile  machine  learning 

algorithm that works on the principle of ensemble learning. RF is often used in QSAR studies 

because it can handle large, complex datasets with high dimensionality and multi-collinearity, 

typical in QSAR studies. RF is often considered the “gold standard” in QSAR modelling (Kwon 

et al.,  2019) due to its robustness, performance, interpretability, efficiency, and non-linearity. 

Despite  the  exceptional  performance  of  RFs  in  QSAR  modelling,  they  possess  certain 

limitations. For instance, they do not natively handle missing values and are primarily designed 

for  single  target  predictions.  We do note  here,  that  RFs  have  limitations  when it  comes  to 

extrapolating new data for regression problems (continuous variables), however for the sake of 

the imputation comparison study, we deemed this method sufficient for these endpoints as well. 

AlchemiteTM is a machine learning-based tool used for making predictions from sparse and 

noisy data, making it  highly effective in situations where there are numerous missing values 

(Whitehead et al., 2019). Previous studies  (Mahmoud et al., 2021)  have shown an improved 

performance  over  traditional  QSAR  methods.  Unlike  other  approaches,  AlchemiteTM 

simultaneously learns correlations between all input and output variables, enabling interpolation 

and extrapolation in multi-dimensional space (Irwin et al., 2020). Incorporating additional data 

enhances  the  robustness  of  models,  as  a  larger  dataset  allows  AlchemiteTM  to  learn  and 

generalise  better,  minimising  overfitting.  Additionally,  by  considering  all  output  variables 

jointly,  AlchemiteTM improves prediction accuracy by accounting for interdependencies and 
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influences among the outputs  (Tse et al.,  2021). Notably, AlchemiteTM accurately quantifies 

data and model uncertainty, providing a measure of prediction confidence. By identifying the 

most uncertain datapoints, AlchemiteTM focuses on these challenging instances during training, 

leading  to  improved  modelling  performance.  This  comprehensive  approach,  along  with  the 

ability  to  propagate  uncertainty  throughout  the  modelling  process,  enables  AlchemiteTM to 

capture dependencies and correlations that may go unnoticed when considering only a single 

output or a subset of data, as is the case with a conventional RF approach.

Analysis methods

All evaluation was carried out using 10-fold cross-validation: the dataset was randomly split 

by compound into 10 disjoint segments; 9 segments were combined into a training set with the 

last predicted against; then this was repeated so that each segment was used as the prediction set  

exactly once. In this way all the data in each set was predicted against without being used as 

input  in  the  same  model.  Accuracy  measurements  were  calculated  by  concatenating  all  10 

prediction  sets  and calculating  accuracy metrics  across  all  present  data  points  per  endpoint. 

Compared to the more common method of calculating accuracy metrics on each prediction set 

individually and then averaging, the concatenation method increases the statistical power of the 

metric  by providing more data points  to each calculation but  does not  provide access to an 

estimate of the variance in the metric; it is however equally blind with respect to the training data 

on each fold. For endpoints with only a small number of datapoints present (all except three 

endpoints had fewer than 200 datapoints to test  against) the concatenation approach is more 

suitable.
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We  use  the  Coefficient  of  determination  (R2)  as  the  performance  metric  for  continuous 

endpoints: this metric is defined as

R2=1−
∑

i
( y i−f i )

2

∑
i

( yi− y )2

where  f i are  the  model  predictions  for  the  ith  datapoint,  with  corresponding experimental 

measurements yi, and y is the mean experimental measurement. 

We use the Matthews correlation coefficient  (MCC) as  the performance metric  for  binary 

endpoints: this metric is defined as 

MCC= TP×TN−FP × FN

√(TP+FP)(TP+FN )(TN +FP)(TN+FN )

where TP is the number of true positive observations (i.e. the experimental value is positive 

and the model predicts positive),  TN is the number of true negative observations,  FP is  the 

number of false positive observations,  and FN is the number of false negative observations. 

MCC is a symmetric cost function that rewards success at capturing both binary classes equally.

