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s state �realisation of a random variable�

t tsp or a priori ptsp tour

tMC time measured in Monte Carlo steps

T connection matrix for tsp or a priori ptsp tour T

Te e�ective temperature

u pruned ptsp tour

U connection matrix for pruned ptsp tour u

xix



nomenclature

Vn
����

���
value assoc� with all future descendent actions from a

stage n state �Ch� �� or

�value assoc� with all future descendent nodes from a

level n node �Ch� ���

x random cost associated with a node

z number of daughter nodes descending from parent node

�e e�ective inverse temperature �
kTe

�s e�ective inverse temperature assoc� with stochastic annealing

� mean of random costs associated with nodes

�A mean of cost H

�� mean of �H and �Hn

	A number of an ensemble of systems in state A

�A standard deviation of HA

��H

standard deviation of �H

�n�H

standard deviation of �Hn

Tie Knots

b knot balance

F�r number of walks beginning with �l and ending with �r� etc�

h half
winding number �number of moves�

fh� �g knot class

K�h� number of knots as a function of h

K�h� �� number of knots in a class

n number of random walk steps

r� c� l random walk axes

�r� �c��l random walk steps

R�C�L knot regions

R�� R�� C�� C�� L�� L� knot moves

s knot symmetry

Un probability of occupation after n steps

� number of center moves or center steps

��� knot directions

� triagonal basis about which tie is wound

xx

INVERSE PROTEIN FOLDING�

HIERARCHICAL OPTIMISATION

AND TIE KNOTS



Chapter �

Introduction

Geroi� I e moei� povesti� kotoro go � l�bl� vsemi sil�

ami duxi� kotorogo starals� vosproizvesti vo vsei� kra�

sote ego i kotoryi� vsegda byl� estI i budet prekrasen

� pravda�

leo tolstoy

Sevastopol in May

T
his dissertation is composed of three parts inverse protein

folding� hierarchical optimisation and tie knots� Chapters � �

	 describe inverse folding� the design of proteins which quickly and

stably fold to speci�ed target conformations� In Chapters � � �� we

introduce hierarchical optimisation� a generalisation of conventional

optimisation in which the solution must be determined stage
wise in

light of successive information learnt� We provide a mathematical

model of necktie knots in Chapter ��� with the express intention of

recovering the traditional� and predicting new� aesthetic tie knots�

Here we summarise each of the chapters and outline their inter


relationships within each part� Portions of this dissertation have been

published or are intended for publication� the �nal section relates

chapters to manuscripts�

��� Inverse Protein Folding

We review in Chapter � the development of protein folding and de


sign� which has occurred almost entirely during the last four decades�

Central to recent theoretical advances are the conformational energy

landscape and lattice models of proteins� We present the statistical

mechanical interpretation of protein folding a�orded by the energy
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landscape picture and consider its topographic structure� Landscapes

associated with the kinetic and free energy barriers impeding stable�

fast folding are identi�ed and serve to indicate ideal protein land


scapes�
In Chapter � we �rst examine lattice models of proteins� which

contain the fundamental attributes of proteins in the absence of bio


logical periphery� We describe lattice folding dynamics and introduce

an analytic representation of lattice proteins� both of which are used

extensively throughout this dissertation� We then review thermody


namically oriented sequence selection� an important method of protein

design for lattice proteins� Sequences made to be thermodynamically

stable in a desired target conformation are observed in simulation to

fold more quickly to the target as well�

In Chapter � we characterise protein folding by thermodynamic

stability and kinetic accessibility of the native state� which are the

benchmarks of a sequence determined by successful design� The re


lationship between folding speed and stability is captured by the

accessibility
stability phase space� These qualities� observed through

folding simulation to be correlated in Chapter �� are shown to be in

con�ict near the extremes of either� It is demonstrated� in particular�

that thermodynamically oriented sequence selection does not favour

optimal accessibility�

In Chapter � we interpret the ability of a protein to organise itself

from any of the set of unfolded conformations into a unique folded

structure as pattern recognition� Accordingly� proteins designed to

recognise multiple independent conformations correspond to conven


tional associative memories� We propose a multiple target training

scheme and calculate the maximum number of structures a sequence

can be trained to simultaneously recognise� Driving the protein to


ward capacity incurs a loss of stability of the target structures such

that at saturation recall becomes fragmentary�

Continuing from Chapter �� we consider in Chapter � the weighted

recognition of correlated targets with the intent of introducing a funnel

of low energy structures sloping toward a single desired conformation�

For our target patterns we choose the conformations sampled in un


folding� which we propose designate the folding paths of least kinetic

�

introduction

constraint� We derive an analytic bound on the basin of attraction

such that the desired conformation is a free energy minimum� along

with the capacity result from Chapter �� this suggests a limit to the

extent to which we can manipulate the conformational energy land


scape�
We present in Chapter 	 a method of kinetically oriented sequence

selection whereby sequences are optimised explicitly with respect to

folding time� Since protein folding is a statistical event� ordering se


quences according to folding ability requires knowledge of the distri


bution of folding times� which we estimate� By analogy with simulated

annealing� we use the uncertainty in folding time measurements in a

controlled way to avoid trapping in locally� but not globally� optimal

sequences�

��� Hierarchical Optimisation

In Chapter � we generalise conventional optimisation to include prob


lems whose solutions must be determined stage
wise in the light of

information learnt at each level� Key to hierarchical optimisation is

the balance of local optimality against minimising expected cost over

the set of possible futures� Problem complexity may result from one or

more individually di�cult decisions or emerge from the concatenation

of many elementary decisions� We conclude the chapter by deriving

the general optimality equation� which we apply to model problems

in Chapters � and ���

We introduce in Chapter � stochastic annealing� the analogue of

simulated annealing for two
stage hierarchical optimisation problems�

Outlined for kinetically oriented protein design in Chapter 	� the al


gorithm may be applied to any optimisation problem in which the

cost function is a distributed �random� variable� We show that re


peated application of the transition probability closely approximates

a thermal distribution of solutions� The algorithm is used to solve the

probabilistic traveling salesman problem� a central problem of proba


bilistic optimisation�

We consider in Chapter �� a model hierarchical optimisation prob


lem consisting of many elementary decisions which must be made in

�
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anticipation of future information learnt� The problem may be inter


preted as a model of economic growth� the decision to buy representing

investment in future return in the form of negative costs� The optimal

decision policy� which may be framed as a novel form of percolation

through a decision tree �Bethe lattice�� exhibits a phase transition and

�nite size scaling�

��� Tie Knots

Necktie knots� the subject of Chapter ��� are inherently topological

structures� what makes them tractable is the particular manner in

which they are constructed� This observation motivates a map be


tween tie knots and persistent random walks on a triangular lattice�

The topological structure embedded in a tie knot may be determined

by appropriately manipulating its projection� we derive the corre


sponding grammar for tie knot sequences� We classify knots according

to their size and shape� measured by the half
winding number and the

number of center moves� and provide an expression for the number of

knots in a class� Aesthetic knots are characterised by the conditions

of symmetry and balance� Of the �� knots which may be tied with a

conventional tie� we recover the four traditional knots �Four
in
Hand�

Half
Windsor� Windsor and Pratt� and introduce six new aesthetic

ones�

��� Schematic Organisation

The organisation of inverse protein folding is schematically outlined

in Figure ���� hierarchical optimisation and tie knots are included in

Figure ����
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��� Publications

Parts of this dissertation have been published or are intended for pub


lication as follows�

Ch� � Thomas M� Fink and Robin C� Ball� �Robustness and Ef


�ciency in Inverse Protein Folding�� Physica D ���� ���

����	��

Ch� �� � Thomas M� Fink and Robin C� Ball� �Inverse Protein Fold


ing as an Associative Memory�� submitted to Physical Re�

view Letters ����	��

Ch� 	 Thomas M� Fink and Robin C� Ball� �Kinetically Oriented

Sequence Selection�� for Physical Review Letters �������

Ch� � Thomas M� Fink and Robin C� Ball� �Hierarchical Opti


mization Problems�� in preparation ����	��

Ch� � Robin C� Ball and Thomas M� Fink� �Stochastic Anneal


ing�� for Physical Review Letters �������

Ch� �� Thomas M� Fink and Robin C� Ball� �Exactly Solvable Hi


erarchical Optimization Problem Related to Percolation��

Physical Review Letters ��� ���	 �������

Ch� �� Thomas M� Fink and Yong Mao� �Tie Knots and Random

Walks�� Nature� in press �������

Ch� �� Thomas M� Fink and Yong Mao� �A Mathematical Theory

of Tie Knots�� submitted to J� Phys� A �������
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Chapter �

Protein Folding� Inverse Protein

Folding and Energy Landscapes

But in what shape they choose�

Dilated or condensed� � �

Can execute their aery purposes�

john milton

Paradise Lost

C
urrent understanding of protein folding was borne out of

reconciling experimental evidence that proteins fold reversibly

with the well accepted notion that they fold quickly� Only recently

have similar advances occurred in inverse protein folding� Understand


ing of both is facilitated by the notion of the conformational energy

landscape and the statistical mechanical interpretation of folding on it�

Typical landscapes are rugged and exhibit topographic features which

impede stable� fast folding exhibited by biological proteins� both real

and successfully designed proteins require special energy landscapes�

��� Protein Folding

The foundations of protein folding began in the early ����s when

An�nsen et al� �� showed that proteins can fold reversibly� Under

thermodynamic control� they observed the denaturation �unfolding�

of a compact protein into a random coil of amino acids and the spon


taneous assembly back to its original con�guration �see� e�g�� Figure

����� Two conclusions could be drawn �� proteins organise them


selves without assistant machinery into one of a myriad of possible

folding� inverse folding and energy landscapes

Figure ���� Top� Atomic representation of the protein crambin ���

amino acid residues	� The linearly connected nature of the structure

is not apparent� Bottom� The same protein with only the �
carbon

backbone visible�

��
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conformations� �� the native conformation� of the heteropolymer is

thermodynamically stable and� accordingly� the global minimum of

the free energy landscape�

An�nsen�s revelation was at odds with the common view at the

time� that proteins fold along a well
de�ned reaction pathway� Pro


teins were� after all� the product of a chemical reaction and should

be expected to react accordingly� Pathway models dictate that the

unfolded conformation must sequentially traverse a series of interme


diate con�gurations before �nally arriving at the folded conformation�

in which intermediate Ik is in chemical equilibrium with intermediates

Ik�� and Ik��� Schematically� this is written as

U � I� � � � �� In � F � �����

where U is the unfolded �denatured� state and F the fully folded state�

The classical view of pathways meant that proteins travel quickly

downhill toward the local �and presumably global� minimum corre


sponding to the folded state along a set itinerary� The observation of

thermodynamic reversibility implied that proteins seek out the global

minimum along a path directed as much by thermal �uctuations as

by the local gradient� These two views became known as kinetic and

thermodynamic control�

The path
dependence of kinetic control and path
independence of

thermodynamic control are clearly incompatible� The essential im


pediment to accepting the thermodynamic view is the exponential

size of the conformational landscape which the protein must explore�

It would seem that a proportionally long search time would be neces


sary for it to �nd its ground state structure� If each additional amino

acid can take on� say� two orientations with respect to the polypep


tide chain� then the number of conformations available to a ��� amino

�The ground state of a protein is the minimum energy conformation in which

the protein spends the greatest time at equilibrium� The native state is the most

occupied conformation on the time scale of the functional life of the protein� If

this time is less than that necessary for the protein to reach equilibrium from its

denatured state� the native and ground states may di�er� However� it is believed

in Nature that these two conformations are generally equivalent� Unless otherwise

stated� we use the two terms interchangeably�
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acid protein is ����� Assuming �conservatively� the protein explores

one conformation every picosecond �� � the time necessary to �nd a

particular conformation would take ���� s�� comparable to the age

of the universe� But proteins fold in times on the order of millisec


onds� not years �for a biological overview of protein folding� see �� ��

How can a protein navigate a vast landscape without a set path yet

still �nd its target quickly! This apparent contradiction� posed by

Cyrus Levinthal ��� in the late ����s and since coined the "Levinthal

paradox�� began the extensive search for folding pathways via fold


ing kinetics experiments� Only recently has a new understanding of

protein folding based on the statistical mechanical interpretation of

folding on an energy landscape come to view�

The paradox rests on the assumption that the unfolded state U

in ����� from which the reaction begins is unique� But the denatured

state is not a single conformation � it is all conformations apart

from the folded state� Since the unfolded conformation is really a

distribution over the entire conformation space� an ensemble of folding

proteins requires an ensemble of independent folding pathways� These

pathways will converge and intertwine and eventually coalesce as they

approach the native conformation� all along traveling further downhill�

Of course� this picture has more to do with the thermodynamic

exploration of an energy landscape funnel than with a well de�ned

pathway� We are led to reject the view that proteins travel along a

single deterministic pathway and instead consider the new statistical

view of proteins scattered about the energy landscape making their

way toward the funnel� Proteins navigate the landscape in ways that

bring them downhill� all the while being bu�eted by Brownian motion�

occasionally knocking them uphill as well�

��� Inverse Protein Folding

The self
organisation of a denatured sequence to its native conforma


tion� discussed in the previous section� has received signi�cant recent

attention ��� �� � � Here we ask how the requisite sequence emerges

from the functional need for the conformation via evolution �or any

other method of sequence selection�� The answer to this question is

��
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the objective of inverse protein folding�

The natural end of inverse protein folding is the prediction of sta


ble� fast folding amino acid sequences which fold in situ to biologically

useful target conformations� Proteins are densely packed macromole


cules which function primarily by topographic surface recognition� ac


cordingly� proteins should be designed to match the surface topogra


phy of their intended targets�

In Chapters � � 	 we attempt to do just this� Along the way

we answer questions such as �� Is the inverse problem well posed�

We want to design proteins to fold to arbitrary �compact� conforma


tions� Are protein targets limited in practise to those conformations

to which some sequence can fold! �� Are biological proteins special�

In the previous section we saw that biological proteins fold to sta


ble native conformations over short times scales� Is this typical of all

proteins or does stable� fast folding occur for exceptional sequences

only! �� How do we select a sequence to fold �quickly and stably� to a

target� Since the number of sequences grows exponentially� selecting

for folding performance by exhaustion quickly becomes prohibitive�

What properties of sequences correlate to folding ability!

Inverse protein folding inevitably tells us about the forward folding

problem as well� To design sequences which successfully fold to their

targets� we must understand what characterises good folding� on the

one hand� and how such such sequences are selected� on the other�

Folding ability may depend on our method of selection � and the

size of the space we select from � in surprising ways�

The collapse of a linear chain of structural building blocks is an

e�ective method of constructing complex macromolecules� Not sur


prisingly� ideas useful in protein design have applications outside their

original context� such as the design of drugs and enzymes� Much of

what we have to say applies to the engineering of useful heteropoly


mers in general�

��� Energy Landscapes

Protein folding and design are best understood within the framework

of the energy landscape� the energy of a protein as a function of the

��
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individual atomic coordinates �Figures ��� � ����� The landscape o�ers

many levels of description� what we see depends on the resolution

at which it is examined� Our aim is to survey the landscape on a

scale such that protein folding dynamics may be resolved but surface

variations peripheral to folding remain coarse grained�

To this end� we divide the degrees of freedom of the protein into

two sets� The �rst contains the dihedral bond angles 
�� ��� 
�� ��� � � � �


N � �N �Figure ���� along the peptide backbone� Into the second set

we place everything else hydrogen bonding� torsion angle energies�

rotations of individual side chains� etc� We label the �rst set confor


mational freedom and the second set internal freedom�

The internal degrees of freedom allow typical free energy changes

on the order of kBT � comparable to the thermal energy of individual

atoms of the system� Since these �uctuations are peripheral to folding

dynamics� we average over the free energy of the internal freedom

available to a particular conformation� Accordingly� the vertical axis

of the energy landscape represents the conformational energy of a

unique backbone con�guration plus the mean internal free energy of

that con�guration� We refer to this quantity simply as the energy E�

The many lateral axes of the energy landscape represent the �N

conformational degrees of freedom� Each con�guration is represented

by a point on the conformation space such that similar conformations

are nearby� Since each additional link in the protein chain brings

with it two additional degrees of freedom� the number of available

conformations grows exponentially with chain length� For moderate

N � the space of possible conformations is very large indeed�

The macroscopic properties of an ensemble of proteins at equilib


rium are governed by thermodynamics� Equilibrium implies a distri


bution of conformations such that the probability of occupation at

�nite temperature is proportional to the Boltzmann factor� exp� �EkBT
��

where T is the temperature and kB is Boltzmann�s constant� Accord


ingly� an ensemble of identical sequences will distribute itself such

that� while some proteins are to be found on all parts of the land


scape� greater fractions lie at lower elevations� in proportion to the

Boltzmann factor� We say that a con�guration is thermodynamically

stable if at any one time a macroscopically signi�cant fraction of the

��
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Figure ���� Top� Chemical diagram for a four amino acid fragment

of protein� Bottom� Corresponding structural degrees of freedom

along the backbone� Each �
carbon is doubly bonded along the

backbone� about each of which protein segments may rotate freely�

ensemble is found there�

The return to equilibrium of an ensemble of proteins �protein fold


ing� is described by kinetics� which describes the passage through

phase space from isolated to densely populated regions� In the lan


guage of the energy landscape� kinetic evolution depends on the local

topographic features which must be traversed and surmounted� Rough

landscapes make direct navigation toward the ground state di�cult

proteins are likely to get lost along the way and must travel nearly as

much uphill as downhill� both of which e�ect slow folding� Ground

state conformations readily visited by a non
equilibrium ensemble of

��
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proteins are said to be kinetically accessible�

��� Smooth vs� Rugged Landscapes

The roughness of an energy landscape may be quanti�ed by the pres


ence of structural hierarchy within a closed contour of constant el


evation� there exist several closed contours of lower elevation� within

each of which are more contours of lower elevation� etc� Landscapes

characterised by a hierarchy of sub
valleys within valleys are said to be

rugged� trivially hierarchical landscapes� in which each closed contour

contains not multiple but a single closed contour of lower elevation�

are called smooth�

Deterministic �downhill� dynamics on a rugged landscape yields

a myriad of local minima nearby in energy but conformationally dis


tant and not related by any symmetry� An ensemble of systems on

this landscape shows little preference for the ground state� Similar

di�culties can face stochastic systems �say� in thermal equilibrium

at �nite temperature� operating on a rugged landscape below the

glass transition temperature� mobility slows to unrealistic time scales

and the system becomes e�ectively non
ergodic� This corresponds to

deterministic exploration on a still rugged free energy landscape�

The conformational energy landscape of a protein is heavily con


strained by the self
avoiding and non
crossable nature of the protein�

To pass to a conformationally near but topologically distant confor


mation� the protein must swell and recollapse� overcoming a large

energy barrier� Within these topological boundaries� the folding of

a random protein sequence also exhibits frustration� the inability of

chain segments to cooperatively align� Together� these suggest that

the conformational landscape of a typical sequence is indeed rugged�

which is generally �e�g�� �� � thought to be the case�

��� Folding Funnels and Free Energy Traps

Topographic features of the conformational energy landscape deter


mine the pro�ciency with which proteins fold to their native conforma


tion� Low energy minima away from the ground state or entropically

�	
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Figure ���� A heteropolymer conformational energy landscape� The

well above the ground state is narrow and the global minimum is

only marginally deeper than distant local minima� The ground

state is neither easily accessible nor thermodynamically stable�

groundΓgroundΓgroundΓ

E
ne

rg
y

Conformation

E
ne

rg
y

Conformation

E
ne

rg
y

Conformation

Figure ���� A rugged landscape with a single deep minimum pro


vides thermodynamic stability but takes no measure to insure the

ground state is kinetically accessible�
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favourable plateaus act as free energy traps by prohibiting occupation

of the ground state minimum� Valleys and mountains acting collec


tively in place of a broad funnel slow folding kinetics by trapping in

local minima before imposing slow uphill climbs�

The energy landscape� of a random heteropolymer� shown in Fig


ure ���� contains all of the ingredients detrimental to stable� fast fold


ing� A hierarchy of valleys makes the ground state conformation only

marginally lower in energy than quasi
degenerate local minima� which

act as energetic traps by housing misfolded proteins� The absence of

a steep gradient sloping toward the target slows navigation� like on

a �at energy surface� proteins must meander through the landscape

without guidance�

The more hospitable energy landscape shown in Figure ��� con


tains a single deep minimum above the ground state conformation

separated by a large gap from the set of non
native structures� While

this makes the target thermodynamically stable� it takes no measure

to ensure that it is accessible kinetically� A signi�cant fraction of an

ensemble of proteins will� at equilibrium� reside in the target con�gu


ration� but the ensemble will take a very long time to equilibrate�

Stable folding not only requires a large energy gap � conforma


tional entropy may reduce stability as well� This is observed� for

example� on the champagne glass landscape �� in Figure ���� After

traveling down the initially steep basin toward the ground state� pro


teins meander aimlessly along the shallow ridge before discovering the

well above the target� At any time in equilibrium� most of the chains

are found along the shallow plateau� where there are many more ac


cessible conformations at a disproportionately small cost in energy�

An ideal folding landscape� drawn in Figure ���� is characterised

by a deep� broad funnel centered about the ground state conforma


tion� As proteins fall to lower energies� the conformational freedom

is reduced such that between a near
native con�guration � and a less

�Our energy landscape schematics may be misleading� Real protein landscapes

are �N �dimensional and contain many features not found in one dimension� such as

saddles� moats� cul�de�sacs and other structures not expressible in low dimensions�

Especially important is the signi�cantly greater number of ways of getting from one

point on the landscape to another� Accordingly� landscape schematics shown here

should be thought of as slices through more realistic high�dimensional landscapes�

��
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Figure ���� The champagne glass energy landscape illustrates how

conformational entropy can lead to a free energy barrier to stable

folding� A signicant fraction of proteins� at any given moment�

aimlessly wanders about the shallow plateau�
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Figure ���� An ideal funnel landscape� The ground state conforma


tion may be reached from all denatured conformations quickly and

without free energy barriers�
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near con�guration ��

�G � �E � T�S � �� �����

where �G � G� �G�� etc� This simply says that the funnel is every


where su�ciently steep such that the loss in entropy is overcome by

the decrease in energy�

��



Chapter �

Lattice Models and

Thermodynamic Sequence Selection

The temperature of Heaven can be rather accurately computed�

Our authority is Isaiah ������ �Moreover� the light of the Moon

shall be as the light of the Sun and the light of the Sun shall be

sevenfold� as the light of seven days�� Thus Heaven receives from

the Moon as much radiation as we from the Sun� and in addition ��

times as much as the Earth from the Sun� �� times in all� Using the

Stefan
Boltzmann law for radiation� �H�E	� � ��� where E is the

absolute temperature of the earth� gives H as ��� �C� The exact

temperature of Hell cannot be computed� � � � �However� Revelation

���� says �But the fearful� and unbelieving� � � shall have their part

in the lake which burneth with re and brimstone�� A lake of

molten brimstone must be at or below �its� boiling �temperature��

����� �C� We have� then� that Heaven� at ��� �C� is hotter than

Hell at� ��� �C�

Applied Optics

B
iologically realistic protein models have yet to prove to

be e�ective in the study of protein folding and design� In this

chapter we consider a lattice model of proteins� later used extensively

in folding simulations and analytic models� and discuss its scope and

limits� Here we outline lattice folding dynamics and de�ne an analytic

representation of lattice proteins� We then review a method of protein

design based on selecting sequences that are thermodynamically sta


ble in the target conformation� Model proteins fold from denatured

states to their target conformations in much less time than random

heteropolymers need to reach their ground states�

lattice models and thermodynamic sequence selection

Figure ���� Proteins may be represented by self
avoiding walks on

an innite �
dimensional cubic lattice� Shown here is a compact

��
mer�

��� Lattice Models

The simulation of protein dynamics� as well as mathematical mod


els describing the statistical properties of proteins� are impeded by

the complex atomic structure of the protein chain� Detailed com


puter modelling �e�g�� molecular dynamics� remains computationally

infeasible and mathematical analysis is intractable in the absence of

any symmetries� It appears� nevertheless� that much of the biolog


ical detail is peripheral and that the underlying physics driving the

spontaneous organisation of proteins applies universally to linear het


eropolymers� Physicists are led to consider simple exact models of

proteins in which this fundamental behaviour might become appar


ent�
We represent proteins as self
avoiding random walks on an in�nite

�
dimensional cubic lattice �Figure ����� Vertices indicate amino acids

and edges represent the peptide chain� The continuous degrees of free


dom provided by the dihedral angles are replaced by the z available

discrete steps along the lattice axes� where z is the lattice coordi


nation number� Intra
chain interactions occur according to a nearest


neighbour pair potential� in which amino acids are considered isotropic

beads� or monomers�

��
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While lattice models lack atomic detail� they contain the funda


mental microscopic attributes of proteins linear connectivity� chain

�exibility� excluded volume and sequence dependent intra
chain inter


actions �� � The most apparent limitations of lattice proteins are the

arti�cial discrete degrees of freedom and the short range and isotropic

nature of the interactions�

Direct comparison of the degrees of freedom of on
 and o�
lattice

�biological� proteins is not insightful� while o�
lattice bond rotations

allow a continuous range of orientations� more relevant is the number

of local minima through which these orientations pass� This quan


tity estimates the conformational freedom per monomer� it and its

lattice counterpart � �introduced in Chapter �� provide a more equi


table comparison� Nor do the di�erent degrees of freedom signi�cantly

e�ect macroscopic conformations� the down
chain orientation correla


tion diminishes exponentially for both models�

For maximally or near
maximally compact conformations�� in

which steric e�ects are the dominant interaction� nearest neighbour

interactions are suitable approximations to the amino
acid residue po


tential� More open conformations� in which the number of amino acids

composing the force �eld is much greater than z� of course rely on the

tails of the biological potentials� However� such structures are much

less thermodynamically stable than their compact counterparts and

are not observed in the native states of biological proteins �	 �

A set of anisotropic potentials not �xed in orientation with respect

to the peptide chain provides similar means of reducing frustration

as a larger alphabet of isotropic amino acid species� For example�

a bead with di�erent potentials on either hemisphere� when rotated

by � appears to its neighbours to be an altogether new species� In

Nature� however� amino acids are rigidly connected to the backbone

and the chain must recon�gure to make use of the additional variety�

receiving little loss in frustration� The use of isotropic interactions to

approximate anisotropic potentials therefore need not worry us�

As discussed in Chapter �� the smallest scale features of the protein

energy landscape correspond to conformational changes not along the

�When the context is clear� we use the terms protein� sequence� conformation�

etc�� to refer to their respective biological or lattice counterparts�
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protein polypeptide backbone� These �uctuations are typically of the

order kBT �� � the thermal energy of the atoms themselves� Lattice

models avoid computation on this scale by neglecting atomic detail�

capturing solely the more thermodynamically relevant conformational

changes along the peptide chain� It is this reason especially that makes

simulation of large lattice proteins computationally feasible�

Unlike their biological counterparts� lattice proteins are amenable

to analytic analysis resulting from incorporated symmetries� These

include the isotropy of the amino acid potentials and excluded vol


umes� the constant bond length and the discrete degrees of freedom�

In practice� this means we need to integrate over fewer variables �in

the case of simulation� less phase space must be explored�� These

simpli�cations allow the application of analytic techniques borrowed

from other phenomena governed by complex energy landscapes� e�g��

spin glasses and neural networks�

��� Folding Dynamics

The folding of lattice proteins described above amounts to exploration

of the ensemble of self
avoiding walk �saw� con�gurations� The sam


pling must be ergodic �all conformations can be explored� and satisfy

detailed balance �a transition and its reverse are equally probable��

as well as de�ne a sensible measure on the conformation space� This

measure should re�ect the physical view that proteins fold to con


formationally similar structures in less time than conformationally

distant con�gurations� It may be achieved by sampling� at any one

time step� from among conformations derived from spatially localised

perturbations only�

We fold proteins according to above by the repeated application

of the move set containing end bends� corner �ips and crankshaft mo


tions �Figure ����� the dynamics are typi�ed in Figure ���� This set

respects linear connectivity and is applied such that the condition of

excluded volume is maintained� Each move satis�es detailed balance

and� apart from a vanishingly small number of pathological con�gura


tions �e�g�� a �gure eight with both holes plugged by the chain ends��

the move set is ergodic� We observe self
avoiding walk statistics at

��
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Figure ���� Spontaneous folding of a ��
mer trained to compact tar


get conformation� Top� Denatured protein at innite temperature�

Folding begins at nite temperature� Left� Intermediate collapsed

state� Right� Mirror image of desired target conformation� Since

there are no chiral interactions� chirality of target is not preserved�

��
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Figure ���� Move set for the simulation of a protein on a cubic

lattice� From left� end bends� corner �ips and crank
shaft motions�

in�nite temperature�

At �nite temperature� the protein has a preference for low energy

con�gurations� and the sampling must be biased with respect to en


ergy accordingly� This is achieved by the application of the Metropolis

algorithm� in which moves are conditioned by an acceptance proba


bility dependent on the resultant change in energy� Let P�� be the

probability of a transition �selected� say� from the move set above�

from conformation � to conformation �� it must satisfy

P�� �
�

�� �E � ��

exp���EkBT
�� �E � �� �����

where �E is the change in energy� T is the temperature and kB is

Boltzmann�s �or some suitably rede�ned� constant� The repeated ap


plication of ����� gives rise to a Boltzmann distributed ensemble of

conformations�

��� Analytic Representation

A protein conformation may be represented by its contact map� which�

for an N 
monomer sequence� consists of an N �N symmetric matrix

C with Cij � � if the ith and jth monomers are nearest neighbours

and Cij � � otherwise �Figure ����� The contact map is symmetric

with zeroes along the diagonal �the ith monomer cannot be its own

neighbour� and ones along the remaining tri
diagonals �due to back


bone interactions�� For a compact �maximally bonded� conformation�

�	
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the contact map is believed to be �though we know of no proof� a

unique representation� More open conformations� however� may have

degenerate maps� completely open conformations� for example� have

no bonds apart from along the backbone�

Each monomer can take on one of A species� where A is the size

of the amino acid alphabet� These species interact according to an

A�A pair potential U �e�g�� Figure ����� the ����� potential derived

in ��� from the distribution of contact energies in native proteins is

typical� The interactions available to a particular protein sequence

are conveniently expressed by the N � N extended pair potential �U

�Figure ����� where �Uij is the interaction energy of the ith and jth

monomers according to their species Si and Sj� i�e�� �Uij � USiSj �

As indicated by the contact map� only bonds between monomers of

opposite parity are topologically possible�

The energy of a protein sequence S embedded in conformation �

may be compactly expressed

E�S��� �
�

�
NX

ij��
C�ij
�USij � �����

where C� is the contact map corresponding to � and �US is the ex


tended pair potential associated with S�

2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1

Figure ���� Left� An � monomer protein in a compact � � � � �

conformation �� Right� The corresponding �� � contact map C�
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Figure ���� Left� An � monomer sequence S composed of � species�

with the � � � pair potential U below� Right� The corresponding

�� � extended pair potential �U � Only bonds between monomers of

opposite parity are topologically possible on a cubic lattice�

��� Shakhnovich Selection Scheme

As suggested in Chapter � and considered in detail in Chapter ��

successful protein design relies on two conditions thermodynamic

stability and kinetic accessibility of the target conformation� In the

language of energy landscapes� the target con�guration must be a

global minimum su�ciently deep such that there exists a large gap

between the native and set of non
native states and this target must

lie at the bottom of a funnel of conformations sloping toward it�

The construction of a basin of attraction centred about the tar


get conformation has proved to be a challenging task� As yet there

exists no function of the target coordinates which �when extremised�

yields a sequence whose energy landscape possesses this topography�

We discuss two fundamentally di�erent approaches to this problem in

Chapters � and 	� in the meantime� we look to stability instead�

Ensuring that the target state is a deep global minimum in the

space of conformations is relatively simple� Shakhnovich ��� intro


duced a straightforward selection algorithm in which the energy of a

protein embedded in the target conformation is minimised over se


quence space� He demonstrated� via simulation of lattice proteins�

that a sequence trained� in this manner repeatedly folds back to its

�We refer to the selection of a sequence on its apparent ability to fold to a

speci�ed target conformation as training�
��
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target conformation �Figure �����

��� Minimisation of E

A sequence S is said to fold to a conformation �target if �over all

conformations� S minimises its energy� Let the folding function F

map a sequence to the conformation to which it folds� The condition

for folding may be compactly expressed

F �S� � �target � E�S��target� � min
�

�E��jS� � �����

That S folds to �target is� of course� no guarantee that S is thermo


dynamically stable in �target� this depends on the folding temperature

and the gap between �target and the set of non
native conformations�

It simply ensures that� after a long time� it will have spent more time

there than in any other conformation�

Shakhnovich ��� observed in folding simulations that if Sdeep is a

deep local minimum in �target with respect to sequence� then �target

is the global minimum of Sdeep with respect to conformation� In the

language of ������
d
S

eep�E�Sj�target� � min
�

�E��jSdeep� � �����

and hence

E�Sdeep��target� � min
�

�E��jSdeep� � �����

from which it follows that Sdeep folds to �target�

Equation ����� can be qualitatively understood as follows� Divide

the space of possible compact structures into two sets those which

are conformationally near to the target and the much larger set of

structures which are conformationally distant� Since the trained se


quence is selected on the basis of reducing the energy of the target� the

energies of the �rst set become increasingly deep as the conformations

approach the target�

��
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The trained sequence is not correlated with conformations in the

second set� consequently� the statistics of the energy behave as though

it were a random heteropolymer �� � Under certain conditions of the

interaction matrix �Ch� � and the amino acid alphabet size �Ch� � �

the �uctuations in energy away from the target conformation remain

above the energy of the target� Accordingly� the target conformation

coincides with the ground state conformation�

The Shakhnovich training scheme� apart from selecting sequences

which fold to desired �compact� targets� is noteworthy for two reasons�

Perhaps not surprisingly� trained sequences provide a signi�cant gap

between the energies of the native and set of non
native conforma


tions� This means that at a temperature above the glass transition

temperature Tc� the target conformation is thermodynamically sta


ble� Below Tc� where any ground state can be made to be stable�

the ruggedness of the energy landscape dominates the kinetics and

exploration becomes extremely slow�

Thermodynamic stability without kinetic accessibility does not

save us from the Levinthal paradox � golf
course landscapes are as

di�cult to traverse as heteropolymer landscapes� Remarkably� it ap


pears that proteins trained to be thermodynamically stable in the

target conformation are more kinetically accessible as well� The ex


tent of the �presumably� attendant basin of attraction is unknown	�

We provide a qualitative study of the correlation between well depth

and funnel width in Chapter � and present a quantitative analysis in

Chapter ��

It is of practical importance that the training scheme require a

deep� but not global� minimum in sequence space� Determining the

global minimum sequence is a di�cult optimisation problem� �nding

a deep minimum is more readily achieved� for example� by simulated

annealing �the method used by Shakhnovich in ��� and outlined in

��� ��
�Interestingly� the correlation of non�native conformations to the target con�g�

uration could be used to provide an estimate of the width of the corresponding

funnel�

��
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��� Minimisation of Z

Minimisation with respect to sequence of the energy of the target con


formation only approximates the maximisation of its thermodynamic

stability� on which the selection scheme described above rests� Uncon


strained optimisation of the sequence� for example� yields a homopoly


mer or alternating bipolymer� depending on the minimum interaction

energy of the pair potential� While this sequence has minimal energy�

the gap between the native and set of non
native states has vanished�

This di�culty is overcome� in practice� by imposing a constant com


position of the amino acids in the sequence� optimisation occurs by

varying the order�

The approximation may be made more precise by minimising the

relative energy Z� proposed by Abkevich and coworkers in �� � It

estimates the di�erence between the target energy and the mean en


ergy of the set of compact non
target structures� scaled with respect

to the standard deviation of the interaction energies available to the

sequence�

Z �
Etarget � Eav

�

� �����

The average energy of the compact conformations Eav is equivalent

to Beav� where eav is the mean bond energy and B is the number

of bonds �neglecting the backbone� in a compact conformation� for a

cube of side n� B � �n	 � �n� # �� To calculate eav� it is necessary to

integrate over all compact conformations the mean bond energy of a

single con�guration� We may estimate eav instead by taking the mean

of the interaction energies available to the protein� that is� the mean

of the extended pair potential �U � Likewise� the standard deviation

of the interaction energies � may be approximated by the standard

deviation of the elements of �U �

Minimisation of the numerator selects for amino acids correspond


ing to interaction energies from the tails of the distribution � neg


ative energies for bonds in the target conformation and positive en


ergies for bonds favoured by distant con�gurations� Note that this is

precisely the means by which � is maximised �and sequence species

diversity minimised�� This is o�set by minimising the denominator�

��
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which draws bonds from the interior of the distribution� consequently

increasing species diversity� The relative energy Z remains the stan


dard Hamiltonian for thermodynamically oriented sequence selection�

��



Chapter �

Stability and Accessibility

By just exchange one for the other giv�n� � �

There never was a better bargain driv�n�

sir philip sidney

S
uccessful protein design is characterised by two criteria ther


modynamic stability� the probability of occupation of the target

conformation� and kinetic accessibility� the ability of the protein to

quickly fold to its target conformation� We observe a con�ict be


tween stability and accessibility and argue that modest reduction in

the former allows signi�cant increase in the latter� It follows that ther


modynamically oriented sequence selection is not suitable for optimal

protein design�

��� Introduction

Protein folding is concerned with determining the ground state con


formation of a given sequence of amino acids� Inverse protein folding�

or protein design� asks what sequence of amino acids possesses a given

conformation as its ground state� The driving force of protein folding

is the statistical mechanical evolution toward minimal conformational

free energy� observed in vitro and veri�ed by simulation� Given the

need for a biologically useful target conformation� what mechanism

drives protein design!

Unlike protein folding� protein design occurs in Nature on evolu


tionary time scales too long for our observation� Moreover� practical

applications of protein design suggest that we do not necessarily wish

to mimic nature in determining appropriate sequences� We begin� in


stead� by studying those qualities associated with successful folding

to speci�c conformations�

stability and accessibility

��� Stability and Accessibility

The creation of a global minimum above the target conformation� as

discussed in Chapter �� is not su�cient for successful protein design�

The protein must fold stably and e�ciently to its target as well� We

characterise �inverse� protein folding according to the extent to which

these two conditions are satis�ed�

Stability requires that the protein spend a signi�cant fraction of its

time in its biologically useful native conformation� This necessitates

a pronounced energy gap between the native and set of non
native

states such that the target conformation is occupied at the folding

temperature� In principle� stability depends on the energy of the set

of non
native states as much as the target �via the Boltzmann factor��

In practice� the random energy model �� allows us to approximate it

with the �relative� energy of the native state�

E�ciency relates to the time necessary for a protein to fold� which

corresponds to the �rst
passage time from a denatured state to the

target conformation� But protein �rst
passage time is a broadly dis


tributed random variable �Chapter 	 � accordingly� we measure e�


ciency by the mean �rst
passage time �mfpt��

Both criteria may be expressed in terms of the corresponding en


ergy landscape� Stability coincides with a deep energy well above the

target state and the absence of conformationally distant deep traps�

Accessibility requires a landscape topography characterised by a fold


ing funnel sloping toward the target� su�ciently steep to ensure that

the loss of entropy is compensated by the increase in energy�

It has been suggested that the former condition implies the latter�

i�e�� that thermodynamically oriented selection of sequences solves the

problem of kinetic accessibility as well ��� � We claim that while se


lecting for a pronounced minimum of the native state energy makes

protein design feasible� maximising stability does not provide optimal

accessibility� Moreover� we argue that above some critical thermo


dynamic stability� these two conditions are in con�ict� In particular�

modest reduction in stability can provide signi�cant increase in acces


sibility�

��
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��� Details of Simulation

