
Materials for Devices: Problem Set 1

1. A capacitor is made of two parallel plates of surface area A and separated by a distance
L. It supports a charge Q on each plate (positive on one and negative on the other) and
an associated voltage difference V across the plates. The capacitance C of the capacitor
is defined as:

C =
Q

V
.

For a parallel plate capacitor, the charge density σ = Q
A on each plate is related to the

displacement field of the dielectric material between the plates through:

σ = |D|.

(i) Show that:

C = ε
A

L
,

where ε is the permittivity of the dielectric material between the parallel plates.

(ii) What is the capacitance of an empty parallel plate capacitor with plates of surface
area 500 mm2 and separated by 2.5 mm? If a potential difference of 10 V is applied
across the plates, what is the magnitude of the charge stored on each plate? And the
surface charge density?

(iii) Consider the insertion of SiO2 (κ = 4.52) between the plates. For the same applied
potential difference of 10 V, calculate the capacitance, the magnitude of charge stored
on each plate, and the surface charge density.

(iv) What is the polarisation of SiO2 in the setup above? Relate this polarisation to the
free charge that is present in an empty parallel plate capacitor.

(v) What would be the surface area of a new capacitor of the same capacitance and
thickness as the SiO2 capacitor above, but made from a ferroelectric material with a
dielectric constant one hundred times greater than that of SiO2?

Solution

(i) From electrostatics, the electric field across a parallel plate capacitor is constant and
related to the voltage difference as V = L|E|. Using this expression for the voltage,
together with the relation between charge and charge density, we obtain:

C =
Q

V
=

σA

L|E|
.

By definition, |D| = ε|E|, and for a parallel plate capacitor we also have σ = |D|, so
that we obtain:

C =
σA

LD
ε

= ε
σA

Lσ
= ε

A

L
.

This result implies that the capacitance of a parallel plate capacitor only depends on
the geometry of the capacitor and on the dielectric material between the conducting
plates.
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(ii) For an empty parallel plate capacitor, we have the permittivity of free space ε0, and
obtain the following capacitance in SI units:

C = ε0
A

L
= 8.854× 10−12 × 5× 10−4

2.5× 10−3
= 1.77× 10−12 F.

For an applied potential difference of 10 V, we obtain a stored charged equal to:

Q = CV = 1.77× 10−12 × 10 = 1.77× 10−11 C.

The resulting surface charge density is:

σ =
Q

A
=

1.77× 10−11

5× 10−4
= 3.54× 10−8 Cm−2.

(iii) The dielectric constant κ is related to the permittivity by κ = ε
ε0

. Let us label
quantities associated with an empty parallel plate capacitor with a zero subindex
and quantities associated with the same capacitor with a dielectric as usual. We
obtain:

C = ε
A

L
=

ε

ε0
ε0
A

L
= κC0,

Q = CV = κC0V = κQ0,

σ =
Q

A
=
κQ0

A
= κσ0.

Inserting SiO2 with κ = 4.52 as the dielectric, we obtain:

C = κC0 = 4.52× 1.77× 10−12 = 8.00× 10−12 F,

Q = κQ0 = 4.52× 1.77× 10−11 = 8.00× 10−11 C,

σ = κσ0 = 4.52× 3.54× 10−8 = 1.60× 10−7 Cm−2.

(iv) The magnitude of the polarisation is given by |P| = ε0|E|(κ − 1), and relating the
electric field magnitude to the potential difference through |E| = V

L , we obtain:

|P| = ε0
V

L
(κ− 1) = 8.854× 10−12 × 10

2.5× 10−3
× (4.52− 1) = 1.25× 10−7 Cm−2.

For a parallel plate capacitor, the total charge density is related to the displacement
field magnitude as σ = |D|. In turn, the displacement field is D = ε0E + P, so that
the total charge density can be expressed as:

σ = ε0E + P.

The first term provides an empty parallel plate capacitor contribution coming from
the free charge on the plates, and the second term quantities the changes induced by
the polarisation.

(v) Let the permittivity of SiO2 be εSiO2 and that of a ferroelectric material be εferro =
100εSiO2 . The surface area Aferro associated with the new setup can be related to the
original surface area ASiO2 through:

Aferro =
CL

εferro
=

CL

100εSiO2

= 10−2ASiO3 .

Therefore, the new surface area is 10−2 × 5× 10−4 = 5× 10−6 m2.
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2. A ceramic material has a piezoelectric coefficient of 250 pCN−1 and a dielectric constant of
500. A compressive stress of 5 MPa is applied across a 1 cm thick sample of the material.
Calculate the voltage that will develop across the sample.

Solution

The voltage associated with a piezoelectric sample of rectangular prismatic shape is ∆V =
dTL
ε , where d is the piezoelectric coefficient, T is the stress, L is the thickness, and ε is the

dielectric constant. Direct substitution of the values provided, using SI units, gives:

∆V =
250× 10−12 × 5× 106 × 10−2

500× 8.854× 10−12
= 2.82× 103 V.
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3. Goldschmidt postulated that materials that adopt the perovskite structure arrange so that
“the number of anions surrounding a cation tends to be as large as possible, subject to
the condition that all anions touch the cation”. In this problem, we use this principle to
derive the Goldschmidt tolerance factor.

(i) Sketch a unit cell of a cubic perovskite ABX3 structure, placing the B cation at the
centre of the cell.