For carrying out statistical comparisons of performance across endpoints between models we 

use Wilcoxon signed-rank tests implemented in SciPy(Virtanen et al., 2020). We use Wilcoxon 

signed-rank  tests  rather  than  t-tests  because  both  R2 and  MCC  have  finite  ranges,  and 

(particularly for the binary endpoints) the number of endpoints is small enough to impact the 

reliability of the Gaussian approximation in a t-test.
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Results

Imputation compared to QSAR

We first  compare  traditional  QSAR models  to  imputation  models  on  the  same dataset  to 

compare the extra value that learning from inter-endpoint relationships can provide. As QSAR 

models  are  traditionally  trained  on  chemical  structure  related  data,  meaning  molecular 

descriptors or fingerprints as feature vectors, and require complete input information, we trained 

QSAR models on the ‘MorganFP’, ‘ToxPrintFP’, and ‘MolDesc’ datasets. 

In  Figure 22 we compare the performance of these RF based QSAR models against models 

trained using the imputation method, separately for continuous binary variables. In each case a 

point is plotted for each target variable for each of the three modelling datasets, with points of 

the same color corresponding to the same target endpoint within each graph, and the size of the 

points corresponding to the number of datapoints that were present in the target endpoint. We 

only include those endpoints that have 10 or more data points in order to avoid cluttering the 

plots.

We  observe  that  in  general  the  imputation  models  outperform  the  corresponding  QSAR 

models. Using the one-tailed Wilcoxon test the continuous variable imputation performance on 

endpoints  with  10  or  more  data  points  significantly  outperforms  the  corresponding  QSAR 

models for the ‘MorganFP’, ‘ToxPrintFP’, and ‘MolDesc’ sets with p-values 3e-6, 5e-5, and 1e-

3  respectively.  This  indicates  that  the  use  of  inter-endpoint  relationships  by  the  imputation 

method  have  significantly  improved  the  predictive  accuracy  of  the  models,  validating  the 
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expectation that leveraging relevant additional data in machine learning models can improve 

their performance. None of the imputation models show evidence of different performance on 

average from the corresponding QSAR models for binary endpoints.

We can also use  Figure 2 to investigate how the input data sets compare on the QSAR and 

imputation models. For the continuous endpoints there is no evidence of a statistically significant 

difference  between  the  imputation  models  on  the  different  datasets,  and  for  the  categorical 

endpoints only the ‘ToxPrintFP’ shows a significant improvement over the ‘MorganFP’ dataset 

using the imputation models (p-value 6e-3). This provides evidence that in general an expert 

should  be  able  to  select  whichever  input  information  from  these  sets  is  most  chemically 

informative  to  extract  maximum  value  from  the  modelling  process  without  impacting  the 

imputation performance. Generally, the ‘MolDesc’ set contains the most chemically interpretable 

information,  although  the  ‘ToxPrintFP’  fingerprints  are  expected  to  capture  properties  more 

relevant to toxicological endpoints.
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Figure 2 performance of imputation and QSAR models using the same datasets for the continuous (left) and binary (right) 
endpoints separately.



Providing additional chemical data

Given the observation in the previous section that the provision of more relevant data to the 

machine learning models (there in the form of data on other ‘Human Health Hazard’ endpoints) 

improves the model performance, in this section we examine further data sets (summarised in 

Table 1) that include more input data information. All models are “imputation” models in the 

vein of the previous section, directly including inter-endpoint relationships.

We first compare the addition of further chemically-relevant information to the ‘ToxPrintFP’ 

dataset to generate the ‘ToxPrintFP+CompToxPhysChem’ set of all the information extracted 

from the  US EPA CompTox Chemicals  Dashboard  and,  separately,  the  combination  of  the 

‘MolDesc’  and  ‘MorganFP’  sets  into  the  ‘MolDesc+MorganFP’  set  of  all  the  information 

obtained from RDKit. The results of these combinations are shown in  Figure 3:  3 below: no 

combinations  show a  significant  improvement  over  the  ‘ToxPrintFP’/’MolDesc’/’MorganFP’ 

datasets  alone,  indicating  that  in  general  all  of  the  chemical  information  provided  by  the 

additional data in the ‘ToxPrintFP+CompToxPhysChem’ and ‘MolDesc+MorganFP’ datasets is 

already captured in the simpler input information already available to the models.
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To investigate whether providing a different source of data to the models would improve the 

performance  further,  we  next  examine  the  ‘ToxPrintFP  +  CompToxPhysChem  + 