We study the design and folding of model proteins N monomers in

length� each of A possible species� constrained to an in�nite cubic

lattice with nearest neighbour interactions� Proteins are designed by

minimising the target state energy with respect to the ��xed compo


sition� sequence� we observe their folding dynamics via Monte Carlo

simulations from self
avoiding walk �saw� conformations to their re


spective target structures�

A protein conformation � is designated by its contact map C� an

N �N matrix where Cij � � if monomers i and j are nearest neigh


bours not along the backbone and � otherwise� Since they cannot be

avoided by the conformation� backbone interactions cannot in�uence

the folding dynamics� Nearest neighbour monomers interact accord


ing to their species Si and Sj by the A�A pair potential USi�Sj � where

Si is the species of monomer i along the sequence S� etc� We used

the �� � �� potential derived in ��� from the distribution of contact

energies in native proteins� We represent the protein sequence S by

the N �N extended pair potential �U � where �Uij is the interaction of

monomers i and j such that �Uij � USi�Sj �

The energy of the protein may thus be expressed

E�S��� �
�

�
NX

ij��
C�ij
�USij � �����

which is the folding Hamiltonian�

Given a desired target conformation �target� we design a sequence

Sdesign by annealing the energy with respect to the sequence variables

while the conformation remains quenched at �target ��� � Folding of

Sdesign is simulated on a cubic lattice at constant temperature by the

Metropolis application of the moveset containing end bends� corner

�ips and crank
shaft motions� where multiple occupation of lattice

sites is forbidden� Such a move set is ergodic �apart from a vanish


ingly small number of pathological con�gurations� and generates saw

statistics at in�nite temperature�

Starting from denatured �saw� initial conformations� simulation

continues until the energy of the target conformation E��targetjSdesign�

��
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is reached� The number of attempted moves required for this to occur

is the �rst
passage time� We �nd that the energy of Sdesign embedded

in �target is achieved only by �target for compact �maximally bonded�

structures� in accordance with ��� � in other words� �target is the global

minimum conformation of Sdesign�

��� Shift of Pair Potential

For a given sequence� the probability that the ground state conforma


tion �� is occupied is

P�� �

e��E��P
� e

��E� � �����

where E� is the energy of the sequence embedded in conformation ��

Consider shifting the pair potential matrix U by a constant ��

Uij��� � Uij # �� �����

where � may be positive or negative and U � taken from ��� � has near

zero mean�

NX
ij��

Uij � ����� � �� �����

where Uij � Uij�� � ��� Note that varying � has no in�uence on

sequence optimisation for a �xed conformation� For a compact native

state� the probability of occupation of the ground state then appears

as

P����� �

e���Be��E��P
� e

���be��E�
� �����

where B is the number of bonds in the compact target structure ��

and b is the number of bonds in conformation �� Since b � B for all

�� it follows that

�P��

��

� ��hbi �B�P�� � �� �����

�	
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Figure ���� Inverse mean rst
passage time to the target conforma


tion for a �� monomer sequence as a function of T and �� Each

square represents the number of times the native state energy is

reached �Nns	 in � � ��� mcsteps� Nmax

ns � ��� corresponds to

white� � to black�

where hbi is the average number of bonds over the thermal ensemble

of conformations at reciprocal temperature ��

From ������ the probability P�� that the native state �� is occupied

is decreasing with �� Accordingly� negatively shifting the potential in


creases the energy gap between the native and the set of non
native

states� thus increasing the thermodynamic stability of the desired con


formation�

The extent to which this imposed increase in stability e�ects ki


netic accessibility can be investigated via simulation� We de�ne e�


ciency as the mean �rst
passage time htfpi to a given target conforma


tion� that is� the average number of Monte Carlo time steps necessary

for a protein in a denatured state to fold to its target� We are inter


ested in the mfpt as a function of the shift in the pair potential� ��

However� the optimal folding temperature Topt itself depends on �� so

we consider instead htfp��� T �i�

As shown in ���� the mean �rst
passage rate exhibits a peak in the

T� � plane near � � �� Making the mean interaction more negative

promotes folding at higher temperatures� but decreases the attainable

��
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folding e�ciency� As � � �	� the protein e�ectively quenches to a

suboptimal compact state� to explore conformational phase
space� it

must pass over large energy barriers in order to unravel and collapse

to other local minima� Thus� the gain in thermodynamic stability is

made at the loss of folding e�ciency� When � � �� the pair potential

is purely repulsive and the protein is unable to fold� when � � ����

the ground state ceases to be the target state�

��� Protein Folding is Many to One

The consistent success of the Shakhnovich training scheme relies on

the existence of at least one sequence for each target conformation�

viz�� that sequence which folds to the target� It follows that there

must be at least as many sequences as compact conformations for this

or any other satisfactory design procedure�

Improved protein design may be achieved by judiciously choosing

a sequence� and hence an energy landscape� which more closely re


sembles a deep� broad funnel near the target conformation than does

a thermodynamically oriented sequence� We thus require a sequence

spectrum in which many sequences stably fold to a single target confor


mation� Assuming the ground state conformation of the large majority

of sequences is compact� this implies the average number of sequences

per compact conformation
D
NS

N�c
E

must be much greater than ��

For a random walk of N steps on a three dimensional lattice� the

number of distinct conformations is approximately zN � where z is

the lattice coordination number� Less freedom is available to self


avoiding walks� to which our lattice proteins correspond� how much

less depends on the protein�s radius of gyration� As the protein ap


proaches its compact native state� the conformational freedom dimin


ishes rapidly� The number of con�gurations available to a protein

can be estimated from Flory�s theory of excluded volume for poly


mers ��� � for a compact lattice protein it has been approximated to

grow as $c�N� 
 �N � � 
 ��� ��	 �

The average folding degeneracy may be estimated to be

��
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D NS

N�c
E
� AN
�N
� �� ���	�

where AN is the number of sequences available to a protein made up

of A amino acid species� Accordingly� the ability to design sequences

which fold to speci�c targets requires A � Ac � �� This suggests

that binary HP folding models� in which the number of species A � ��

are barely su�cient for the design of arbitrary compact proteins and

incapable of producing stable� fast folding sequences�

This may be qualitatively argued as follows� Of the set of AN

possible sequences� a small fraction �A� �N typically fold to a speci�c

conformation� The large majority of these correspond to landscapes

which have minima of comparable depth to the global �target� mini


mum� such a protein will consequently spend considerable time outside

of the target conformation� Of those sequences which do fold stably�

some will be more or less funnel oriented than others� the most kinet


ically accessible will not in general correspond to the most thermody


namically stable� The number of species A must be su�ciently large

such that the �rst subset �those which fold to the target� contains at

least one element� Further increase of A allows us to be more selective

in our choice of sequence from the last subset �those which fold stably

and quickly��

��� Accessibility�Stability Phase Space

Generally �e�g�� ��� � and in the present work� the Hamiltonians used

to optimise protein sequence and structure are equivalent� That is�

sequence design consists of minimising the energy �or relative energy�

in an e�ort to maximise thermodynamic stability� with the tacit as


sumption that stable sequences �deep minima� fold quickly �are funnel

shaped�� While empirical observations suggest a correlation between

the two� it does not imply that such sequences fold most e�ciently to

their target conformations� Roughly put� the deepest wells need not

be the most funnel oriented�

This conjecture may be tested as follows� Consider the set of all

sequences which fold to a given compact target conformation� such a

��
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���

�����
���

�����
���

�����
���

��� � ��� ��� ��� ��� � ���

Stability

Accessibility

Figure ���� Ensemble of �� monomer sequences independently

trained to fold to a single compact target� plotted in accessibility


stability phase space� Accessibility is measured by the log�� of the

mean rst
passage time� stability by the energy of the sequence in

the target conguration� Note that the most stable sequences do

not correspond to the most quickly folding�

set is very large since in our case A � �� � Ac� Plot each sequence�

and hence landscape� in accessibility
stability phase space according

to its mean �rst
passage time and target state energy� In practice� it

is not feasible to examine all �A� �N sequences which map to a speci�c

compact conformation� the set must be suitably sampled�

We prepared an ensemble of �	
mers independently trained to fold

to a single compact � � � � � target conformation� The thermody


namic stability of each sequence is approximated by the energy of the

sequence in the target conformation� the �presumably� ground state

conformation of the sequence� the actual Boltzmann occupation prob


ability depends on the energy gaps between the native and non
native

states� The mean �rst
passage time is taken as the mean of Nfold fold


ing times from a denatured to the target conformation� where Nfold

is the number of times the sequence folds to its target in � � ��


Monte Carlo steps� Note that inversion of a rate gives better statis


��



proteins� optimisation and ties

tics to those sequences which fold more e�ciently� which are the ones

in which we are particularly interested�

A landscape scatter plot is shown in Fig� ���� The bottom colinear

points represent the sequentially degenerate ground state energy� due

to rationality of the pair potential �of two signi�cant �gures� and cer


tain sequence rearrangements� The spread of these mean �rst
passage

times is signi�cant� notwithstanding the accompanying uncertainties�

A sequence annealed to minimal energy is e�ectively sampled from

this range� Of greater interest is the large fraction of sequences with

higher target energies and lower mean �rst
passage times� Approxi


mately half� on average� of the sequences fold more e�ciently than a

typical ground state sequence� some signi�cantly more so� Disregard


ing small variations about the target conformation due to entropic

considerations� nearly all sequences shown spend a signi�cant fraction

of their time in the target conformation�

��� Conclusion

We have shown� both by shifting the mean of the pair potential and

considering an ensemble of sequences trained to a single target� that

thermodynamic stability and kinetic accessibility of the target con


formation are in con�ict� In particular� maximal stability does not

correspond to maximal accessibility� A marginal reduction in the sta


bility of the target conformation allows signi�cant increase in folding

e�ciency�

While we have demonstrated that faster folding may be achieved�

we have not addressed how the corresponding sequences should be

selected�

We present in Chapter � a novel method of kinetically favoured

sequence selection on the assumption that the widest possible funnel

is that which least constrains the dynamics� which we propose is given

by the conformations sampled during unfolding of the target confor


mation� Moreover� we provide arguments that lowering the energy

of successive conformations� whether correlated� as in the case of a

funnel� or independent� such as training to multiple targets� reduces

the depth to which such conformations can be trained�

��
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Alternatively� sequences may be annealed explicitly with respect

to mean �rst
passage time� work to this end is reported in Chapter

	� Such a technique requires a statistical formalism for cost functions

which are random variables �in the case of protein design� the folding

time�� This is the basis of stochastic annealing� presented in Chapter

��

��
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Inverse Protein Folding as an

Associative Memory

�It�s a poor sort of memory that only works backwards�� the Queen

remarked�

lewis carroll

Through the Looking Glass

W

e interpret a protein trained to fold to a target conforma


tion as an associative memory� We generalise to the recogni


tion of multiple conformations and provide capacity calculations based

on energy �uctuations and information theory� Unlike the linear ca


pacity of a Hop�eld network� we �nd that the number of conformations

which can be embedded in a protein sequence depends on the alphabet

size as lnA� independent of protein length�

��� Introduction

It is widely thought to be a design feature of real proteins that their

native� biologically active state is both a deep global energy minimum

and has a funnel of low energy con�gurations leading toward it �� � The

funnel guides the molecule to fold to its stable native conformation in

a time much less than that required for it to explore all con�gurations�

thus avoiding the so
called Levinthal paradox ��� �

Inverse protein folding� or protein design� consists of designing a

sequence of amino acids that quickly and stably folds to a desired

target conformation� For simple lattice models� Shakhnovich and co


workers ����� have explored the folding of sequences designed to min


imise a conformation�s absolute and relative energies� This gives the

inverse protein folding as an associative memory

molecule a deep ground state� but takes no measures to ensure that

this state is readily accessible kinetically� We have previously provided

evidence �Ch� � that such methods can be counterproductive toward

achieving folding e�ciency� i�e�� that stability and accessibility are at

odds�
Here we show how Shakhnovich�s approach can be generalised by

analogy with neural network theory of associative memory to provide

recognition of several con�gurations rather than a single target state�

In doing this� we set the stage for addressing the problem of creating

a broad funnel for a single conformation in Chapter ��

��� Proteins as Associative Networks

A protein consists of a sequence S of N amino acids� or monomers�

each of which can take on one of A possible species� We denote the

species of the ith monomer of S by Si� and monomers i and j interact

according to the N �N extended pair potential �U � where �Uij � USiSj

and U is the A� A pair potential�

Protein conformations may be represented by the contact matrix

C� where Cij � � if monomers i and j are nearest neighbours and

� otherwise� For compact conformations� each interior monomer is

surrounded by z neighbours� where z is the coordination number of

the lattice� Accordingly� each row and column of C must contain z

entries �z � � neglecting backbone connections�� These entries will

certainly be correlated� which we can quantify on the assumption of

self
avoiding random walk statistics known to apply in polymer melts�

but for the immediate purposes the correlations turn out to be of

only secondary importance� Contact patterns are thought to be a

unique representation of compact conformations �though this need

not be the case for more open structures�� and we approximate them

as independent�

Protein folding may be considered pattern recognition in as much

as the protein rapidly organises itself into the target pattern C upon

entering the target basin of attraction �funnel�� By analogy with pat


tern association� this idea may be generalised to the recognition of

multiple patterns� This raises the question of how to train the se


��
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quence to recognise more than one conformation� The dilute repre


sentation in the contact pattern suggests that we may superimpose

p patterns without saturation�� providing us with a total pattern to

which we train in the usual way �Ch� � �

Interpreting the N monomers as neurons� the contact map may be

viewed as a synapse map� with two neurons connected if they are near


est neighbours in space� The network of monomers is hence dilutely

connected� with �for compact structures� asymptotically z
N of the pos


sible number of synapses present� The network corresponding to the

total pattern is more heavily connected� averaging zp connections to

each neuron�

The protein sequence is trained to its target pattern by keeping

the synapse map �contact map C� quenched to the target while the

synapse strengths �extended pair potential �U� are annealed� Folding

of a �xed sequence occurs at �xed synapse strengths through the evo


lution of the synapse map� from complete dilution in a denatured state

to z
N dilution in the target conformation�

��� Energy Function

The energy of a sequence in conformation C may be conveniently

expressed

E �
�

�
NX

ij��
Cij
�Uij � �����

For a sequence trained to have minimal energy in conformation ���

the energy appears as

Emin
� � min
�U

h�
�

NX
ij��

C�ij
�Uij

i
�

�
�

NX
ij��

C�ij
�U�ij � �����

where minimisation is over all �U corresponding to distinct sequences�

The energy of a �xed sequence S� folded to its ground state confor


�This assumes that the number of patterns stored does not scale more quickly

than N � which we �nd below is reasonable�

��
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mation is

Emin
� � min
C

h�
�

NX
ij��

Cij
�U�ij

i
�

�
�

NX
ij��

C�ij �U�ij � �����

where �U� minimises E� and C� minimises E� � We refer to the typical

value of E� for an untrained sequence as the copolymer energy Ecp�

Throughout this chapter� the energy of a sequence realised in a

particular conformation is indicated by E� while the Hamiltonian with

which a sequence is trained �generally the linear combination of the

energies realised in a number of conformations� is denoted by H�

��� Capacity from Energetics

We consider the capacity of the designed protein� that is� the number

of conformations p that we can train the sequence to make simulta


neously thermodynamically stable� For a protein to fold to a single

target conformation� it is necessary that the energy of the trained se


quence realised in that conformation� Emin
� � be below the minimum

�uctuations of the energy elsewhere� thereby making the target mini


mum global� Since the trained sequence is not correlated with distant

conformations� energy �uctuations away from the target structure are

statistically equivalent to those of a random copolymer sequence� We

therefore require that the trained energy be less than the minimum

energy of a random sequence� that is� Emin

� � Emin
cp � Folding to a set

of p conformations requires that the minimum energy of all of these

lie below Emin

cp �

We now approximate the typical energy of a sequence optimally

trained to a set of p target conformations and arranged in one of

these con�gurations� The total contact map� to which we train by

energy minimisation with respect to the sequence� is de�ned as a linear

superposition of the p corresponding contact maps� that is

Ctotij �

pX
���

C�ij � �����

�	
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The minimum Hamiltonian associated with the total contact map

may then be written

Hmin

tot �
�

�
NX

ij��
Ctotij
�U�ij �

�
�

NX
ij��

pX
���

C�ij
�U�ij � �����

here �U� minimises Htot� It is simply the sum of the p individual

conformational energies of the sequence implied by �U�� We re
express

the right side of ����� as the sum over i of the total energy associated

with monomer i� Htoti � each minimised with respect to the choice of

amino acid at monomer i� Si�

Hmin

tot �

NX
i��

min
Si

�Htoti  � �����

Htoti is obtained by summing over the connections to monomer i�

Htoti �
�

�
NX

j��

pX
���

C�ij
�Uij � ���	�

Since C has z bonds connecting to monomer i� each Htoti is the sum of

zp
� random interaction energies freely chosen from the pair potential��

For simplicity of analysis� we approximate the distribution of Htoti

by its central limit theorem form� Assuming a distribution of contact

energies with zero mean �as is the case of that found in ��� � and

standard deviation �� this yields the probability density

f�Htoti� �

�p
��toti

exp��H�
toti

���toti
�� �����

where ��toti � zp
� �

�� This estimation is valid out to jHtoti j of order

zp
� ��

The energy Htoti at each monomer is minimised with respect to the

choice of amino acid by choosing the smallest of A samples from the

gaussian f�Htoti�� Accordingly� the probability distribution of Htoti

�Bringing the �
�

from ����	 into the sum over bonds index accounts for frustra�

tion�

��
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being the minimum of A samples of ����� appears as

fmin�Htoti� � Af�Htoti���� F �Htoti��
A��� �����

where F �Htoti� is the usual cumulative distribution�

F �Htoti� �
Z Htoti

��

f�x�dx� ������

Maximising fmin with respect to Htoti yields the transcendental equa


tion

Hmin

toti ��� F �Hmin

toti �� � ���toti�A� ��f�Hmin

toti �� ������

where Hmin

toti is the minimum of the Htoti � For reasonably large A�

F �Htoti� is small and we estimate Hmin

toti
as

Hmin

toti � �
p

��toti
p

lnA� ������

from which it follows that	

Hmin

tot � �
p

�N�toti
p

lnA� ������

When the trained sequence is in one of the p target conformations�

the energy of the sequence is� on average� given by

Emin
� � Hmin

tot
p

� �
q
z
pN�

p
lnA� ������

The minimum copolymer energy Ecp may be estimated by similar

arguments� Since the extended pair potential in the copolymer energy

from ����� is untrained� we consider the usual product of it and the

contact map as the sum of zN
� random bonds� Accordingly� the energy

is distributed as

f�Ecp� � �p
��cp

exp�� E�
cp

���cp
�� ������

�This estimation is consistent with our use of the central limit theorem providedp
��toti

p
lnA �

zp
�
�� that is� lnA �

zp
�
�

��
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where ��cp � zN
� ��� Since the number of compact conformations of an