(ii) Let the lattice parameter of the cubic cell be a. Show that according to Goldschmidt’s
statement above, then:

a = 2(rB + rX),

where rB and rX are the ionic radii of ions B and X, respectively.

(iii) Show that according to Goldschmidt’s statement above, then:

√
2a = 2(rA + rX),

where rA and rX are the ionic radii of ions A and X, respectively.

(iv) Therefore, show that for an ideal cubic perovskite, the Goldschmidt tolerance factor:

t =
rA + rX√

2 (rB + rX)
,

is equal to 1.

(v) For BaTiO3, the ionic radii are rBa2+ = 1.75 Å, rTi4+ = 0.75 Å, and rO2− = 1.21 Å.
Calculate the Goldschmidt tolerance factor for BaTiO3 and discuss the result in
terms of the stability of cubic BaTiO3.

Solution

(i) As an example, we consider the cubic perovskite phase of BaTiO3:

Ti4+

Ba2+

O2−

O2−

O2−

(ii) A straight line joining oxygens (X) at opposite faces of the cube and passing through
the central titanium (B) has length a. This line crosses a full O atom (half from each
side) and a full Ti atom, and according to Goldsmith’s statement it gives:

a = 2(rB + rX).

(iii) A straight line joining barium (A) atoms at diagonally opposite corners of a face of
the cube and passing through an oxygen (X) at the centre of the face has length√

2a. This line crosses a full O atom and a full Ba atom (half on each corner), and
according to Goldschmidt’s statement it gives:

√
2a = 2(rA + rX).
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(iv) Considering the two conditions for ideal packing for a cubic perovskite, we have:{
a = 2(rB + rX)√

2a = 2(rA + rX)

Removing a from these two equations leads to rA + rX =
√

2 (rB + rX) for an ideal
cubic perovskite. Therefore, the tolerance factor t = 1.

(v) The Goldschmidt tolerance factor for BaTiO3 reads:

t =
rBa2+ + rO2−√
2 (rTi4+ + rO2−)

=
1.75 + 1.21√

2 (0.75 + 1.21)
= 1.07.

This factor is larger than 1, indicating that the Ba2+ cations are too large for ideal
packing. As a result, the BaTiO3 structure is larger than ideal to be able to ac-
commodate the Ba2+ cations, leaving empty space around the comparatively smaller
Ti4+ cations. This leads to the Ti4+ cations being relatively free to move from their
ideal position at the centre of the octahedron, driving distortions from the ideal cubic
phase in BaTiO3.
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4. Consider a ferroelectric material whose free energy is given by:

F(P, T ) = a(T − Tc)P 2 +
b

2
P 4,

where P is the polarisation, T the temperature, and a, b, and Tc are positive scalar param-
eters. This free energy provides a universal characterisation of ferroelectric-to-paraelectric
phase transitions.

(i) Find the extrema of the free energy with respect to P in the case when T > Tc and
sketch the resulting function.

(ii) Find the extrema of the free energy with respect to P in the case when T < Tc and
sketch the resulting function.

(iii) Calculate the polarisation P as a function of temperature T . What is the role of Tc?

Solution

(i) The extrema of a function are given by the points at which its first derivative vanishes.
In our case, the derivative of the free energy with respect to polarisation is:

∂F
∂P

=
∂

∂P

(
a(T − Tc)P 2 +

b

2
P 4

)
= 2a(T − Tc)P + 2bP 3.

Therefore, the condition for extrema of the free energy with respect to polarisation
is:

2a(T − Tc)P + 2bP 3 = 0.

This equation has two possible solutions:{
P = 0

P 2 = −a
b (T − Tc)

For T > Tc, the second solution is not a physically valid solution as the right hand
side becomes negative. Therefore, the only solution in this case is P = 0.

To establish the nature of this extremum, we can evaluate the second derivative:

∂2F
∂P 2

=
∂

∂P

(
2a(T − Tc)P + 2bP 3

)
= 2a(T − Tc) + 6bP 2.

At the extremum, we get:

∂2F
∂P 2

∣∣∣∣
P=0

= 2a(T − Tc) > 0.

Therefore, the extremum is a minimum. The resulting sketch of the free energy
for T > Tc is shown in the Figure below. The free energy has a single minimum
corresponding to P = 0, indicating that it is describing the high temperature non-
polar phase.

(ii) For T < Tc, all solutions are now physically valid:{
P = 0

P 2 = −a
b (T − Tc) =⇒ P = ±

√
−a

b (T − Tc)

and we end up with three extrema. To determine their nature, we now get:

∂2F
∂P 2

∣∣∣∣
P=0

= 2a(T − Tc) < 0,
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which corresponds to a maximum; and:

∂2F
∂P 2

∣∣∣∣
P=±
√

−a
b
(T−Tc)

= 2a(T − Tc) + 6b
(
−a
b

(T − Tc)
)

= 2a(T − Tc)− 6a(T − Tc)
= −4a(T − Tc) > 0,

which correspond to minima. The resulting sketch of the free energy for T < Tc
is shown in the Figure below. The free energy has two minima corresponding to
polarizations of non-zero magnitude of opposite signs. This free energy describes the
low temperature polar phases.
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(iii) The polarisation is given by:

P =

{
0 for T > Tc,

±
√
−a

b (T − Tc) for T < Tc.

The Figure below shows a sketch of the polarisation as a function of temperature,
clearly highlighting how Tc is the transition temperature marking the ferroelectric-
to-paraelectric boundary.
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