ToolBoxPhysChem’  and  ‘MolDesc  +  MorganFP  +  ToolBoxPhysChem’  datasets,  which 

supplement the previous datasets with physical chemistry data from QSAR Toolbox. The results 

are  shown in  Figure  4:  in  no  case  does  the  addition  of  the  physical  chemistry  information 

significantly  improve  the  model  performance  compared  to  the  versions  without  the  QSAR 

Toolbox  data.  As  expected  from  the  results  in  Figure  3,  neither  the  ‘ToxPrintFP  + 

CompToxPhysChem + ToolBoxPhysChem’ nor ‘MolDesc + MorganFP + ToolBoxPhysChem’ 

models  show  any  evidence  of  significant  improvements  over  the  simplest  ‘MorganFP’, 

‘ToxPrintFP’,  or  ‘MolDesc’  imputation  models  either,  indicating  all  the  relevant  chemical 

information is provided in each of those simplest data sets.
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ToxPrintFP+CompToxPhysChem models and performance of the MolDesc+MorganFP+ToolboxPhysChem compared to 
MolDesc+MorganFP respectively for the continuous (left) and binary (right) endpoints separately. The size of the dots is 
proportional to the dataset size.



Providing additional experimental data

Given  the  lack  of  improvement  in  model  performance  achieved  by  providing  additional 

physical and chemical information to the models, we next examine providing more experimental 

data in the form of ecotoxicological measurements from QSAR Toolbox. This might be expected 

to improve the model performance if there is an expectation that the biological information about 

ecotoxicity is related to the Human Health Hazards biological information. However, the results 

in  Figure  5  show that  again  there  is  no significant  change in  model  performances  over  the 

corresponding  models  without  the  addition  of  the  ecotoxicological  information.  Whilst  this 

means that  the additional  information has not  improved model  performance,  neither  has  the 

performance degraded: the addition of information that the imputation models do not find useful  

for  predicting  the  ‘Human  Health  Hazard’  target  endpoints  does  not  reduce  the  model’s 

performance.  Often  modelling  processes  can  be  slowed by the  desire  to  remove extraneous 

information so that models do not overfit to noisy “accidental correlations” in a dataset, but these 

results indicate that using this imputation approach this can be avoided, and non-informative 

information is ignored rather than reducing the model accuracy. This can provide a valuable time 

saving in modelling projects, eliminating the need of prior feature selection.
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For  the  final  analysis  we  combined  all  of  the  modelling  data  into  a  single  dataset,  the 

CombinedAll set described in Table 1. The performance using this data in an imputation model 

is compared to the baseline QSAR models in Figure 6: , demonstrating that the combination of 

additional data and imputation has provided statistically significant improvement on continuous 

endpoints  over  the  ‘MorganFP’,  ‘ToxPrintFP’,  and  ‘MolDesc’  QSAR models  (Wilcoxon  p-

values 2e-5, 2e-5, and 3e-4 respectively). As discussed above, the majority of this improvement 

can be attributed to the imputation approach capturing relationships between different ‘Human 

Health Hazard’ endpoints. The ‘CombinedAll’ model does also provide a statistically significant 

improvement  over  the  'MolDesc+MorganFP+ToolBoxPhysChem+ToolBoxEcoTox'  model  for 

continuous variables (p-value 2e-2), but there is no evidence it offers an improvement for binary 

variables  or  over  the  'ToxPrintFP+CompToxPhysChem+ToolBoxPhysChem+ToolBoxEcoTox' 

model.
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Final model performance analysis

So far, we have examined comparative performance of models trained on different datasets. 

Now we turn to an analysis of the overall performance of the ‘CombinedAll’ model trained on all 

of the data. 