N 
mer follows $c�N� 
 �N ��	 � the energy of the ground state is the

minimum of �N samples of f�Ecp� � again we wish to estimate the

minimum of many samples of a gaussian� In accordance with �������

Emin
cp � �

p
��cp

q
ln��N � � �pzN�

p
ln �� ������

where � � ��� ��	 on a cubic lattice�

Comparing the minimum energy of the trained sequence ������

and the minimum copolymer energy ������ yields

pmax � lnA
ln� � ����	�

��� Capacity from Information Theory

This result may also be achieved by information theoretic considera


tions� Consider the transmission of a message� which has been encoded

as an N letter sequence and the A�A pair potential U � The message

is decoded empirically by constructing the sequence �either in vitro

or via computer simulation�� allowing it to fold according to the pair

potential and observing the p most occupied� and consequently lowest�

target conformations�

The information retrieved by learning a single conformation may

be determined as follows� Given �N possible compact conformations�

the information contained in one conformation is equivalent to the

number of nats� necessary to express a number between � and �N �

viz�� ln��N �� Since the p target con�gurations are assumed to be

independent� the total information captured scales linearly with p�

namely pN ln ��

The information transmitted may be similarly determined� Since

the number of sequences grows as AN � the information associated

with a sequence is ln�AN �� The information associated with the pair

potential I�U� is less easily quanti�ed� among other things it depends

on the precision of the interaction energies� For our purposes we only

need know that it is �nite and independent of N �

�A nat is the base e unit of information analogous to bits for base ��

��
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Figure ���� Energy landscapes of sequences trained to be thermo


dynamically stable in a single� multiple and pmax� � target confor


mations� As the number of targets increases� the depth to which

the targets can be trained diminishes� At p � pmax� the target wells

are indistinguishable from nearby �uctuations�

The information retrieved must not be greater than the informa


tion transmitted� that is�

ln�AN � # I�U� � p ln��N �� ������

For large N � I�U� is negligible and the bound on p reduces to

pmax � lnA
ln� � ������

which is identical to the result deduced from �uctuations in the energy

landscape in ����	�� As p approaches pmax� the typical well depth

diminishes such that� at p � pmax� the minima are lost among nearby

�uctuations �Figure �����

��



proteins� optimisation and ties

The agreement of these two results suggests that the training pro


cedure is optimal� although only in the large N limit� In any event� our

constant capacity result is not �as has been suggested� a shortcoming

of the superposition rule�

��� Retrieving Memories from Proteins

The protein capacity may be understood in the context of Hop�eld

memories� whose capacities increase linearly with N �� � Unlike pro


teins� Hop�eld networks are globally connected � each of the N neu


rons is bonded to N � � others� Since capacity is proportional to

connectivity �� � the Hop�eld capacity is linear� Locally connected

networks� as is the case for proteins� accordingly possess constant ca


pacity� Perhaps more surprising is that the answer is governed by the

number of amino acids A rather than by the coordination number z�

For a uniform composition �i�e�� a homopolymer�� zero conforma


tions are encodable� as expected� Frequently studied binary models

allow at most one con�guration to be stored� while for a twenty amino

acid set� pmax approaches ���	 from above�

A Hop�eld network recognises stored memories by associating dif


ferent initial states of the system with the minima of the basins of

attraction in which they lie� A biological protein has a single basin of

attraction and all conformations lie in the basin or eventually make

their way to it �though they may eventually leave it for a while as

well�� What happens to a protein designed to fold to multiple confor


mations! Since it begins folding from denatured states conformation


ally distant from any of the compact targets� it is di�cult to control

the �rst target minimum into which the protein falls� the protein me


anders through the energy landscape� organising itself into that target

to which it comes near� Moreover� since at equilibrium the probability

of occupation of each state is proportional to its Boltzmann factor� in

the long term all target states are visited in relation to the relative

depths of their wells�

Thermodynamic target control relies on the variation of tempera


ture to a�ect a change of the conformation occupied by the protein�

Unfortunately� for a sequence trained� say� to p � � conformations� at

��
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equilibrium this allows at best �in the limit of in�nite energy gaps�

the constant occupation of �� at a lower temperature and an equally

probable occupation of �� and �� at a higher temperature�

Interestingly� non
equilibrium target selection can be thermody


namically administered� Consider an ensemble of proteins on an en


ergy landscape with a broad funnel and� far away� a narrower but

deeper well� At a suitably high temperature the funnel is thermody


namically insigni�cant and the well becomes occupied� At very low

temperatures the funnel is initially occupied by nearby proteins before

equilibrium is reached�

Equilibrium target control can be implemented with the assistance

of topographically distinct macromolecules which act as chaperones�

This may be achieved by training to a set of conformations� to each

of which folding is promoted by one of a set of chaperones� By in


troducing a single macromolecule species� folding is favoured toward

the target state facilitated by that chaperone� This can be made

more general by instead designing macromolecules which promote a

pre
speci�ed set of target conformations�

��� Conclusion

We have shown that a protein may be trained to recognise multiple

conformations� analogous to an associative memory� We �nd that

manipulation of the protein energy landscape by the introduction of

independent minima is limited by pmax � lnA
ln k � As the number of

independent minima approaches the capacity pmax� the typical depth

of the minima decreases until they are eventually lost in nearby �uc


tuations� Training to a single conformation requires an alphabet size

A � �� increasing A allows greater stability of the target structure�

��



Chapter �

Funnel Design based on

Unfolding Dynamics

Time shall unfold what plighted cunning hides�

william shakespeare

T
he ability of a protein to recognise multiple independent

target conformations was presented in Chapter �� Here we gen


eralise this idea to the recognition of correlated con�gurations� which

may be applied to the problem of funnel design for a single confor


mation� The maximum basin of attraction� as parametrised in our

model� depends on the alphabet size as lnA�

��� Introduction

It is believed �Chapter � that a stable� fast folding protein requires

a sequence whose conformational energy landscape contains both a

deep global minimum above the native conformation and lies at the

bottom of a basin of attraction sloping toward it� These conditions

are known as thermodynamic stability and kinetic accessibility� re


spectively� While stability may be readily achieved by suppressing

the energy of the sequence embedded in the target conformation� con


structing a broad funnel leading toward the target has remained elu


sive�
The �rst satisfactory method of protein design� introduced by

Shakhnovich in ���� ��� � relies on the correlation between stabil


ity and accessibility stable sequences are found to fold more quickly

funnel design based on unfolding dynamics

as well� Minimising the energy or relative energy ��� �� with respect

to sequence �while the conformation remains quenched to the tar


get� yields sequences whose conformational energy is a deep global

minimum above the target and which fold much more rapidly than

random heteropolymers of equal length� We have provided evidence�

nonetheless� that the most stable sequences are not the fastest fold


ing� and that a modest reduction in stability allows signi�cant gain in

e�ciency�

We introduce in Chapter 	 a method of sequence design in which a

sequence is optimised on the basis of folding time itself� Previous work

to this end ��� was limited by the di�culty of accurately measuring

the broadly distributed folding time� By exploiting this uncertainty

to allow� in a controlled manner� uphill transitions as well as downhill

moves� we were able to select sequences which fold in near
optimal

time�
Kinetically oriented sequence selection� useful in exploring the lim


its of protein folding e�ciency� is presently impractical as a means of

designing long proteins� We provide in this chapter a method of de


sign which relies on training to multiple targets discussed in Chapter

�� Unlike the independent conformations previously considered� here

our patterns are correlated to a single target conformation�

Our approach to funnel design is to turn o� all the monomer inter


actions �equivalent to an interacting system at in�nite temperature�

and to consider the dynamics by which a protein would then spon


taneously unfold from the target state into a random ensemble� By

the principle of detailed balance in equilibrium statistical mechan


ics� the ensemble of unfolding trajectories from the target state to

random conformations is equivalent to the ensemble of folding trajec


tories from random con�gurations to the target � but of course the

former ensemble is much more easily sampled� Therefore� observations

of unfolding will tell us how the molecule would with least dynamical

constraint fold�

We provide estimates of the unfolding contact map based on a

simple blob model of unfolding� This leads to a de�nite proposal as to

how di�erent stages in the unfolding contact map should be weighted

in training so as to create an optimal funnel�

��
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��� Generalisation to Weighted Training

The capacity calculation of the previous section assumed equal weight


ing of the p target conformations� Here we generalise to weighted

superposition the total contact map is de�ned by summing over the

individual maps with suitable weights�

Ctotij �

pX
���

w�C�ij � �����

where w� is the weight associated with conformation ��� Let �U�

correspond to the sequence with minimum Hamiltonian in the total

weighted contact map ������ Then

Hmin

tot �
�

�
NX

ij��
Ctotij
�U�ij �

�
�

NX
ij��

pX
���

w�C�ij
�U�ij � �����

By analogy with calculations in the previous chapter� we reexpress

����� as a sum over Htoti � each minimised by the choice of Si�

Hmin

tot �

NX
i��

min
Si

�Htoti  � �����

where Htoti is the sum over the connections to monomer i�

Htoti �
�

�
NX

j��

pX
���

w�C�ij
�Uij � �����

The local Hamiltonian Htoti is simply a weighted sum of the indepen


dent local conformational energies�

Htoti �

pX
���

w�E�i � �����

Proceeding as before in Chapter �� we �nd that Htoti is gaussianly

distributed with standard deviation
��

funnel design based on unfolding dynamics

��toti �
z��

�

pX
���

w�
�� �����

We now consider the ith component of Htot in ����� as a sum of

two terms�
Htoti � w�E�i #

pX
����� ���

w�E�i � H�i # Hothi � ���	�

Since H�i and Hothi are independently distributed with

���i �
z��

�
w�
� and ��othi �

z��
�

pX
����� ���

w�
� � �����

we may write their joint gaussian distribution as

f�H�i �Hothi� �

�

���i�othi
exp��H�

�i

����i
� H�

othi

���othi
�� �����

The distribution of H�i given H�i # Hothi � Hmin

toti appears as

f�H�i jHmin

toti � � c exp
�
� ��toti

����i�
�
othi

�H�i �
���i

��toti
Hmin

toti �
�
�
� ������

where c is a normalising constant and ��toti � ���i # ��othi � The value

of H�i which maximises ������ is de�ned as Hmin

�i � that is�

Hmin

�i �

���i

��toti
Hmin

toti � ������

which reduces to
Hmin

�i � w�E
min

�i �

w�
�Pp

���w
�
�

Hmin

toti � ������

Recall �Chapter � that the minimum of A samples from a gaussian

of zero mean and standard deviation �toti has typical value

�	



proteins� optimisation and ties

Hmin

toti
� �

p
��toti

p
lnA� ������

Substituting ������ into ������ and summing over i yields

Emin

� � �pzN�
p

lnA

w��Pp
��� w

�
�

� �
�

� ������

which is the desired result� Under the conditions of equal weights�

this reduces to the expression ������ obtained in the previous chapter�

��� Simple Blob Model of Unfolding

It is a well known trend in polymer physics that the larger scale fea


tures of molecular conformation have systematically longer relaxation

times� For example� for non
interacting chains with simple kink
jump

dynamics� a subsection of g monomer units has relaxation time ��g�

proportional to g�� On this basis we assume that after time t� a spon


taneously unfolding polymer will have equilibrated locally up to scale

g� such that ��g� � t� but still re�ect the folded conformation on larger

scales�
This simple blob view of proteins �Figure ����� that time scales

relate uniformly to length scales� is of course a particular view� The

alternative� which we do not address here� would be to consider spa


tially localised nucleation events�

The folded protein� which we assume to be compact and associate

with g � �� consists of N single monomer blobs� The contact map

C��� has z non
zero entries in each row and column� zN non
zero

entries in total�

For the state unfolded up to length scale g� the protein may be

thought of as a chain of N
g blobs� folded to its coarse grained original

conformation� Accordingly� the contact map C�g� has N
g intra
blob

blocks along the diagonal and zN
g inter
blob blocks corresponding to

nearest neighbour blobs� Scaling theories for polymer con�gurations

with excluded volume would imply that the average total number of

contacts between two neighbouring blobs be of order unity� Averaging

��
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Figure ���� Two
dimensional representation of the blob model� The

�� monomer sequence is coarse grained to length scales g � �� g � �

and g � ��

over an ensemble of conformations at constant g� this requires that

each of the g� entries for each blob be of order �
g� �

The total number of conformations �compact or otherwise� avail


able to a protein grows as $�N� 
 ��N �not to be confused with � for

compact structures only�� this becomes ��
N
g for a chain of N
g blobs�

Since the product of the internal and external conformational free


doms of a partially relaxed protein must equal ��N � a sequence relaxed

to length scale g can be estimated to take on ��
N�N
g
�
con�gurations�

It follows that the entropy gained in folding from a denatured con


�guration down to a conformation relaxed to length scale g may be

expressed as

S�g� � �kBN
g

ln ��� ������

��� Training to a Funnel

While an energy minimum signi�cantly below the minimum copoly


mer energy ensures thermodynamic stability of the target conforma


tion� rapid convergence necessitates a funnel of kinetic pathways slop


ing toward the target �Chapter � � The widest possible funnel is that

which least constrains the dynamics� which we propose is given by the

��



proteins� optimisation and ties

conformations sampled in unfolding via the blob model� We thus con


sider combining the contact maps from di�erent times �and values of

g� of a noninteracting� spontaneously unfolding compact conformation

with weights w�g��

Ctotij �

lnNX
ln g��

w�g�Cij�g�� ������

The minimum Hamiltonian associated with the total contact map then

appears as

Hmin

tot �
�

�
NX

ij��
Ctotij
�U�ij �

�
�

NX
ij��

lnNX
ln g��

w�g�Cij�g� �U�ij � ����	�

where again U� corresponds to the sequence which minimises the total

Hamiltonian� The total Hamiltonian associated with monomer i is the

sum of the individual local Hamiltonians evaluated at di�erent values

of g�

Hmin

toti �

lnNX
ln g��

Hmin

i �g�� ������

where H�g� � w�g�E�g�� In accordance with our previous calculation�

we estimate the variance in the choice of H�g� available to a single

monomer as

��gi �
zg

�
�w�g�

g�
��
��� ������

where zg
� is the number of contacts available to a given monomer

equilibrated to scale g and wg�
g�

is the overall weighting for each one�

The variance of the local energy per monomer integrated over all g is

thus

��toti �
lnNX

ln g��
��gi �

z��
�

Z N
e

dg
g

g
w��g�

g�

� ������

��
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Again we require the relation between the Hamiltonian of the protein

unfolded to length scale g and the total Hamiltonian� Proceeding as

before� we �nd
Hmin

i �g� � w�g�Emin

i �g� � ��gi

��toti
Hmin

toti � ������

Substituting ������ and ������ into the above and summing over i� the

minimum energy associated with matching the conformation at scale

g can then be estimated as

Emin�g� � � zp
�

N��
p

lnA

w�g�

�totig
	
� ������

In order that the training reverse the unfolding dynamics� the

required funnel must have su�cient slope� that is� F �g� � E�g� �

TS�g� � �� Equating the two expressions T� ������ and ������ gives

w�g� � �
p

�kBT ln �� �toti

z��
p

lnA

g�� ������

and thus w�g�  g�� Unfortunately this form for w is inconsistent

with a convergent �N 
independent� evaluation of �toti in ������� Our

assumption that the training energy could reverse the unfolding dy


namics does not hold for all values of g�

We consequently introduce the cuto� scale gmax� up to which our

funnel extends� Substituting ������ into ������ and reducing the do


main of integration yields

��toti �
�kBT �� ln� ��

z�� lnA

��toti
Z gmax

e

dg� ������

from which it follows that
gmax � z�� lnA

�kBT �� ln� ��
� ������

The width of our funnel� as parametrised by gmax above� increases

strongly as folding temperature T decreases� At too low a tempera


ture� however� the coil will collapse as a random copolymer into what

��
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Γ

Γtarget

Conformation Space

denatured

Figure ���� Folding in the presence of a funnel� The denatured

protein wanders through conformation space until it matches the

target structure coarse
grained to length scale gmax� after which the

funnel quickly guides the protein toward the target�

we presume to be a glassy state� The loss in entropy resulting from col


lapse will be equivalent to ������� evaluated at g � � �the collapsed

copolymer will be fully folded�� The modest decrease in energy af


forded by the minimum copolymer energy can overcome this entropic

loss only at low temperature Tcp� Equating the minimum copolymer

energy Emin

cp in ������ from the previous chapter and Tcp times the

loss in entropy �������jg�� leads to

kBTcp � �
p
z ln �

ln ��

� ������

and hence at T � Tcp�

gmax � lnA
ln �
� pmax� ����	�

The cuto� gmax is the length scale of the structure below which

the energy landscape corresponding to the trained sequence is charac


terised by a funnel� Above gmax� the protein must organise itself into

the desired �coarse grained� conformation without the help of kinetic

��
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Conformations

maxg=g

g=1

Figure ���� Energy landscapes of sequences trained to have increas


ingly broad funnels� Maximising stability �top	 corresponds to a

deep� narrow well� Training to an ensemble of unfolding targets

�middle	 provides a less deep� broader funnel� As the length scale g

to which the funnel extends increases� the attainable depth of the

target is reduced� at g � gmax� the slope of the funnel is no longer

su�cient to provide a free energy minimum �bottom	�

guidance� that is� it must traverse an e�ective copolymer landscape

�Figure ����� The e�ect of increasing the width of the funnel toward

gmax is shown in Figure ���� As g � gmax� the slope of the funnel

becomes su�ciently shallow such that� at g � gmax� the decrease in

energy no longer overcomes the loss of entropy�

Consider the protein as a sequence of N�gmax blobs� each of size

gmax� The bene�t of the funnel is realised once the chain of blobs

folds to its coarse grained target state� Assuming this to be the rate

determining step� the time necessary for the protein to fold is reduced

by the factor ������gmax�N � which is signi�cant even for small values

of gmax�

��
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��� Conclusion

By considering the conformations sampled in unfolding� we have out


lined a scheme of sequence selection which provides a basin of attrac


tion around the target of order gmax � lnA
ln� � As the width of the funnel

increases to include conformations matching the target conformation

coarse grained to length scale gmax� the free energy minimum above

the target vanishes� Simulation to this end is ongoing and will be

reported elsewhere�

��

Chapter �

Kinetically Oriented

Sequence Selection

Auf Andere warte ich� � � auf H�ohere� St�arkere� Sieghaftere� � �

lachende L�owen m�ussen kommen

friedrich nietzsche

Thus Spoke Zarathustra

W

e design proteins to rapidly fold to speci�ed target struc


tures by evolving sequences according to folding performance�

In analogy with simulated annealing� we use the uncertainty of folding

time estimates in a controlled way to e�ciently traverse the sequential

landscape� Kinetically oriented sequences are observed to fold to their

targets signi�cantly faster than sequences designed to maximise the

thermodynamic stability of the target conformation�

��� Introduction

The ability to design protein sequences which fold to desired target

structures has been achieved by optimising stability over sequence

space in the target conformation ��� �� � It was observed from sim


ulation of simple lattice models of proteins that thermodynamically

stable targets enjoy increased kinetic accessibility as well ��� �

We have provided evidence in Chapter � that the correlation be


tween stable and fast folding sequences is limited� In particular� it was

demonstrated that maximising stability does not maximise accessibil


ity� This can best be observed by considering a set of independently
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���

�����
���

�����
���

�����
���

�����
���

������ �e	��

Stability

Accessibility

Figure ���� Ensemble of ��
mer sequences in a single target confor


mation independently selected from a low temperature �T � ����	

bath� plotted in accessibility
stability phase space� Accessibility is

estimated by the mean rst
passage time to the target and stability

is approximated by the relative energy of the target conformation�

Note that the most stable sequences do not correspond to the most

quickly folding�

annealed sequences which fold to a single target conformation plotted

in accessibility
stability phase space �Figure 	���� Sequences are plot


ted in accordance with the behaviour of their corresponding energy

landscapes in the vicinity of the target conformation� Folding ability

�and hence funnel width� is approximated by the mean �rst
passage

time along the x
axis and relative well depth is estimated by the Z


score �Ch� � along the y
axis� While all of the sequences in Figure

	�� are su�ciently stable �i�e�� a macroscopically large fraction of an

ensemble of each occupies� at any one time� the target conformation��

the most stable sequences do not correspond to the fastest folding�

It has been argued analytically �Chs� �� � that the ability to ma


nipulate the conformational energy landscape is limited by the �nite

amount of freedom in choosing the sequence� Allowing the energy fun


nel to become increasingly shallow �and the free energy well less deep�

��
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enables us to make the target minimum increasingly broad� This gain

in folding ability occurs at the expense of reduced stability� which

eventually becomes prey to entropic traps �Ch� � �

��� Kinetically Oriented Sequence Selection

The con�ict between stability and accessibility� outlined above� sug


gests the selection of sequences on the basis of folding ability� The

natural analogue of thermodynamically oriented sequence selection

is kinetic sequence selection� in which folding time replaces relative

energy as the favoured trait� The analogy is not perfect� Thermo


dynamic selection doesn�t evaluate the actual stability of a protein

in the target state� it optimises conformational stability by using se


quential stability as a guide� Estimating accessibility by such means

is not possible� since folding time �unlike energy� is a useful measure

of conformational phenomena only�

Our method of kinetic sequence selection is simple� We begin with

a sequence which folds �though not necessarily quickly� to a speci


�ed target conformation� which is the sequence occupied by the pro


tein� A similar alternative sequence is derived by perturbing �e�g�� by

point mutation� the occupied sequence� The alternative sequence is

accepted as the occupied sequence on the basis of its folding perfor


mance�
Unlike its thermodynamic counterpart� the success of kinetically

oriented sequence selection is impeded by its computational cost� This

is manifested in two areas�

The essential di�culty is measuring folding time accurately� Since

each new sequence is selected on the basis of its folding ability� un


certainties in estimates of folding time limit the degree to which the

sequence may be optimised�

Also worrying is the risk that some amino acid mutations may

make folding extremely ine�cient� Since the cost of calculating the

folding time grows in proportion to folding time itself� this may slow

sequence optimisation to unrealistic time scales� This is of especial

concern for short sequences� since even a single mutation may e�ect

the target stability to an extent such that the target conformation

�	
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ceases to be the ground state conformation�

��� Measuring Folding Time

Once a protein assembles itself into its target state conformation� it

remains there in proportion to the corresponding Boltzmann factor�

exp� �EkBT
�� which increases with the depth of the well� Furthermore� if

the target well is of �nite width near the bottom �as is generally the

case�� the protein will experience entropic �uctuations among con


formations similar to the target� Accordingly� we measure folding

e�ciency by the �rst
passage time spent between leaving a �unique�

denatured state and entering� however brie�y� the target conforma


tion� Since protein folding is path
independent �� � the �rst
passage

time �fpt� tA of an individual sequence SA will deviate signi�cantly

from the mean �rst
passage time �mfpt� htAi of an ensemble of iden


tical sequences SA�

We can estimate the distribution of �rst
passage times fA�tA� by

constructing a histogram of fpts of an ensemble of identical sequences�

Figure 	�� a shows the fpt distributions for two similar sequences

trained to fold to the same target conformation� Notably� the long


time tail appears to decay geometrically� which suggests that occasion


ally proteins spend a long time folding� The geometric tail also implies

that nearby distributions have considerable overlap� which makes the

ordering of similar sequences according to their mean �rst
passage

times di�cult�

We consider the inference of the mfpt from multiple observations

of the fpt� Let tnA be the mean of n independent foldings of sequence

SA to its target conformation�
tnA �

�
n

nX
i��

tA� �	���

Accordingly� tnA is distributed by fnA about htAi with variance �nA
� �

�
n�

�
A� As n � 	� fnA approaches a �
function centered about htAi�

The resulting decrease in distribution overlap allows more accurate

sequence ordering �Figure 	�� b��
��
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� ������ ������ ������ ������

Probability density
First�passage time

Figure ���� a	 Distributions of rst
passage times of two similar

sequences �lower curves	� Long tails cause signicant overlap� b	

Distributions of the mean of ��� rst
passage times �upper curves	�

Note reduced overlap�

��� Simulated Annealing

Consider a problem for which there is a very large number of solutions�

all of which may be ordered according to a cost function� How do we

select the optimal or a near optimal solution in a realistic time scale�

that is� in a time much less than that needed to examine all solutions!

