
Materials for Devices: Problem Set 1

1. A capacitor is made of two parallel plates of surface area A and separated by a distance
L. It supports a charge Q on each plate (positive on one and negative on the other) and
an associated voltage difference V across the plates. The capacitance C of the capacitor
is defined as:

C =
Q

V
. (1)

For a parallel plate capacitor, the charge density σ = Q
A on each plate is related to the

displacement field of the dielectric material between the plates through:

σ = |D|. (2)

(i) Show that:

C = ε
A

L
, (3)

where ε is the permittivity of the dielectric material between the parallel plates.

(ii) What is the capacitance of an empty parallel plate capacitor with plates of surface
area 500 mm2 and separated by 2.5 mm? If a potential difference of 10 V is applied
across the plates, what is the magnitude of the charge stored on each plate? And the
surface charge density?

(iii) Consider the insertion of SiO2 (κ = 4.52) between the plates. For the same applied
potential difference of 10 V, calculate the capacitance, the magnitude of charge stored
on each plate, and the surface charge density.

(iv) What is the polarisation of SiO2 in the setup above? With reference to the empty
parallel plate capacitor, explain why the total charge density on the plates is not the
same as the polarisation of the dielectric.

(v) What would be the surface area of a new capacitor of the same capacitance and
thickness as the SiO2 capacitor above, but made from a ferroelectric material with a
dielectric constant one hundred times greater than that of SiO2?

2. A ceramic material has a piezoelectric coefficient of 250 pCN−1 and a dielectric constant of
500. A compressive stress of 5 MPa is applied across a 1 cm thick sample of the material.
Calculate the voltage that will develop across the sample.

3. Goldschmidt postulated that materials that adopt the perovskite structure arrange so that
“the number of anions surrounding a cation tends to be as large as possible, subject to
the condition that all anions touch the cation”. In this problem, we use this principle to
derive the Goldschmidt tolerance factor.

(i) Sketch a unit cell of a cubic perovskite ABX3 structure, placing the B cation at the
centre of the cell.

(ii) Let the lattice parameter of the cubic cell be a. Show that according to Goldschmidt’s
statement above, then:

a = 2(rB + rX), (4)

where rB and rX are the ionic radii of ions B and X, respectively.
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(iii) Show that according to Goldschmidt’s statement above, then:

√
2a = 2(rA + rX), (5)

where rA and rX are the ionic radii of ions A and X, respectively.

(iv) Therefore, show that for an ideal cubic perovskite, the Goldschmidt tolerance factor:

t =
rA + rX√

2 (rB + rX)
, (6)

is equal to 1.

(v) For BaTiO3, the ionic radii are rBa2+ = 1.75 Å, rTi4+ = 0.75 Å, and rO2− = 1.21 Å.
Calculate the Goldschmidt tolerance factor for BaTiO3 and discuss the result in
terms of the stability of cubic BaTiO3.

4. Consider a ferroelectric material whose free energy is given by:

F(P, T ) = a(T − Tc)P 2 +
b

2
P 4, (7)

where P is the polarisation, T the temperature, and a, b, and Tc are positive scalar param-
eters. This free energy provides a universal characterisation of ferroelectric-to-paraelectric
phase transitions.

(i) Find the extrema of the free energy with respect to P in the case when T > Tc and
sketch the resulting function.

(ii) Find the extrema of the free energy with respect to P in the case when T < Tc and
sketch the resulting function.

(iii) Calculate the polarisation P as a function of temperature T . What is the role of Tc?
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