In Figure 7 we examine the performance of the ‘All’ model as a function of the number of data 

points  per  endpoint.  We  observe  that  for  the  continuous  endpoints  the  coefficient  of 

determination generally increases with the amount of data available (p-value for linear trend line 

to have a positive slope: 4.9e-2), indicating that increasing the amount of data available to learn 

from  increases  the  model  performance.  This  suggests  that  as  more  data  is  gathered  for 

experimental  endpoints  over  time  the  model  performance  on  those  endpoints  should  also 

increase. The slope of the linear fit trend line for the continuous endpoints suggests that adding 

10 new experimental data points increases the model coefficient of determination by 0.009(5) on 

average (assuming the endpoints are otherwise equal), providing quantifiable evidence for the 

value that new experimental data brings to the computational models.

There is no evidence at the 5% confidence level that the same improvement is true for the 

categorical endpoints using this model.
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Figure 7 performance of the 'CombinedAll' model containing all the available data as a function of the number of data points 
in each endpoint, for the continuous (left) and binary (right) endpoints separately.



For toxicological endpoints, as well as overall performance, it is also important to understand 

whether predictive models are generally over- or under-predicting: for example, in the case of 

binary endpoints, whether false positives for toxicity (which might result in missed opportunities 

for new compounds) or false negatives (which might result in dangerous compounds being used 

expecting them to be safe, which is a more costly failure) are more prevalent in predictions. 

Figure 8 compares the false positive rate (FPR) to the false negative rate (FNR) for the QSAR 

models (left) and the final ‘CombinedAll’ imputation model (right). A perfect model would have 

zero false positives and zero false negatives and so would appear in the bottom left of the plots. 

A high false positive rate (FPR) signifies that the model misclassifies a significant number of 

negative data points, while a high false negative rate (FNR) indicates that the model misclassifies 

a significant number of positive data points. From a toxicology standpoint, it is important to 

minimize  false  negatives  in  order  to  avoid  underestimating  relevant  information  related  to 

toxicity and human health.

For all of the models we observe that the FNR is generally greater than the FPR, indicating that 

the models are more likely to mischaracterize a toxicologically active compound as inactive 

rather than a toxicologically inactive compound as active. This is the more harmful model failure  

mode. In order to improve this in future models the FNR could be taken as the binary variable  

cost  function  in  hyperparameter  optimization,  rather  than  the  more  balanced  Matthew’s 

Correlation Coefficient used above.
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For real-world applications of machine learning it is also important to understand when the 

model is (and is not) accurate so that the model is only applied within its domain of applicability 

where there is an expectation of performant predictions. In Figure 99 (left) we plot the absolute 

deviation of the model predictions f from the true values y (for the continuous variables only), 

normalized by the standard deviation across the training data for each endpoint (s), against the 

uncertainty in each model prediction, similarly normalized. The different colors represent data 

from the different continuous endpoints, using the same color scheme as the previous figures. If 

the distribution of uncertainties was perfectly normal this plot would show a smoothed triangular  

structure with points mostly below the identity line and mostly in the bottom left of the plot: the 

tail  of  points  towards  the  bottom right  of  the  plot  indicates  the  model  is  sometimes overly 

pessimistic, overestimating the uncertainty in its predictions. However, a linear trend line for the 

data in this figure has a positive slope (with p-value 1e-4), indicating that overall the model 

uncertainty  can  be  used  to  indicate  where  the  model  is  accurate:  predictions  with  larger  

uncertainty are on average further from the true values. A user can then set a tolerance on the 

absolute  deviation  from true  values  they  are  comfortable  with  from the  model  and  discard 

predictions with uncertainties that are too large.