Simulated annealing is an e�cient method of optimisation based on an

elegant correspondence between complex optimisation problems and

statistical mechanics�

The essence of simulated annealing is the controlled introduction

of noise in updating the solution to avoid trapping in local� but not

global� minima� The noise is reduced as the optimality of the solution

improves such that� at the global minimum� determinism is recovered

and the solution remains optimal�

Simulated annealing relies on a scheme of acceptance or rejection

of a small change to the state of the system� known as the Metropolis

algorithm� such that downhill moves occur with probability unity but

uphill moves with probability proportional to the di�erence in Boltz


mann weights� Consider the transition from state DA to state DB �

��
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the transition probability PA�B � PDA�DB

may be written

PA�B �
�

�� �E � ��

exp���EkBT
�� �E � �� �	���

where �E � E�DB� � E�DA� and kB is the Boltzmann or another

suitably chosen constant� Note that while these rules allow transitions

both upward and downward in energy� they increasingly prefer the

latter as the �ad hoc� e�ective temperature T is decreased�

Repeated application of �	��� gives rise to a distribution of states

which tends to be Boltzmann with respect to energy�

P �D�  exp
��E�D�

kBT

�
� �	���

This distribution has the property that� at su�ciently high tempera


ture T � the probability of occupation of each state is uniform� while

at T � �� the ground state is occupied with probability unity� The

transition from the readily attainable high temperature distribution

to the elusive annealed distribution by the gradual decrease of T al


lows optimisation in a time short relative to complete enumeration�

How slowly T must be reduced depends on details of the problem�

in practice� only a deep local minimum is required and the annealing

schedule may be chosen accordingly�

��� Probability of Moving Downhill

In analogy with simulated annealing� we wish to use the uncertainty

in measuring protein �rst
passage time to our advantage in navigating

the sequence fpt landscape� Unlike simulated annealing� in which the

transition probabilities are chosen such that the state of the system is

distributed according to a thermal �Boltzmann� distribution� the tran


sition rules for competing sequences are imposed by the probabilistic

nature of the estimate of mean �rst
passage time� We quantify the

resulting transition probabilities below��

�Amore general treatment of optimisation of a system in which the cost function

is a random variable is provided in Chapter 
� We summarise the case for proteins

here�

	�
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Consider an occupied sequence SA and an alternative sequence

SB� We assume SA and SB are su�ciently similar �di�ering� say� by

a point mutation� such that we may approximate the distribution fB

by fA� apart from a shift in mean�

fB�tB� � fA�tB ����� �	���

where �� � �B � �A and �A � htAi� etc�

Let fnA and fnB be the distributions of tnA and tnB de�ned in �	����

Since tnA and tnB are each the sum of n random variables� it follows from

the central limit theorem that� for n � �� fnA and fnB are gaussian�

which by �	��� we assume to satisfy

fnB�tnB� � fnA�tnB ����� �	���

The transition from sequence SA to sequence SB occurs if our

estimate of the mfpt of SB is less than that of SA� i�e�� if tnB � tnA�

Then the probability PA�B � P �SA � SB� equals P �tnB � tnA�� that

is�

PA�B �
Z �

��
fnA�tnA�

Z tnA
��

fnB�tnB� dtnB dtnA� �	���

Substituting �	��� into fnB in �	��� yields

PA�B���� �

Z �
��

fnA�tnA�
Z tn
A
���

��

fnA�tnB� dtnB dtnA �	�	�

� �
Z Z �

��
fnA�tnA� fnA�tnA ���� dtnA d�� �	���

�

�
�

�
�� erf

��
��nA

�
� �	���

where the constant of integration in �	��� is imposed by PA�B��� � �
� �

Since �nA � �p
n
�A�

PA�B���� n� �
�

�
�

�� erf
p
n��

��A

�
� �	����

	�
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Figure ���� Comparison of simulated annealing �top curve	 and se


quence competition �bottom curve	 transition probabilities� as a

function of �E and ��� Sequence competition denies some down


hill moves but allows fewer uphill transitions�

which is the sequence competition transition probability �Figure 	����

Immediately we recognise ��
��nA

�
p
n��

��A

to be the analogue of �E
kBT

from simulated annealing� We are led to analogously anneal our pro


tein sequence by suitably increasing the number of samples of the fpt

in our estimation of the mfpt� The correspondence between T and �p
n

suggests as a sensible annealing schedule n�tMC�  t�MC� where tMC is

time measured in Monte Carlo time steps� this provides an e�ective

temperature T decreasing as �
tMC

�

��� Thermodynamic Guidance

Adverse sequence mutations may produce alternative sequences with

very long mean �rst
passage times or� worse� sequences which no

longer fold to their target conformations �i�e�� the target state ceases

to be the ground state�� This is a worrying prospect because� unlike

most cost functions� calculating the folding time requires computa


tion in proportion to the folding time itself� We can safeguard against

this danger by using thermodynamic stability as a guide in admit


	�
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Kinetic Accessibility

Figure ���� Contour plot schematic of accessibility
stability phase

space� Stability and folding ability are correlated toward the top

right but anticorrelated near the bottom left� The dotted line rep


resents the limited ability to manipulate the conformational energy

landscape� Along this curve� an increase in stability corresponds to

a decrease in accessibility�

ting sequences whose fpts are not excessive and� therefore� readily

measurable�

We �rst condition each mutation on the basis of the alternative

sequence�s Z
score by the application of a Metropolis rule at constant

temperature� Accepted sequences are then subject to sequence com


petition�

The use of stability as an indication of folding ability relies on the

correlation between the two� The forward correlation � that stable

sequences are fast folding � was exploited in ��� in the folding of

lattice proteins designed to be thermodynamically stable� Evidence

for the reverse correlation � accessible sequences are stable � is pro


vided in ��� � It should be remarked that the anticorrelation between

folding stability and ability� discussed earlier in Chapter �� applies

only near the stability and accessibility extremes of the accessibility


stability phase space� This was borne out analytically in Chapters �

	�
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and �� in which maximising protein capacity and funnel width led to

free energy traps away from the target state�

A contour plot of stability
accessibility phase space suggested by

our research is drawn schematically in Figure 	��� Only the stable�

accessible tail of the distribution is shown� Stability and folding ability

are correlated away from the tail �top right� but become anticorrelated

near their extremes �bottom left�� The dotted curve designates the

limited freedom in manipulating the conformational energy landscape�

along which increased stability results in decreased accessibility�

Ideally� the stability selection pressure should favour mutations

such that sequences are driven along the correlated region of Figure

	��� but not into the anticorrelated thermodynamic extreme� As long

as the selection pressure is small� it should not trap sequences in this

region�

��� Results

We have optimised �	 monomer sequences to fold to compact �����

target conformations according to the method of sequence evolution

described above� Initial sequences were determined by thermody


namic sequence selection outlined in Chapter �� which relies on the

minimisation over sequence of the target state energy� By annealing

�the relative energy� down to various �nite temperatures� we were

able to exercise rough control over the folding ability of the initial

sequences�

Evolution of fast and slowly folding sequences is shown in Figures

	�� and 	�� �both to the same structure�� Each point represents a

unique sequence� plotted according to mean �rst passage time �mea


sured in Monte Carlo steps� and the number of accepted mutations�

It is important to distinguish between the number of accepted muta


tions and the number of attempted mutations� which is signi�cantly

higher� As the folding performance improves� the likelihood of a ran


dom mutation causing further improvement diminishes� Moreover�

the probability of accepting a less e�cient sequence decreases with

temperature�

The free parameters associated with our method of kinetic optimi
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Mutations

mfpt

Figure ���� Evolution of an originally fast folding sequence� Each

point represents a sequence plotted according to its mean rst


passage time �x
axis	 and number of accepted mutations �y
axis	�

where mfpt is measured in number of Monte Carlo steps� Initial

temperature Ti �

�p
n

� ����� nal temperature Tf � ������ Fold


ing time has been reduced by approximately �
�
�

sation are the annealing schedule� i�e�� the functional form of n�tMC��

and the temperature Tguide at which mutations are conditioned on

the resultant change in stability� Since the computational expense of

assessing a sequence becomes prohibitive at lower temperatures� we

wish to make as few low temperature mutations as possible� on the

one hand� while giving disproportionate attention to low temperature

exploration� on the other� We reduce the e�ective temperature �p
n

according to n�tMC�  t�MC� where tMC is the number of Monte Carlo

time steps� The constant temperature Tguide was determined empiri


cally to be �����

Proteins were annealed from initial sequences of various optimality

down to e�ective temperatures T � ������ over up to ���� �kinetically�

attempted mutations� Despite the limited duration of these runs� it

appears that some behaviour is typical of the evolution� Minimum

	�
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Figure ���� Evolution of an originally slowly folding sequence� with

Ti � ����� Tf � ������ The original sequence folded poorly with

mfpt � � � ��� while the nal sequence folded well with mfpt

� � � ���� ��� orders of magnitude faster�

folding times were consistently found to be between 	����� and ������

Monte Carlo time steps� Particularly noteworthy is the small number

of accepted mutations� 
 ��� necessary to achieve these folding rates�

Gutin and coworkers ��� have also presented a method of design


ing fast folding �	
mers� in which mutated sequences are accepted

according to a two step algorithm� The �rst test requires the mean

of two fpts of the alternative sequence to be less than the occupied

sequence mfpt� If this is passed� the second test requires the mean of

a further �� fpts of the alternative sequence to be ��% less than the

occupied mfpt before the mutation may be accepted� Motivation for

these particular acceptance criteria is not provided�

Unlike the selection method presented here� the Gutin algorithm

is unable to quantify �and allows no control over� the degree of folding

optimality� Sequences evolved according to the Gutin technique fold

less quickly than those presented in Figures 	�� and 	�� above�

	�
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��	 Sequential mfpt Landscape is Smooth

The evolution of what appear to be near optimal folding sequences in

such short time scales is surprising� We propose this is due in part to

the comparatively smooth surface of the sequential mfpt landscape�

The ability to traverse the conformational energy landscape is

heavily constrained by the self
avoiding and non
crossable nature of

the protein� To pass to a conformationally near but topologically dis


tant conformation� the protein must swell and recollapse� overcoming

a large energy barrier� These kinetic constraints� especially important

in the context of compact proteins� makes conformational optimisa


tion �folding� slow�

The sequential mfpt landscape� while signi�cantly larger� does not

contain kinetic fences crossing thermodynamically favourable paths�

Unhindered access of nearby sequences allows rapid exploration of the

landscape� For an entirely funnel
oriented mfpt landscape� in which

each element of the sequence may be independently optimised� we may

estimate the number of attempted and accepted monomer mutations

necessary to achieve global optimality�

The number of attempted mutations needed to optimise a single

monomer is A
� � while the number necessary to visit each of the N

monomers once is N lnN
� � Then the number of attempted mutations

required to optimise the entire sequence may be bounded from above

by

Qatt � AN lnN

�

� �	����

The number of accepted mutations is bounded by

Qacc �
ln A
�N lnN

�

� �	����

For a �	 monomer protein composed of �� amino acid species� Qatt �

��� and Qacc � ����

The perfect funnel outlined above is� of course� unrealistic� Nor

do we believe our annealed sequences to be sequential global minima�

Nevertheless� these estimates suggest that optimisation of the mean

�rst
passage time can occur on time scales not dissimilar to those
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observed in this Chapter�

��
 Conclusion

We introduce a new method of sequence design based on the selection

of sequences according to folding ability� Using the uncertainty of

the �rst
passage time� which we �nd to be near
poisson distributed�

in a controlled way allows us to avoid trapping in locally� but not

globally� optimal sequences� Annealing down to equal e�ective tem


peratures  �p
n

allows comparison of mean �rst
passage times of se


quences evolved to fold to di�erent targets� Our kinetically oriented

method of sequence selection yields sequences which fold in 	����� �

������ Monte Carlo time steps� signi�cantly faster than those trained

according to thermodynamic design techniques�

	�

Chapter �

Hierarchical Optimisation Problems

Suppose we solve all the problems it presents� We end up with

more problems than we started with� That�s the way problems

propagate their species�

n� simpson

H
ierarchical optimisation generalises conventional optimisa


tion to include problems in which the solution must be deter


mined stage
wise in the light of information learnt at each stage� We

begin this chapter by considering conventional and probabilistic trav


eling salesman problems� which naturally leads us to hierarchical op


timisation problems� We di�erentiate between decision di�culty and

problem hierarchy� both of which give rise to global complexity� By

introducing the concept of value� we derive the general optimality

equation� applied to model problems in Chapters � and ���

	�� Traveling Salesman Problem

The prototypical complex optimisation problem is the traveling sales


man problem �tsp�� The task is to determine the minimal length

tour through a set of cities such that each city is visited once and the

path returns to its starting point �Figure ��� a�b�� The tsp has been

the subject of an enormous amount of literature and is the standard

testing ground for methods of combinatoric� optimisation�

We formulate the traveling salesman problem as follows� Consider

a set A of N cities on a Euclidian plane� labelled a�� a�� � � � � aN � Pair


wise separations are given by the N � N distance matrix D� where

�By combinatoric we mean that the number of enumerable solutions scales

exponentially or more rapidly with the size of the problem�
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ba c

Figure ���� Conventional and probabilistic traveling salesman prob


lems� The tsp seeks the minimal length closed tour through a

set of cities �a�b	� The ptsp seeks a tour which� when pruned to

pass through a stochastically realised subset of cities� is of minimal

length in the expected sense �a�b�c	�

Dij � Daiaj is the distance between city i and city j� Cities are visited

according to a tour t where t � t�� t�� � � � � tN is a permutation of the

cities a�� a�� � � � � aN � We represent the tour by the N �N connection

matrix T such that Tij � � if cities ai and aj are neighbours along

the tour and Tij � � otherwise� The total distance traveled by tour t

may be expressed

d�t� �
�

�
NX

ij��
Tij Dij � �����

The objective of the tsp is the ground state tour t� which minimises

d�
	�� Probabilistic Traveling Salesman Problem

The introduction of probabilistic elements to combinatoric optimisa


tions problems was made by Jaillet ��	 in ���� and soon after ex


tended by Bertsimas ��� � Both considered� in particular� an exten


sion of the tsp known as the probabilistic traveling salesman problem

�ptsp�� which has since become a paradigm problem of probabilistic

combinatoric optimisation�

Unlike the tsp� the ptsp applies to a set of cities for which� on

��

hierarchical optimisation problems

any given instance� only a stochastically chosen subset need be vis


ited� The objective of the ptsp is the construction of an a priori tour

through all the cities such that� upon realising the active subset� the

collapsed tour is of minimal length in the expected sense �by collapsed

we mean that the reduced tour visit the subset of cities in the same

order as the original��

We label the set of N cities A � a�� a�� � � � � aN � with pair
wise

separations Dij � Each city is to be visited with probability pi � p

such that� on any given instance of the problem� a subset B � A

cities must be visited� Consider some a priori tour t through A� The

pruned tour u �represented by U� is a permutation of the cities in B

such that they are visited in the same order as by t� The original tour

t is chosen such that the pruned tour u� averaged over all possible

realisations of the city probabilities� is of minimal expected length�

The expected distance of the pruned tour may be written

hd�ujt�i �
�

�
X

B�A
P �B�

NX
ij��

Uij�ujt� B�Dij � �����

where the �rst summation runs over all subsets B of A and

P �B� �
Y

i�B
pi

Y
i�A�B

��� pi�� �����

The objective of the ptsp is the tour t which minimises the expected

value of d�u��

The probabilistic tsp may be considered a conventional tsp in

which the total distance of the a priori tour is a random variable

parametrised by the city probabilities pi� The task here is to determine

the tour whose mean length is minimal� Optimisation of a complex

problem in which the cost function is a random variable is considered

in the following chapter� In the remainder of this chapter we generalise

our example to multiple stage hierarchical optimisation problems�

��
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	�� Hierarchical Optimisation Problems

The probabilistic traveling salesman problem is one of a number of

probabilistic combinatoric optimisation problems� others include the

minimum spanning tree and vehicle routing problems ���� �� � Char


acteristic of them all is optimisation in light of information learnt �the

problem instance� followed by the realisation of probabilistic informa


tion and further optimisation� �The second� albeit elementary� stage

of optimisation in the ptsp is pruning the tour to visit only the active

subset��

We consider the extension of probabilistic combinatoric optimisa


tion problems to problems consisting of an arbitrary number of opti


misation levels� each separated by the realisation of information� We

describe them as follows

�� they contain two or more levels of optimisation�

�� at each successive level� probabilistic information is realised be


fore making a decision�

�� decision at any level can be made only after the preceding levels

have been completed�

In light of the stage
wise manner in which they must be solved� we

call such problems hierarchical optimisation problems� �hops��

Hierarchical optimisation is an appropriate framework for prob


lems in which the solution must be determined �or imposed� over long

time scales� during which the problem conditions �uctuate or experi


ence feedback from past optimisation stages� Examples include invest


ment strategy as a function of �uctuating market prices� the design of

a multi
stage engineering project and models of economic growth� The

decision must be made at each stage such that the emphasis on imme


diate reward is balanced by the maximisation of implicitly dependent

expected future rewards� In a problem plagued by �uctuating condi


tions� this requires securing a wide range of future options in response

to unknown future circumstances�

�The same phrase is used in ��� to describe probabilistic combinatoric optimi�

sation�

��

hierarchical optimisation problems
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Figure ���� Hierarchical
combinatoric phase
space for hierarchical

optimisation problems� Complexity increases away from the origin�

The probabilistic traveling salesman problem has two decision lev


els� one of which is very di�cult� We propose that complexity may

also result from the concatenation of many elementary decisions�

which is the subject of Chapter ���

	�� Combinatoric and Hierarchical Complexity

The complexity of hierarchical optimisation problems �often re�ected

in the structure of their solutions� may be generated by two indepen


dent properties �� the inclusion of decision levels for which there are

a combinatorially large number of options and �� the concatenation

of many �inter
dependent� decision levels�

Probabilistic optimisation problems considered above are direct

extensions of conventional combinatoric optimisation problems result


ing from the inclusion of probabilistic elements in the problem in


stance� Choosing the optimal solution from a combinatoric number

of possibilities is di�cult in its own right� the addition of stochas


tic elements requires the solution of many instances of the problem�

Such problems belong to a class of problems typically characterised

by a small number of decision levels� one or more of which admits a

combinatorially large number of solutions�

Alternatively� hops consisting of many �often straightforward� de


��
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cision levels may give rise to complex behaviour through the coupling

of each decision to subsequent decisions implicitly dependent on it�

Complexity in this case is an emergent property of the hop itself�

We describe the �rst class of hops as combinatorially complex

and the second as hierarchically complex� Figure ��� shows hierarchy


combination phase space� in which problem complexity grows with

distance from the origin� Chess exhibits both combinatoric and hier


archical complexity and is considerably di�cult to solve �i�e�� for which

to construct an optimal decision policy�� We propose that there exist

many
level hops which� while consisting of individually elementary

decisions� exhibit complex global behaviour� such an example is the

subject of Chapter ���

	�� Definition of Hierarchical Optimisation

Hierarchical optimisation may be framed as a sequence of state
action

stages� Each stage begins with the realisation of a random variable

�state� and ends with the decision �action� chosen in light of this

state� Figure ��� depicts the branching structure of possible state


action futures� in a typical hop� di�erent regions of the tree may be

more or less rami�ed� States and actions of one stage can be learnt

and taken only after completing the stage preceding it�

For reasons which will soon be evident� the stages are ordered

in reverse chronological order� the �rst stage� corresponding to the

top of the hop tree� is labelled N and the last stage is labelled ��

Optimisation begins with realisation of the state sN � after which action

aN is chosen from the set �or space� of possible actions� In the second

stage of optimisation� state sN�� is learnt and action aN�� taken� and

so on�
It is assumed that the options available to action an depend ex


plicitly on the state sn just learnt alone� The reward	 associated with

action an in light of state sn may depend on sn in addition to an and

is written R�anjsn��

�We use the terms reward and cost interchangeably� with the understanding

that one is the negative of the other�

��
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Figure ���� Hierarchical optimisation tree schematic� In each of the

N stages� state s is realised before taking action a� Each path from

top to bottom corresponds to a unique realisation of outcomes and

decisions�

The transition probability from state sn to state sn�� may depend

explicitly on both sn and an� we write it as P �sn��jsn� an�� Note that

if the transition probabilities are all zero or unity �i�e�� the problem is

no longer stochastic�� then the hierarchical nature of the optimisation

collapses� The value of all states is known a priori and� consequently�

all decisions can be made up front�

For a conventional �single stage� optimisation problem� the opti


mal solution satis�es
aopt� � a�jmax
a�

h
R�a�js��

i
� �����

i�e�� the optimal action aopt� is that action which� given the problem

instance s�� maximises the reward function� For the traveling sales


man problem� a� is a tour connecting the set s� of city coordinates

and R is the negative distance traveled�

Equation ��� may be generalised to describe hierarchical optimi


sation problems as well� For a two stage hop�

��
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aopt� � a�jmax
a�

h
R�a�js�� #

X
s�

P �s�js�� a��R�aopt� js��
i
� �����

aopt� � a�jmax
a�

h
R�a�js��

i
� �����

In the context of the probabilistic traveling salesman problem� s� is

the set of city coordinates through which we construct an a priori

tour a�� We then learn the stochastically chosen subset of cities s�

which must be visited and choose a pruned tour a� accordingly� In

this example a reward �equal to �d� is realised for the pruned tour

but not the a priori tour�

	�� General Optimality Equation

The extrapolation of ������ ����� to hops of higher order is� while

straightforward� not very useful� We instead re
express the conditions

of optimality in terms of the value Vn� the maximum expected reward

incurred by the actions descending from state sn� It represents the

immediate reward associated with the optimal �in the global sense�

action an in addition to the expected rewards associated with making

optimal future actions� The value associated with state sn may be

expressed

Vn�sn� � max
an

	
R�anjsn� #

X
sn��

P �sn��jsn� an� max

an��
h
R�an��jsn���

#

X
sn��

P �sn��jsn��� an����� � ��
i

� ���	�

Immediately we recognise the expression maximised over an�� in ���	�

to be the value Vn���sn���� Accordingly� we may recursively express

���	� as

��

hierarchical optimisation problems

Vn�sn� � max
an

h
R�anjsn� #

X
sn��

P �sn��jsn� an�Vn���sn���
i
� �����

At stage n� we choose as the optimal action that action which

maximises the right side of ������ This depends implicitly on the

future optimal actions an��� an��� etc� Accordingly� we must solve

����� from the bottom of the tree up� beginning with

V��s�� � max
a�

h
R�a�js��

i
� �����

since decision ends at stage �� This is equivalent to saying that the

boundary condition for ����� is V� � ��

We refer to ����� as the general optimality equation� In the next

chapter we consider two
stage hierarchical optimisation problems in

which the �rst stage decision is su�ciently hard that we can only ap


proximate the optimal solution given by ������ In Chapter �� we apply

the general optimality equation to an hop consisting of many optimi


sation stages� while each action� taken independently� is elementary�

the global solution exhibits non
trivial behaviour�

�	



Chapter �

Stochastic Annealing

Of course Einstein�s wrong� I just played craps with God yester


day�

joseph long

I
n this chapter we consider optimisation of a system for which

the cost function is a random variable whose distribution depends

on the state of the system� Competing states are ordered according

to the mean of the cost� which we estimate by random sampling� By

analogy with simulated annealing� we show that dynamically control


ling the uncertainty associated with the cost estimate can improve

the degree of optimisation obtained� whilst providing substantial gain

in computational e�ciency� We apply our technique to the proba


bilistic traveling salesman problem� a central problem in probabilistic

optimisation�


�� Introduction

Hierarchical optimisation� introduced in Chapter �� concerns the stage


wise optimisation of a cost which is a function of a sequence of de


cisions separated by the realisation of probabilistic information� We

consider in this chapter two
stage hierarchical optimisation problems

�hops� for which there is a very large number of solutions �combina


toric complexity� and reward is provided in the �nal stage only�

The class of two
stage hops described above is an extension of

conventional optimisation which includes problems in which the cost

function is a random variable� Accordingly� the following results apply

to any problem for which the cost function H is itself to be computed

by random sampling over other variables� An example in �nance might

stochastic annealing

be the value of a portfolio from sampled paths of future prices� in pro


tein design� the time for the molecule to fold under sampled thermal

�uctuations� in oil �eld development� the return from placement of

wells under sampled reservoir geometry� In all cases it has to be as


sumed � or the sampling so designed � that unlikely to be sampled

outcomes of the cost do not dominate considerations�


�� Simulated Annealing

The essence of simulated annealing� qualitatively outlined in Chapter

	� is that� to a controlled extent� unfavourable design �state� transi


tions should be accepted in order to reduce trapping in locally� but

not globally� optimal designs� This is achieved by the controlled in


troduction of noise to otherwise deterministic downhill dynamics such

that determinism is recovered as the system approaches optimality�

Consider an occupied design DA and a similar alternative design

DB � For a �deterministic� cost function H�D� to be minimised� design

evolution is carried out such that downhill moves are accepted with

probability unity but uphill moves with probability decreasing with

the change in cost and with time via the control parameter Te� This

is the Metropolis algorithm ��� � written

PA�B �
�

�� �H � ��

exp���e�H�� �H � ��

�����

where �H � HB � HA � H�DB� � H�DA� and �e is the reciprocal

e�ective temperature �
kTe

� with k some constant�

Consider a very large ensemble of systems� in which 	A is the

number of systems in design DA and 	B is the number of systems

in design DB � We wish to determine the equilibrium distribution of

designs imposed by the repeated application of ������

Let us make transitions �moves� in all the systems of our ensemble�

where QA�B is the probability that the move from DA to DB is

considered and PA�B the probability that� once considered� the move

is accepted� Assume� without loss of generality� that HA � HB� Then

the number of systems moving from design DA to design DB is

��
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	AQA�B PA�B � 	AQA�B � �����

and the number moving from DB to DA is

	B QB�A PB�A � 	B QA�B e
��eHA�HB�� �����

By assumption� QA�B is the same for all A and B� and we henceforth

simply write Q� The net number of systems moving from DA to DB

is

Q�	A � 	B e
��eHA�HB��� �����

It follows that net transfer from DA to DB will continue until �����

� �� that is�

	A
	B

�
e��eHA

e��eHB

� �����

or simply

	C  e��eHC � DC � �����

which is the condition for equilibrium� Equation ����� implies that�

at any given time� the probability of a system being in design DC is

proportional to its Boltzmann factor�

The Metropolis transition rule in ����� may be replaced by the

sigmoid function governing Glauber dynamics ��� �

PA�B��H� �

�

� # exp��e�H�
� ���	�

commonly used in �nite temperature neural network models� Unlike

the Metropolis rule� the Glauber rule �Figure ���� is a symmetrically

shaped function and hence a more physical representation of stochas


ticity� This increase in realism� however� is at the expense of e�ciency

the Glauber probability sometimes denies downhill moves and allows

fewer uphill transitions� It may be readily veri�ed that the Glauber

rule also gives rise to the Boltzmann distribution ������

The important feature of ����� and ���	� is the ratio of acceptance

��
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probability for a move and its reverse

PA�B

PB�A

�

PA�B��H�

PA�B���H�
� e��e�H � �����

which ensures path independence of the transition probabilities be


tween any two designs� If moves and their reverse are equally likely to

be attempted� a detailed balance equilibrium is approached in which

designs are sampled with probability proportional to e��eHD�� The

system is thereby driven toward a global minimum of H if� with suc


cessive moves� the reciprocal temperature �e is gradually increased

su�ciently slowly �just how slowly being the di�cult question of an

annealing schedule��


�� Stochastic Annealing

Here we derive the transition rule analogous to ����� and ���	� im


posed by sampling a distributed cost function� Unlike in x	��� here we

consider the estimate of the di�erence in design costs rather than the

di�erence of the estimates themselves�

Consider again an occupied design DA and a similar alternative

design DB � whose cost functions HA and HB are now random vari


ables� taking on values hA and hB � The costs are distributed according

to fA and fB � with means �A � hHAi and �B � hHBi and standard

deviations ��A and ��B�

It may or may not be appropriate to use the same sampling for

HA and HB� Accordingly� we do not assume the distributions to be

identical �up to mean� but instead consider the random variable

�H � HB �HA� �����

whose value �h � hB � hA is distributed according to f�H � We take

the mean of �H to be �� � �A � �B and the variance to be ���H �

if �A and �B are approximately equal� then ���H � ���A�

We estimate the mean of �H by the statistic

�Hn �
�

n

nX
i��

�hi� ������

��
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for large n� �Hn is gaussianly distributed as fn�H��hn�� in accordance

with the central limit theorem� with mean �� and variance �n�H
� �

�
n��H

��

Design evolution occurs such that the transition from the occupied

design DA to the alternative design DB is accepted if �hn � ��� Then

the probability PA�B may be expressed

PA�B���� �

Z �
��

fn�H��hn� d�h� ������

Let the distribution gn�H be identical to fn�H but with zero mean� i�e��

gn�H��hn� � fn�H��hn # ���� Then ������ may be rewritten

PA�B���� �

Z ���

��

gn�H��hn� d�h� ������

�

�
�

�
�� erf

��p
� �n�H

�
� ������

Substituting �n�H � �p
n
��H into ������ yields

PA�B���� n� �
�

�
�

�� erf
p
n��p

���H
�

� ������

which is the stochastic annealing transition probability�

Evidently
p
n��

��H

is the analogue �up to a constant� of �e in ������

This suggests as an annealing schedule increasing the sample popu


lation n with time according to n�tMC�  t�MC� where tMC is time

measured in Monte Carlo time steps� this corresponds to the e�ective

temperature Te in ����� decreasing as �
tMC

�

�Because design DA must previously have been tested� against others which it

superceded� we could in principle seek to use also that earlier information about its

cost in estimating �Hn� In the present discussion we will ignore this possibility�

with the advantage that this makes acceptance decisions statistically independent

of each other�

��
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�� Comparison of Simulated and Stochastic Anneal�

ing

The transition probability curves for Metropolis� Glauber and stochas


tic annealing dynamics are shown in Figure ���� Stochastic annealing

matches Glauber dynamics surprisingly well for j��j � �
� � which sug


gests it may be a good approximation to thermal selection�

The ratio of forward to backward acceptance for the stochastic

annealing rule ������ is given by

PA�B

PB�A

�
�

�� erf
p
n��p

���H
�

�
� # erf

p
n��p

���H
� � ������

while this does not a�ord a thermal distribution� we can observe how

well it approximates it� Expanding ����� and ������ to �rst order in

-3 -2 -1 0 1 2 3
dH,du

0.2

0.4

0.6

0.8

1

P_AB

Figure ���� Transition probabilities for Metropolis� Glauber and

stochastic annealing �right side� top to bottom	� The Metropolis

and Glauber curves are shown for �e � �� the stochastic anneal


ing probability is plotted accordingly with �s � � in �����	� Note

the similarity between �thermal	 Glauber dynamics and stochastic

annealing�

��
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-3 -2 -1 1 2 3
BdH

-3

-2

-1

1

2

3

ln(P_AB/P_BA)

Figure ���� Logarithm of the ratio of forward to backward accep


tance for simulated annealing �straight	 and stochastic annealing

�curved	� Stochastic annealing satises thermal statistics well for

cost changes within � �
�
�

�H and �� and matching terms� we �nd that the inverse e�ective

stochastic annealing temperature may be approximated by

�s �
p

��

�n�H

�
p

��

��H
p
n� ������

Setting �e � � in ����� and �s � � in ������ �i�e��
p
n
��H

� p
�
� ��

we compare the logarithms of each in Figure ���� despite having a

fundamentally di�erent functional form� the �nite sample acceptance

mirrors thermal acceptance rather well for cost changes within � �
� �

Outside this range� the most signi�cant errors are over
acceptance of

highly favourable moves and under
acceptance of highly unfavourable

transitions � something which from the standpoint of optimisation

may not be too serious�

The analogy with thermal acceptance� embodied in equation �������

leads to a useful prediction of an equivalent thermal distribution if we

can further approximate ��H as independent of the pair of designs

DA and DB � Additional notekeeping� not discussed here� allows us

to relax this condition if ��H changes su�ciently slowly such that

��
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�A � �B for all designs DA and their similar alternatives DB � Note

that this condition is in practice generally satis�ed in protein se


quence optimisation �x	���� sequences are compared with alternatives

di�ering by a single monomer� in the probabilistic traveling salesman

problem �x����� alternative tours di�er by a single tour segment �ip

�reversal of a connected string of cities��


�� Probabilistic Traveling Salesman Problem

In this section we apply the method of stochastic annealing� presented

in x���� to the probabilistic traveling salesman problem �ptsp�� de


scribed in Chapter ��

We outline the problem here for convenience� Consider a set A

of N cities� each of which must be visited with probability p� on any

given instance� an active subset B � A must be visited� Given an a

priori tour t through A� the corresponding pruned tour u through B

visits the active cities in the same order� The objective is to determine

the a priori tour t such that the tour u is minimal in the expected

sense�
It should be remarked that the probabilistic nature of the ptsp

induces behaviour distinctly di�erent from that exhibited by the con


ventional traveling salesman problem �tsp�� Notably� the optimal

ptsp tour may intersect itself ��� � a phenomenon easily shown to be

absent from the optimal tsp tour� This suggests the practical ques


tion of how well the optimal tsp tour satis�es the ptsp� The optimal

tsp and ptsp tours are guaranteed to coincide if the number of cities

N � �� larger tours correspond only under special circumstances� e�g��

when the cities lie at the vertices of a convex n
gon ��� � Jaillet ��	 

has provided examples in which substituting the optimal tsp tour

into the corresponding ptsp gives arbitrarily large errors� It follows

that� for practical applications �e�g�� mail routes� as well as theoretical

interest� we must attempt to solve the ptsp directly�

We stochastically annealed ptsp tours de�ned over ��� cities uni


formly distributed on the unit square� Simulations were run for 


���� ��� time steps� with n increasing from � to 
 ����� Figure ���

shows near optimal tours for various probabilities p� When p � �� the

��
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p � ����

Figure ���� Near
optimal tours for the probabilistic traveling sales


man problem� with p � �� �
�
� �
�
� For p � �� the problem is deter


ministic and reduces to the conventional tsp�

problem reduces to the conventional tsp�

Preliminary results �expected pruned tour length d�u�� are shown

in Table ���� The �
popt and �
shift algorithms are both deterministic

�downhill� and were applied to the exact mean tour length� by Bert


simas ��� � Stochastic annealing follows� where we have also included

�Jaillet derived a closed form expression for computing the exact expected

length of an a priori tour over all realisations of the city probabilities ���� This

allows comparison of conventional optimisation techniques with probabilistic meth�

ods� such as the one introduced here�

��
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p �
popt d�u� �
shift d�u� sa d�u� sa d�t�

� ��� ��� ��� ���

�
� ��� ��� ��� ���

�
� ��	 ��� ��	 ����

Table ���� Optimised ptsp pruned tour lengths d�u	� Cities are

uniformly distributed on the unit square� Results are shown for the

deterministic algorithms �
popt and �
shift and stochastic anneal


ing� the a priori tour length d�t	 is also included�

for comparison the a priori tour length d�t��

Notwithstanding the advantage provided by exact measurement

of the cost function� the solutions achieved by the deterministic tech


niques are nearly equivalent to those obtained by stochastic anneal


ing� This is not truly surprising� since simulated annealing �which

our technique approximates� is well known to provide at least as op


timal solutions as downhill dynamics� However� for general randomly

distributed cost functions� the mean cost cannot be exactly computed

and neither deterministic methods nor conventional simulated anneal


ing are applicable�


�� Conclusion

We have provided a general method of optimisation of a randomly

distributed cost function� It e�ects a transition probability between

two states satisfying PA�B���� n� � �
����erf

p
n��p

���H
�� where �� is the

mean di�erence in costs and the e�ective temperature is proportional

to �p
n

� Comparison with simulated annealing suggests the technique

provides a close approximation to thermal selection� Preliminary tests

on the probabilistic traveling salesman problem are encouraging�

�	



Chapter �	

Exactly Solvable

Hierarchical Optimisation Problem

Le bien est l�ennemi du mieux�

francois�marie voltaire

I
n contrast to the previous chapter� here we consider a se


quence of elementary decisions which must be made in the light of

successive information learnt� A key feature is that the decisions must

balance the reduction of immediate cost against learning information

and hence securing a wider range of future options � a con�ict which

motivates us to attach a value to information� We analytically derive

an optimal decision policy� while each individual decision is elemen


tary� the solution to the collective problem� which may be interpreted

as a novel percolation model� exhibits a phase transition and �nite

size scaling�

���� Introduction

The introduction of probabilistic elements in combinatoric optimisa


tion problems �cops� began with Jaillet ��	 in his study of the proba


bilistic traveling salesman problem �ptsp�� The objective is to obtain

a �rst stage solution which minimises the expected cost of a second

stage tour� Bertsimas ��� extended this idea to other probabilistic

cops and suggested the a priori optimisation heuristic to solve them�

These problems are characterised by a stochastically de�ned instance

exactly solvable hierarchical optimisation problem

�in the case of the ptsp� the city locations�� which is learnt after ini


tially optimising over all instances and allows further optimisation in

light of the actual instance �see� e�g�� ��� ��

The inherently hierarchical nature of probabilistic optimisation

was identi�ed in Chapter �� where we introduced hierarchical optimi


sation generally� We propose in this chapter a hierarchical optimisa


tion problem which consists of many elementary decisions but displays

nontrivial global behaviour and derive an exact analytic solution�

���� Description of Problem

The constrained form of the problem� appropriate to the optimal de


velopment of a design� is as follows� Decision starts from a unique

node at level N # �� from which the costs associated with z descen


dant nodes at level N are observed� It must be decided how many of

these nodes to buy and hence pursue from level N � this process con


tinues in like manner down to level �� For each of the nodes bought

at level n� the price of z descendant nodes at level n� � are learnt� It

is then decided which of all of these descendant nodes to buy before

proceeding to the next level �Figure ������ The objective is to reach at

least one node at level � with the minimum overall cost� This implies

the constraint that at every level at least one node must be bought�

The problem can also be interpreted as one of economic growth�

the decision to buy representing investment in future return in the

form of negative costs� i�e�� pro�ts� In this economic form of the

problem it is not appropriate to deny the possibility of buying no nodes

at some level� but of course the result corresponds to termination of

the activity��

It is a vital feature of our model that� in either form� the costs

are only learnt one level at a time and previous decisions cannot be

changed� The contrasting case� where all costs are known in ad


vance� would correspond to the problem of directed branched poly


mers spanning a Cayley tree of sites� We will assume that the costs x

�It is important to distinguish between the tree of nodes� shown in Figure �����

from the corresponding tree of decisions �cf� Figure ���	� in particular� the decision

tree is much more highly branched� the decision at each level being the total number

of nodes to purchase�

��
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Figure ����� The decision problem may be summarised as a z
fold