In  Figure 9 (right) we plot a 2D UMAP (Uniform Manifold Approximation and Projection) 

embedding  (McInnes et al., 2020) of the data, compressing the complete MolDesc descriptors 

from RDKit into a 2D representation. Each point represents a single compound, with the color of 

each point corresponding to the average normalized uncertainty in the continuous predictions 

across all target endpoints for that compound in the final ‘CombinedAll’ model (grey points only 

had binary endpoints present). We observe that, in general, the most uncertain compounds are 

located towards the edges of the clusters of data.  This suggests that the model is applicable  
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across multiple areas of chemical space, but within each of these areas is more confident (and 

hence, from Figure 9 (left) in general more accurate) towards the center of the chemical space 

region, as expected as most machine learning approaches are more accurate in interpolation. We 

note  in  particular  that  the  small  clusters  in  the  bottom-left  of  the  embedding  do  not  show 

generally  higher  uncertainty  than  the  rest  of  the  compounds,  and  so  the  model  does  have 

applicability to disparate chemical types that cluster separately within the overarching chemical  

space. This builds confidence in the applicability of the modelling technique across a wide range 

of different compounds and areas of chemical space.

To build confidence in the ‘CombinedAll’ imputation model it is important to understand how 

the model makes predictions and what information it relies on. In  Figure 10 we highlight the 

variables used as input by the model (columns in the figure) to predict each of the 89 target  

endpoints (rows in the figure): darker cells in the figure show stronger use of the input variable. 

We  observe  that  the  model  is  mostly  using  the  variables  coming  from  the  MolDesc, 

CompToxPhysChem, ToolBoxPhysChem, and Human Health Hazard variables. All except the 
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Figure 9 the normalized absolute deviation in the 'CombinedAll' model predictions vs the uncertainty in those predictions 
(left); and a UMAP embedding of the data used, with each point colored by its average normalised uncertainty across all 
endpoints.



MolDesc data is sparse, meaning that it could not be used directly with conventional QSAR 

methods.  The  MolDesc,  CompToxPhysChem,  and  ToolBoxPhysChem data  are  all  based  on 

computational  tools  directly  designed  to  capture  chemically-informative  properties  of 

compounds, and this analysis indicates that this information is prioritized for modelling over the 

fingerprint  data  from the  MorganFP or  ToxPrintFP when those  are  also  available  (although 

Figure 2 indicates that the modelling approach is able to extract comparable information from the 

fingerprint data when only that is available). We do note however that the higher cardinality of 

the continuous MolDesc and physico-chemical data over the binary fingerprint data might bias 

the understanding of the most informative variables (Strobl et al., 2007)

The benefit of the imputation approach is shown by the fact that several of the Human Health  

Hazard endpoints are strongly used by the model: of the top 10 most used inputs, six are Human 

Health  Hazards,  including  the  top  three  being  chromosome  aberration  endpoints  based  on 

different model species.

Figure 10 A table showing which variables are used as input to the ‘CombinedAll’ model to predict each of the Human Health  
Hazard target endpoints, labelled by which dataset they came from. Input variables that were completely unused are dropped for  
visual clarity.
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Conclusions

Imputation models incorporate sparse data so significantly improve QSAR modeling accuracy, 

demonstrated here  for  toxicity  endpoints.  Imputation models  also  save time,  as  they do not 

require a perfectly curated dataset and can autonomously handle irrelevant data. On the other 

hand,  QSAR models  require  carefully  curated  data  to  achieve  the  best  performance.  These 

methods  could  be  game  changing  for  NAMs approaches  where  endpoints  often  depend  on 

multiple data sources leading to a sparse database. 

However, worldwide regulatory agencies will need to update their guidelines to accommodate 

this new family of models.  When evaluating imputation modeling against the five principles 

established by the  OECD to  validate  QSAR models  several  misalignments  become evident. 

Firstly,  imputation  models  could  potentially  be  utilized  for  multiple  endpoints,  whereas  the 

OECD recommends associating QSAR models with a defined endpoint. Additionally, the OECD 

advises QSAR models are developed from homogeneous datasets generated through a single 

protocol, whereas imputation models integrate data from various experiments conducted using 

different protocols.

Furthermore,  the  combination  of  large  datasets  from  diverse  sources  complicates  the 

establishment of  a  strict  applicability domain.  Finally,  the complex arrangement and diverse 

utilization  of  data  makes  it  difficult  for  imputation  models  to  provide  a  mechanistic 

interpretation. Further work needs to be conducted to develop and clarify the principles needed 

to validate imputation models, which have the promise to serve as more relevant NAMs in the 

ever-increasing complexity of toxicological testing.
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