Cayley tree �where z � � in the example shown	� N levels deep�

with stochasticly chosen costs x associated with every node� The

tree is traversed from top �level N � �	 to bottom �level �	� such

that costs on a given level are known �and may thus be purchased	

only by paying the cost of the node from which they branch� The

objective is to sequentially traverse the tree from top to bottom

such that the total incurred cost is minimal�

are drawn independently from some a priori probability distribution

such that they may be negative or positive� We concentrate mainly

on the case where the distribution is uniform over the �nite interval

x � �� � �
� � � # �
�  � we argue that the case of a general distribution

qualitatively behaves similarly� Unless otherwise stated� we focus on

the solution to the economic version of the problem�

���� Optimality Equation

We set out to obtain the decision policy which minimises total ex


pected costs� henceforth called the optimal decision policy� We begin

by de�ning Vn to be the expected minimum total cost incurred over

n� � levels� i�e�� stemming from a single �purchased� node at level n

downwards� That is� �Vn is the expected value� associated with the

�The de�nition of value presented here is not identical to the de�nition provided

in Chapter � �this chapter was published earlier	� We address the di�erence in

���

exactly solvable hierarchical optimisation problem

subtree stemming from a node xn� corresponding to the maximum cost

that we are willing to pay for knowledge of� or access to� that subtree�

Identifying �Vn as both the value of a subtree and a bound on costs

enables us to recursively de�ne Vn�� in terms of the Vn associated

with its descendant nodes�

The optimality equation for Vn may be expressed

Vn�� � hmin
a

�C�a�s�� # g�a�s��Vn�is� ������

where C�a�s�� is the cost incurred by choosing action a when in state

s� The state s is the set of costs observed and the action a is the

particular subset of those costs paid� The function g�a�s�� gives the

number of costs in a�

The optimal policy aopt�s� is achieved by paying those costs xn

which are less than the maximum cost we are willing to pay� i�e��

satisfying xn � �Vn� Summing over the states s� ������ appears as

Vn�� �
X

s
�P �s�C�aopt�s�� # P �s�g�aopt�s��Vn�� ������

where P �s� is the probability that state s occurs� The expectation

of the cost of a given action is equal to the average cost of a pur


chased node� cn� times the expected number of nodes purchased� The

optimality equation may then be written

Vn�� �
X

s

P �s�g�aopt�s���cn # Vn�� ������

The factor P �s�g�aopt�s�� is the mean number of nodes purchased�

With pni the probability of purchasing the ith node� and noting that

the pni are independent� we may alternatively express the mean num


ber of purchased nodes as the sum of pni over the z descendant nodes�

which yields

Vn�� �

zX
i��

pni�cn # Vn� � zpn�cn # Vn�� ������

de�nitions and its implication in Appendix �����

���
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Here� pn is the probability that cost xn � �Vn and cn is the mean of

xn given that xn � �Vn� both of which are readily obtained from the

cost distribution fx�

pn �
Z �Vn

��

fxdx� cnpn � qn �
Z �Vn

��

xfxdx� ������

The optimality equation may then �nally be expressed

Vn�� � z�pnVn # qn�� ������

We have thus derived the recursion relation which governs the

optimal decision policy� It is important to note that while the decision

process occurs sequentially going down the tree� the policy is de�ned

recursively going up the tree� This means that the boundary condition

is located at the bottom level� since there exists no descendant nodes

at level �� we clearly must have V� � ��

The stability of ������ is implied by

���dVn��
dVn

��� � �� ����	�

which is satis�ed for zpn � �� where zpn� the number of descendant

nodes times the probability than an unknown cost xn is paid� is the

branching rate� Thus the sequence Vn is convergent going up the tree

if and only if the mean purchase of subtrees is decaying downwards�

The optimal decision problem may be alternatively expressed� on

a given realisation of the costs xn� as sequentially choosing the number

of nodes to purchase at each level such that the total incurred cost

is minimal� Let Bn be the expected number of costs paid at level n�

clearly� Bn � zN���n� The total cost incurred at level n� Cn� may

then be expressed as

Cn � Bncn� ������

Since

Bn � zpnBn�� and BN�� � �� ������

���

exactly solvable hierarchical optimisation problem

we may express the total cost C as

C �

NX
n��

Cn �

NX
n��

qnz
N���n

NY
i�n��

pi� �������

���� Uniform Cost Distribution

The optimal decision policy is dependent on the probability density

function� fx� from which the costs x are chosen� the number of deci


sions to be made� N � and the degree of the decision tree� z� In this

section we examine the behaviour associated with a uniform distribu


tion� fx � �� x � �� � �
� � � # �
�  � for which the optimal policy is most

tractable� For convenience� we set the degree of the Cayley tree z �

��
For �Vn � � # �
� � we can express pn and qn from ������ as

pn � �Vn � � # �
� � qn � �
��V �
n � �� # �� �
��� �������

for �Vn � � # �
� � the values of pn and qn simplify to � and �� respec


tively� These physical bounds of pn �as a probability� and qn �as a

mean� apply to all identities in the remainder of this section� Substi


tution of ������� into ������ yields the optimality equation in the form

of a quadratic map�
Vn�� � ��Vn # �� �
���� V� � �� �������

Equation ������� may be expressed in terms of the more useful

parameter pn� the probability of paying an unknown cost xn� Elimi


nating Vn from the left side of ������� and ������� yields

pn�� � p�n # �
� � �� p� � �
� � �� �������

the stable �xed point of which is given by

pf � �
� �

q
�� �
� � � � �
� � �������

Without loss of generality� we restrict our attention to � � ���
� �

�
�  �

���
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Observing that ������� ������ have stable �xed points for � � �
� and

diverge otherwise� we henceforth refer to the separatrix � � �
� as the

critical point �c�

First we consider the behaviour of the optimal economic policy�

We then address the solution of the constrained form of the problem�

which� it turns out� coincides with the economic solution for � � �c�

From ������� the growth of B from level n to level n # � vanishes

for zpn � �� Substituting this condition into the left side of �������

implies �Vn � �� which� it can be shown� is not satis�ed for � � ��� �
�
�  �

Thus� the branching rate obeys zpn � � and the sequence BN�� � � � B�

is decreasing for � � �c� corresponding to a region of decreasing eco


nomic activity� Moreover� since the Bn scale geometrically with n by

the factor zpn� the tree of purchased nodes is �nite in the limit of

N �	 for � � �c�

To examine the behaviour of p�n� ��� we may approximate the

di�erence equation ������� by a di�erential equation�

dp
dn
� p� � p # �� �

�
� �������

provided pn is slowly varying� For � � �c� the solution to �������

appears as
p�n� �� � �
� �

p
�� �c coth�

p
�� �c �n # c�� �������

and approaches its �xed point ������� exponentially� For � � �c� it is

convenient to express the solution as

p�n� �� � �
� �

p
�c � � cot�

p
�c � � �n # c��� �����	�

where the constant of integration c is of order unity�

At the critical point � � �
� � both of the above reduce to algebraic

behaviour and pn slowly approaches its �xed point as

pn � �
�
� �
n # c

� �������

When � � �
� � there are no negative costs� and thus the obvious optimal

policy is to buy zero nodes at all levels� indeed� this is the policy

���

exactly solvable hierarchical optimisation problem

suggested by ��������

With n� the level above which all probabilities pn � �� the optimal

decision policy consists of an initial period of maximum growth down

to level n�� during which all nodes are purchased with probability

unity� This corresponds to a phase of expansion in which all �positive

and negative� costs are paid in the interest of securing future options�

Below n�� the pn fall below �� and there is a decrease in purchasing

activity such that at the bottom level only negative costs are paid�

this may be identi�ed as a pro�t making regime� Note that since the

number of iterations necessary for pn to exceed � is independent of N

�for N � n��� the length of the second regime� n�� is a function of �

only�
We begin our analysis of the constrained policy by examining how

well the economic policy� which we have already solved� satis�es the

added constraint of reaching the bottom level of the tree� Let bn be

the probability that the subtree of purchased nodes stemming from

a single node on level n does not terminate before reaching level ��

i�e�� that at least one of the nodes on level � is purchased� We may

explicitly calculate bn by noting that it satis�es the recursion relation

bn�� � ��pnbn�� # �pnbn� b� � �� �������

where pn is the aforementioned probability of purchasing a node at

level n� We are interested in the �nal term bN��� the probability that

the tree of purchases extends from level N # � to �� as a function of

�� Clearly� this function depends on the value of N �Figure ������ As

N approaches in�nity� bN����� approaches a step function below �c�

the probability of purchasing at least one node at the bottom goes to

unity� while above �c� the probability vanishes�

For �nite N � the point at which the economic policy ceases to con


tinue to the bottom� and thus at which the economic and constrained

policies diverge� occurs not at �c but rather �e� � �c� We are inter


ested in characterising this divergence point� �e� � as a function of N �

This is most easily addressed in the framework of a percolation model�

which we defer until the end�

For � � �c� it is necessary to adapt our economic decision pol


icy such that it does not exhibit terminating behaviour� Since the

���
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�

����
���

����
���

���� ����� � �c � ���� ���

bN��

�

Figure ����� Critical transition and nite size e ects resulting from

the economic policy� Shown is the probability bN�� of the tree

of purchased nodes reaching the bottom level as a function of the

mean cost �� Curves are shown� from left to right� for decision tree

lengths N � �� �� ��� ��� For large N � the function approaches a

step function� discontinuous at the critical point �c�

optimal economic policy may be constrained to satisfy the additional

constraint of reaching the bottom level of the tree simply by paying

the minimum cost available when the economic policy dictates the

purchase of none� the optimal constrained policy might be approxi


mated as a concatenation of optimal economic decision policies� each

with di�erent initial conditions�

���� General Cost Distribution

For a general cost distribution fx � gx�x���� we may write equation

������ as

Vn�� � z
Z �Vn

��
�Vn # x�gxdx� �������

Change of variables y � x� � and Un � �Vn � � and integration by

parts yields

���

exactly solvable hierarchical optimisation problem

Un�� � �z��y � Un�Gy�
���Un

��
# z

Z Un

��
Gydy � �� �������

where Gy�y� �
R y

�� gydy is the cumulative probability distribution�

The �rst term vanishes for all distributions gy which go to zero more

rapidly than y�� as y � �	� Accordingly� the optimal policy for a

general cost distribution is given by

Un�� � z
Z Un

��
Z y

��
gydy dy � � � zH�Un�� �� �������

We note that H � �� H��	� � �� H�y� � y � c as y � 	�

and H is concave upwards� There then exists a critical point �c such

that zH�Un�� � intersects the line Un�� � Un zero times for � � �c�

once at � � �c� and twice for � � �c� as shown in Figure ����� To

Uc

U� U� Uc

Un��

Un

� � �c

� � �c

� � �c

� � �

� � �c

� � �c

� � �c

� � �
�

�

�

	 


�

�

�

	 


�

�

�

	 


Figure ����� The function zH�Un	�� for � below� at� and above its

critical value plotted in �n��� n	 phase space� The arrows indicate

the direction of convergence for increasing n� The sequence Un��	�

U� � ��� may be obtained geometrically� as shown for Un��c	

slowly converging to Uc� For � � �c� the sequence Un increases to

innity� for � � �c� the sequence Un converges to Uf � Uc�

��	
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observe the near critical behaviour� we substitute Un � un # Uc in

�������� where Uc is the �xed point Uf at �c� and expand H about Uc

to second order to obtain

un�� # Uc � zH�Uc� # unzH
��Uc� # �
�u

�
nzH

���Uc�� �� �������

Observing that zH�Uc� � Uc # �c and zH ��Uc� � �� which determine

the critical parameters� and H ���Uc� � zg�Uc�� ������� reduces to

un�� � un # �
�zg�Uc�u

�
n # �c � �� �������

which generalises the recursion relation ������� for a general cost dis


tribution and reduces exactly to ������� for z � � and a uniform

distribution�

It is now clear that the optimal policy for any well behaved distri


bution of costs behaves qualitatively similarly as the case for a uniform

distribution� which we have already examined in detail�

���� Interpretation as a Percolation Model

The economic version of the problem may be interpreted as a percola


tion problem on a Bethe lattice of dimension z �Figure ������ Unlike a

conventional percolation problem� the probabilities p are not uniform

over the lattice sites� but rather satisfy the recursion relation ��������

The analogy between our hop and a percolation model provides mu


tual insight into the two seemingly disparate problems�

On a large but �nite lattice� conventional percolation models ex


hibit a shift in the percolation threshold and �nite size scaling of

various quantities near pc� We �nd similar behaviour characterised by

a shift in �c and �nite size scaling of properties nearby�

The quantity b�N # �� �� may be interpreted as the probability

of �nding a spanning cluster in our Cayley tree of linear dimension

N at concentration p���� The e�ective critical point �e� at which

the cluster spans our �nite tree� and consequently percolation occurs�

satis�es b�N # �� �e�� � �
� � that is� �e� is the value at which bN�����

makes its sharp transition from � to ��

���
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N

p
N-2p

N-1

p

=1N+1
p

Figure ����� The economic version of the problem may be inter


preted as percolation on a Bethe lattice with non
uniform proba


bilities�

Moreover� we �nd that
NY

n��
zpn��e�� � B� � �� �������

and pN ��� undergoes a sharp transition from �
� to � at �e� � Imposing

the latter condition on the analytic result �����	� yields

�c � �e� � �


N
�� �������

independent of the precise value of pN used� Equation ������� can

be interpreted as �c � �e�  N���� � where the conventional critical

exponent 	 � �
� agrees with ordinary percolation on a Bethe lattice

��� �
It would be interesting to explore generalisations of the decision

problem to di�erent connectivities of the decisions� i�e�� correspond


ing to di�erent percolation lattices� On a Euclidian lattice� in which

the path to given decision is not unique� we believe our model would

correspond to a form of invasion percolation in which the future con


sequences of each invasion step must be weighed in choosing which

step to take�

���
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���� Conclusion

We have shown that optimising a sequence of elementary decisions

with limited information at each stage yields complex global behaviour

with a percolation
like critical point� When the mean cost � lies below

a critical threshold �c� the optimal number of options to pursue grows

exponentially before entering a steady pro�table region� Above �c�

we distinguished between the economic form of the model� in which

the tree of options pursued tends to terminate� and the constrained

version� in which at least one option must be pursued to the end

and for which we can only o�er an approximately optimal solution�

We demonstrated that our solution is universal in the sense that its

qualitative behaviour� which we examined in detail for a uniform cost

distribution� does not depend on quantitative details of the model� the

branching rate z and distribution of costs fx�

Near the critical point� at which the solution to the two problem

versions bifurcates� the economic solution exhibits behaviour analo


gous to a percolation model� we found a �nite size shift in �c and

�nite size scaling in the probability bN�� of the solution connecting to

the bottom� corresponding to the probability of a spanning cluster in

percolation� Our problem naturally maps to a novel percolation model

on a Bethe lattice in which the probabilities p of occupation satisfy

a recursion relation dependent on z and fx� The percolation dynam


ics are characterised by �� at � critical the probability of occupation

satis�es an inverse radius dependence�

���	 Appendix A� Applying the

General Optimality Equation

In our formulation of the economic problem in x����� we interpreted

each stage of the problem as a set of simultaneous independent deci


sions� Hierarchical optimisation problems� however� allow �by de�ni


tion� a single decision at each stage� Here we show that� formulated

as an hop proper� the economic optimality equation� already derived

in x����� readily follows from the general optimality equation from

Chapter �� By doing so� we highlight conditions under which hops

may be exactly solved�

���
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We begin with the general optimality equation� which the reader

may recall from ����� to be

Wn���sn��� � max

an��
h
R�an��jsn��� #

X
sn

P �snjsn��� an���Wn�sn�
i
�

�����	�

where we have replaced V with W to avoid confusion with the value

�V de�ned in this chapter� In the context of the economic problem�

the action an�� which maximises the right side of �����	� is the optimal

number of nodes purchased� of expected value Bn��� the state sn�� is

the set of nodes examined� of typical number Bn��

pn��
�

The impediment to solving �����	� is summing over all possible re


alisations of the state sn� on which W �sn� depends� Consider rewriting

�����	� in terms of the recursion parameter Vn� which satis�es

Wn � �BnVn� �������

�Vn is the expected value attached to the subtree of nodes descending

from �but not including� a single node at level n� the same Vn used

previously in this chapter� Unlike Wn� Vn does not depend on the

state sn� it varies only with n� Since Bn is already an expectation

over sn� this allows us to forgo the summation over sn�

Inserting ������� into �����	� yields

�Bn��Vn�� � �Bncn �BnVn� �������

where cn is the mean of the cost xn� given that xn � �Vn ������� Mul


tiplying both sides of ������� by zpn and noting that Bn � zpnBn��

������� where pn is the probability of purchasing a node at level n� we

may express ������� as
Vn�� � zpn�cn # Vn�� �������

which is identical to the result derived by alternative means in �������

���



Chapter ��

Tie Knots and Random Walks

A well
tied tie is the rst serious step in life�

oscar wilde

H
ere we introduce a mathematical model of tie knots and pro


vide a map between tie knots and persistent random walks on a

triangular lattice�� The topological structure of a knot may be char


acterised directly by the walk sequence� We classify knots according

to their size and shape and quantify the number of knots in each class�

The optimal knot in a class is selected by the proposed aesthetic con


ditions of symmetry and balance� Of the �� knots which can be tied

with a conventional tie� we recover the four knots in widespread use

and introduce six new aesthetic ones� For large �though impractical�

half
winding number� we present some asymptotic results�

���� Introduction

The simplest of conventional tie knots� the Four
in
Hand� has its ori


gins in late nineteenth
century England drivers tied their scarves

round their necks lest they lose the reigns of their four
in
hand car


riages� King Edward VIII� after abdicating in ����� has been credited

with introducing what is now known as the Windsor knot� whence its

smaller derivative� the Half
Windsor� evolved ��� � More recently� in

����� the Pratt knot was registered with the Neckwear Association of

America� the �rst new knot to appear in �� years�

Tie knots� evidently� do not come quickly� Rather than wait an


other half
century for the next knot to appear� we present in this

�This chapter is the result of work done in collaboration with Yong Mao �������

the text included here was written by the author�
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R

L  ... L  ...

C

L

L

C

R

Figure ����� The two ways of beginning a knot� Both give rise to

the triagonal basis � and divide the space into the three regions

through which the active end can subsequently pass� For knots

beginning with L�� the tie must begin inside out�

chapter a formal approach� Our attention is limited to necktie knots�

viz�� those that may be tied with a conventional necktie� An engaging

account of tie history can be found in ��� � tie custom and sartorial

gospel are considered in ��� �

���� Definition of Tie Knots

A tie knot is initiated by bringing the wide �active� end to the left and

either over or under the narrow �passive� end� forming the triagonal

basis � and dividing the space into right� centre and left �R�C�L�

regions �Figure ����� this� and all other �gures� are drawn in the frame

of reference of a mirror image of the actual tie�� Knots beginning to

the right are identical upon re�ection to their left
hand counterparts

and are omitted from the discussion�

Once begun� a knot is continued by wrapping the active end around

the triagonal basis� this process may be considered a sequence of half


turns from one region to another� The location and orientation of the

active end are represented by one of the six states R�� R�� C�� C�� L�

and L�� where R�C and L indicate the regions from which the active

end emanates and � and � denote the directions of the active end as

viewed from in front� viz�� out of the page �shirt� and into the page

�shirt�� respectively�

The notational elements R�� R�� C�� etc�� initially introduced as

states� may be considered moves in as much as each represents the

���
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...R  ......L  ...

...R  ...

...C  ...

...C  ......L  ...

Figure ����� The six moves with which a tie knot is tied� The move

L�� for instance� indicates the move which places the active end

into the left region and directed out of the page�

half
turn necessary to place the active end into the corresponding state

�Figure ������ This makes the successive moves R�L�� for instance�

impossible� and implies that R� is the inverse of R�� Accordingly� the

move direction must oscillate between � and � and no two consecutive

move regions may be identical�

To complete a knot� the active end must be wrapped over the

front� i�e�� either R�L� or L�R�� then underneath to the centre� C��

and �nally through �denoted T but not considered a move� the front

loop just made �Figure ������

We can now formally de�ne a tie knot as a sequence of moves cho


sen from the move set fR�� R�� C�� C�� L�� L�g� initiated by L� or

L� and terminating with the subsequence R�L�C�T or L�R�C�T �

The sequence is constrained such that no two consecutive moves in


dicate the same region or direction� The complete sequence for the

���
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...(L  R  C  )T...(R  L  C  )T

Figure ����� The two ways of terminating a knot� The active end is

nally put through �denoted T 	 the front loop constructed by the

last three moves�

Four
in
Hand� for example� is shown in Figure �����

���� Tie Knots as Random Walks

We represent knot sequences as random walks on a triangular lattice�

The axes r� c� l correspond to the three move regions R�C�L and the

unit vectors �r� �c��l represent the corresponding moves �Fig� ������ we

omit the directional notation ��� and the terminal action T � Since all

knot sequences end with C� and alternate between � and �� all knots

of odd number of moves begin with L� and those of even number of

moves begin with L�� Our simpli�ed random walk notation is thus

unique� and we only make use of the directional notation � and � in

the context of move sequences�

Figure ����� The Four
in
Hand� represented by the sequence

L�R�L�C�T �

���



proteins� optimisation and ties

c

rl

Figure ����� A tie knot may be represented by a persistent random

walk on a triangular lattice� beginning with !l and ending with !l!r !c

or !r!l !c� Only steps along the positive r� c and l axes are permitted

and no two consecutive steps may be the same� Shown here is the

Four
in
Hand� indicated by the walk !l !r!l !c�

The three
fold symmetry of the move regions implies that only

steps along the positive lattice axes are acceptable and� as in the case

for moves� no consecutive steps can be identical� the latter condition

makes our walk a second order Markov� or persistent� random walk�

Nevertheless� every site on the lattice can be reached since� e�g�� ��c �

�r #�l and ��c � �c #�l # �c # �r # �c�

The evolution equations for the persistent random walk are written

kn���r� c� l� � �
�pn�r � �� c� l� # �
�qn�r � �� c� l�

pn���r� c� l� � �
�kn�r� c� �� l� # �
�qn�r� c� �� l� ������

qn���r� c� l� � �
�kn�r� c� l � �� # �
�pn�r� c� l � ���

where kn�r� c� l� is the conditional probability that the walker is at

point �r� c� l� on the nth step� having just taken a step along the pos


itive r
axis� p is conditioned on a step along the positive c
axis� etc�

The unconditional probability of occupation of a site� U � may be writ


ten

���
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Un�r� c� l� � kn�r� c� l� # pn�r� c� l� # qn�r� c� l�� ������

���� Size of Knots

The size of a knot� and the primary parameter by which we classify

it� is the number of moves in the knot sequence� denoted by the half


winding number h� The initial and terminal sequences dictate that

the smallest knot be given by the sequence L�R�C�T � with h �

�� Practical �viz�� the �nite length of the tie� as well as aesthetic

considerations suggest an upper bound on knot size� we limit our

exact results to half
winding number h � �� The number of knots as

a function of size� K�h�� corresponds to the number of walks of length

h subject to the initial and terminal conditions�

We derive K�h� by �rst considering all walks of length n beginning

with �l� our initial constraint� Let F�r�n� be the number of walks begin


ning with �l and ending with �r� F�c�n� the number of walks beginning

with �l and ending with �c� etc� Accordingly� since at any given site the

walker chooses between two steps�

F�r�n� # F�c�n� # F�l�n� � �n��� ������

Because the only permitted terminal sequences are �r �l �c and �l �r �c� we

are interested in the number of walks of length n � h� � ending with

�r or �l� after which the respective remaining two terminal steps may

be concatenated�

We begin by considering F�l�n�� Now �l can only follow from �r and

�c upon each additional step� that is�

F�l�n # �� � F�r�n # �� # F�c�n # ��� ������

from which it follows that

F�l�n # �� � F�r�n� # F�c�n� # �F�l�n�� ������

Combining ������ and ������ gives rise to the recursion relation

F�l�n # �� � F�l�n� # �n��� ������

��	
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With initial conditions F�l��� � � and F�l��� � �� ������ is satis�ed by

F�l�n� � �
	��n�� # ����n���� ����	�

The recursion relation for F�r�n� is identical to ������� but with

initial conditions F�r��� � � and F�r��� � �� Accordingly�

F�r�n� � �
	��n�� # ����n���� ������

The number of knots of size h is equal to the number of walks of

length h� � beginning with �l and ending with �r or �l� that is�

K�h� � F�r�h� �� # F�l�h� �� � �
	��h�� � ����h���� ������

where K��� � �� and the total number of knots is

�X
i��

K�i� � ��� �������

���� Shape of Knots

The shape of a knot depends on the number of right� centre and left

moves in the tie sequence� Since symmetry dictates an equal number

of right and left moves �see below�� knot shape is characterised by the

number of centre moves �� We use it to classify knots of equal size h�

knots with identical h and � belong to the same class� A large centre

fraction 	
h indicates a broad knot �e�g�� the Windsor�� while a small

centre fraction suggests a narrow one �e�g�� the Four
in
Hand��

For a knot of half
winding number h� the number of centre moves

� is an integer between � and �
��h� ��� Accordingly� for large h� the

range of the centre fraction 	
h tends toward ��� ��  � However� not all

centre fractions allow for aesthetic knots� knots with 	
h � �
� are too

cylindrical and unbalanced �see below�� We consequently limit our

attention to centre fractions ��� �
�
�  � i�e�� � � ���h�

�
��h� �� �

This� along with our size constraint� limits the knots classes of

interest �canonical knot classes� to
���
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ffh� �gg � f�� �g� f�� �g� f�� �g� f�� �g� f	� �g �������

f	� �g� f�� �g� f�� �g� f�� �g� f�� �g �

The number of knots in a class� K�h� ��� corresponds to the number

of walks of length h containing � steps �c� beginning with �l and ending

with �r�l �c or �l �r �c� The sequence of steps may be considered a coarser

sequence of � groups� each group composed of �r s and �l s and separated

from other groups by a �c on the right� the Windsor knot� for example�

contains three groups� �l �c �r�l �c �r�l �c� of lengths �� �� �� respectively�

We refer to a particular assignment of the centre steps as a centre

structure�

Let n� be the number of groups of length � in a given sequence� n�

the number of length �� � � � � nh��	�� the number of length h���# ��

These group numbers satisfy

n� # n� # � � � # nh��	�� � �� �������

n� # �n� # � � � # �h� �� # ��nh��	�� � h� �� �������

We desire the number of ordered non
negative integer solutions n�� n��

� � � � nh��	�� to ������� ������� that is� the number of ordered ways of

partitioning the integer h�� into � positive integers� Call this function

P �h� �� ��� it is given by
P �h� �� �� �

�h�	��
	��


� �������

The number of centre structures is equivalent to P �h��� �� subject

to the terminal condition� which requires that the �nal group cannot

be of length one� The latter condition reduces the possible centre

structures by
�
h�	��

	��


�

Since the steps within each group must alternate between �r and �l�

the steps of each group may be ordered in two ways� beginning with �r

or beginning with �l� except for the �rst� which by assumption begins

with �l� Accordingly� for a centre structure of � groups� the number of

walks is �	���

���
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It follows that the number of knots in a class is

K�h� �� � �	��
��h�	��

	��
� �h�	��	��
�

� �	��
�h�	��

	��

� �������

���� Symmetry

The symmetry of a knot� and our �rst aesthetic constraint� is de�ned

as the number of moves to the right minus the number of moves to

the left� i�e��

s �

hX
i��

xi� �������

where xi � � if the ith step is �r� �� if the ith step is �l and � otherwise�

We limit our attention to those knots from each class which minimise

s� For h � � even� the optimal symmetry s � �� otherwise� optimal

s � ���

The move composition� and hence the symmetry� of a knot se


quence corresponds to the terminal coordinates of the analogous ran


dom walk� It is natural to inquire about the distribution of these

coordinates� we take particular interest in the terminal coordinates of

walks corresponding to knots in the class fh� �g� These coordinates

are gaussianly distributed about a point near the origin� the derivation

of this distribution is provided in Appendix A�

���� Balance

Whereas the centre number � and the symmetry s tell us the move

composition of a knot� balance relates to the distribution of these

moves� it corresponds to the extent to which the moves are well mixed�

A well balanced knot is tightly bound and keeps its shape� We use it

as our second aesthetic constraint�

Let �i represent the ith step of the walk� The winding direction

�i��i� �i��� is equal to � if the transition from �i to �i�� is� say�

clockwise and �� otherwise� �By clockwise we mean in the frame of

reference of the mirror �viz�� �c�r� �r�l� �l �c�� which is counter
clockwise in

���
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the frame of the shirt� Such distinctions� however� need not concern

us�� The balance b may then be expressed

b � �
�

h��X
i��

j�i � �i��j� �����	�

With � and � the analogue of angular position and velocity� respec


tively� the balance b may be considered the sum over the magnitude

of the angular acceleration�

Of those knots which are optimally symmetric� we desire that knot

which minimises b� Only knots with half
winding number �i and �i#

� can have zero balance� where i is a positive integer� half
winding

numbers �i # � correspond to optimal balance ��

���	 Untying

A tie knot is most easily untied by pulling the passive end out through

the knot� It may be readily observed that the resulting conformation�

when pulled from both ends� yields either the straightened tie or a

subsequent smaller knot ��� � More formally� when the passive end

is removed and the two tie ends joined� the tie may either be knot


ted or unknotted� where any conformation that can be continuously

deformed to a standard ring �the canonical unknot� is said to be un


Figure ����� The left diagram� with terminal sequence

� � � R�L�C�T � is unknotted� while the right� with terminal se


quence � � � L�R�C�T � forms a trefoil knot�

���
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knotted�

To determine the topological structure of such con�gurations� we

�rst note that a knot tied up to but not including the terminal se


quence corresponds� upon removing the passive end� to a string wound

in a ball with the interior and exterior ends protruding� Since the ball

can be undone by pulling the exterior end� all such conformations

are unknotted� The terminal sequence� in particular the action T � is

responsible for any remaining knot�

This can best be observed diagrammatically by projecting the

knot onto the plane �Fig� ������ The solid spheres represent the non


terminal sequences �which cannot give rise to a knot�� with the termi


nal sequences drawn explicitly� The dotted lines represent imaginary

connections of the tie ends� The left diagram� with the terminal se


quence R�L�C�T � can be continuously deformed to a loop and is

hence unknotted� No amount of deformation of the right diagram�

with terminal sequence L�R�C�T � will reduce the number of inter


sections below three� It is the simplest knotted diagram� a trefoil knot�

The knotted status of all aesthetic tie knots is included in Table �����

���
 Topology

We began this chapter by considering tie knots as combinatoric con


structs in light of the special manner in which they are constructed�

Here we examine the topological structure of tie knots� As in the

previous section� we imagine the tie ends to be connected� this time

before removing the passive end�

Figure ���	 shows the Windsor knot� for example� projected onto

the plane� Let the projected diagram take precedence� By manipu


lating the diagram such that the corresponding knot is continuously

deformed�� we see that the Windsor knot is topologically equivalent to

a trefoil �for an excellent introduction to knot theory� see ��� �� Other

tie knots give rise to more complicated knots�

The topological complexity of any knot may be characterised by

its crossing index� the minimum number of intersections allowed by its

�The diagrammatic manipulations associated with continuous deformation of a

knot are called the Reidemeister moves� see ����

���
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L

C

RL

C

R

Figure ����� The Windsor knot �left	 has the topological structure

of a trefoil �right	�

projection� The standard knot table is arranged by crossing index� for

each of which there may be more than one knot� The number of knots

per index appears to grow rapidly� but little is known about this num


ber� Demonstrating equivalence between an arbitrary knot projection

and its reduced �standard knot table� form by geometric manipulation

is a tedious and often nontrivial task� We wish instead to determine

the crossing index of tie knots by grammatically manipulating knot

sequences�

The grammatical rules associated with diagrammatic reduction

become apparent by considering a more tractable diagram projection�

applied to the Windsor knot in Figure ����� The new projection may

be derived from the projection used in Figure ���	 by contracting the

top two arms of the triagonal basis � and sliding the windings of the

active end onto them� Preserving the old regions and directions� the

new projection allows immediate recognition of the sequence which

generates it�	

It may be veri�ed by constructing appropriate projections that the

rules of the grammar are

� � � XRLCT� � � �XLRCT � � � �XC� �������

�While all of the diagrams in Figure ���� are topologically equivalent to the

�rst� only the �rst diagram� with terminal sequence intact� corresponds to a tie

knot sequence�

���
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C

C

R

C

T

L

R

L

L

CL R

Figure ����� Alternative projection of the Windsor knot �left	�

Changes in sequence associated with reduction of intersections are

now apparent�

� � �XCC � � � � X� �������

� � � Cf�R�L� � � � � C� �������

where X is any move region �R�C�L� and f�R�L� is an alternating

sequence of Rs and Ls �of any length�� Knots with minimal sequence

length of zero may be deformed to the unknot� all other knots have

crossing index equal to the minimal sequence length plus one� The

crossing index of all aesthetic knots is listed in Table �����

����� Conclusion

The ten canonical knot classes fh� �g and the corresponding most

aesthetic knots are listed in Table ����� The four named knots are the

only ones� to our knowledge� to have received widespread attention�

either published or through tradition �although we have recently learnt

that the �rst entry� L�R�C�T � is extensively used by the communist

youth organisation throughout China��

The �rst four columns describe the knot class fh� �g� while the re


mainder relate to the corresponding most aesthetic knot� The centre

fraction 	
h provides a guide to knot shape� the higher fractions corre


sponding to broader knots� it� along with the size h� should be used

in selecting a knot�

Certain readers will have observed the use of knots whose se


���
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quences are equivalent to those shown in Table � apart from trans


positions of �r��l groups� for instance� the use of L�R�C�R�L�C�T

in place of the Half
Windsor� some will argue that this is the Half


Windsor� Such ambiguity follows from the variable width of conven


tional ties � the earliest ties were uniformly wide� Since the active

end increases in width toward the end� a left move gives greater em


phasis to the left than a preceding right move to the right� This makes

some transpositions arguably favourable� namely the last �r��l group in

the knots f�� �g� f�� �g� f	� �g� f�� �g� f�� �g in Table ����� We make

no attempt to distinguish between these knots and their counterparts�

at last we call upon the sartorial discretion of the reader�

����� Appendix A� Distribution of End to End

Distance of Walks in the Class fh� �g

We begin by rewriting the evolution equations for the persistent ran


dom walk from ������ given that� for large h� the fraction of steps

along the c
axis tends toward 	
h �

kn���r� c� l j 	h� � 	
h�	 pn�r��� c� l j 	h� # h��	
h�	 qn�r��� c� l j 	h �

pn���r� c� l j 	h� � �
�kn�r� c��� l j 	h� # �
�qn�r� c��� l j 	h� �������

qn���r� c� l j 	h� � h��	
h�	 kn�r� c� l�� j 	h� # 	
h�	 pn�r� c� l�� j 	h��

Since we are only interested in the �r and �l step composition� we

project the �
dimensional walk on to the perpendicular to the c
axis�

say� the x
axis� reducing the problem to a symmetric �
dimensional

persistent random walk of m � h�� steps of �r and �l� In this simpli�ed

walk� a step to the left is followed with probability 	

�h��	 by another

step to the left and �h�		

�h��	 by a step to the right� a step to the right is

similarly biased toward the left�

With xi � � if the ith step is �r and xi � �� if the ith step is �l�

the resulting evolution equations may be written

un���x� � 	

�h��	un�x� �� # �h�		

�h��	 vn�x� �� �������

���
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vn���x� � �h�		

�h��	un�x # �� # 	

�h��	 vn�x # ���

where un�x� is the conditional probability that the walker is at x on

the nth step� having just taken a step along the positive x
axis� and

v is conditioned on a step along the negative x
axis�

The terminal coordinate of the projected random walk is equiva


lent to the symmetry s� which is now written

s �

mX
i��

xi� �������

Since the projected walk is a �nite
order Markov chain� the central

limit theorem provides that the distribution of s approaches a gaussian

for large m� Accordingly� we desire the projected walk�s mean and

variance�

The evolution equations ������� are symmetric about � apart from

the initial step� which is �l� Observing the possible paths taken in the

�rst few steps of the unprojected walk� it is evident that the �rst

moment hsi satis�es

hsi � 	
h�	 ���� # h��	
h�	 � 	
h�	 ��� # h��	
h�	 hsi�� �������

and� accordingly� the mean �s is

�s � hsi � h�	
		��h � �������

In what follows� we make use of the local correlation function�

hxixi�ki� It may be observed that

hxixi��i � hxixi��ii�� � �	�h
h�	 xixi � �	�h
h�	 � �������

where h���xi��ii�� denotes the average over xi��� By considering the

general average hxixi�ki as successive averages over xi�k� xi�k��� etc��

we have
hxixi�ki � �	�h
h�	 hxixi�k��i � � � � � ��	�hh�	 �k� �����	�

The second moment may be expressed in terms of the local corre


lation function as

��	
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hs�i �

mX
i�j��

hxixji� �������

Separating the sum into i � j and i �� j terms� we have

hs�i � m # �

mX
j
i��

hxixji � m # �
m��X

i��
m�iX

k��
hxixi�ki� �������

Substituting in �����	�� it follows that

hs�i � 	

�h�		m � 	h�	�

�h�		 � �������

Since the mean �s is always bounded by ���� � � we approximate the

variance as

��s � hs�i � hsi� � 	h�	�

�h�		 � �������

Equations ������� and ������� specify the distribution of the ter


minal coordinate of walks in fh� �g� For � � h
	 � the distribution of

the terminal coordinates of the �
dimensional persistent random walk

������ readily follows�

���

Chapter ��

Epilogue

The works of the Lord are great� sought out of all them that have

pleasure therein�

Psalms �����

M

uch of the work presented in this dissertation is ongoing�

Here we present open questions and possibilities for future con


sideration� some of which are already under investigation�

Stability of Kinetically Oriented Sequences

We have provided evidence �Chapters � 
 	� that folding e�ciency

and thermodynamic stability are anticorrelated near the extremes of

either� Notably� it is thought that biological proteins �presumably

evolved to be fast folding� are only just stable in their native state

conformations�

Our predictions may be veri�ed through simulation by determining

the stability of sequences directly trained to fold quickly to a target

�Chapter 	�� rather than estimating it by means of the energy or

relative energy� we may measure stability via direct observation of

time spent in the target structure� Biological experiments� such as

the e�ect of stabilising point mutations on folding performance� could

provide further insight�

Active Site Capacity

Proteins make use of local chemically sensitive active sites� which may

be incorporated into existing design procedures� In accordance with

our estimate of conformational capacity �Chapter �� as a function of
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the size of the amino acid alphabet� we may determine the active site

capacity� i�e�� the maximum fraction of �xed monomers� The active

site cannot be so large that the target conformation of the sequence

ceases to be a deep stable global minimum�

Alternatively� we may ask how long a protein must be to suc


cessfully support an active site of �xed size �number of monomers��

A more re�ned answer will depend on the nearby availability of free

monomers �rather than the availability averaged over the entire pro


tein� such that the fragment of protein housing the active site is con


formationally stable�

Freedom in Defining Energy Landscape

Our ability to manipulate the conformational energy landscape�

both by introducing independent minima and by constructing a broad

funnel by way of correlated minima� was shown to be limited in Chap


ters � and �� In both cases we are bound by the size of the amino acid

alphabet as lnA
ln� � The agreement of both limits is surprising� especially

given the di�erent methods of determining them� it suggests a second

look at energy landscape constraints�

The information theoretic derivation of the protein capacity pmax

�Chapter � is straightforward and rigorous� While e�orts to apply

it to the calculation of the funnel width gmax have yet to prove suc


cessful� we suspect information theory may be applicable generally to

systems governed by energy landscapes which we wish to manipulate�

The central impediment is quantifying the information contained in a

speci�ed class of landscape features� such as �in the case of gmax� free

energy funnels� Model problems may provide further insight�

Chain Length Scaling of Folding Time

Mean �rst
passage time for lattice proteins has been observed from

simulation to scale with chain length as N�� for random heteropoly


mers� � � �� while for sequences trained to be thermodynamically

stable in the target structure� � � � ��� � How does folding time scale

for optimally folding sequences!

We demonstrated in Chapter 	 that sequences evolved to have

���

epilogue

minimal mean �rst
passage times fold signi�cantly more quickly than

thermodynamically oriented sequences� Moreover� the degree of op


timality of a selected sequence is designated by the e�ective temper


ature� proportional to �p
n

� By stochastically annealing proteins of

di�erent lengths to identical low temperatures� we can estimate the

chain length dependence of folding time for kinetically oriented se


quences� presumably� �kinetic � ��

Off�Lattice Protein Folding and Design

Notwithstanding the theoretical and computational insight a�orded

by lattice models� the design of real proteins requires a realistic folding

representation� An o�
lattice protein folding simulation has recently

been developed by Mehul Khimasia and Robin Ball ��� of the Theory

of Condensed Matter group in the Cavendish Laboratory� It is a signif


icant extension of the lattice protein model which takes into account

the geometry imposed by the �
carbon bond angles �Figure ������

Interactions occur according to continuous isotropic residue
residue

potentials rather than the previously assumed nearest neighbour in


teractions� this may readily be re�ned to include more realistic �e�g��

hydrogen bonding� potentials�

We have begun designing protein sequences intended to fold to

speci�ed o�
lattice target structures� a task complicated� among other

Figure ����� O 
lattice protein folding model allows rotation about

the �
carbon bonds� Left� Unfolded �� residue protein� Right�

compact folded structure�

���
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things� by the continuous space of available conformations� This space

may� for any given sequence� be reduced to a �nite set of distinct

conformations corresponding to the many local conformational energy

landscape minima� Because the set of one sequence will generally

not correspond to the set of another� sequences must be trained to

conformations which they can at best only approximately fold to� If

the target and nearby minimum structural di�erence is signi�cant�

the design attempt may fail� creating instead an e�ective copolymer

landscape �i�e�� one without a dominant global minimum��

Applications of Hierarchical Optimisation

The general optimality equation� derived in Chapter �� can in

many instances only be solved approximately� as is the case for prob


abilistic optimisation problems considered in Chapter �� Many
stage

optimisation problems not amenable to exact solutions require a search

over an extensive tree of futures� The ultrametric property of decision

policies on this tree requires novel forms of optimisation� simulated

annealing on a tree� adapted from conventional simulated annealing�

is one such possibility�

Chapters � and �� �hierarchical optimisation problems� were pre


sented at the ���� Meeting on Statistical Finance in Rome� only the

second conference to address the new �eld of econophysics�� Applying

analytic �as well as computational� techniques borrowed from physics

to reduced models of stocks and markets has obvious practical and

surprising theoretical returns� It is hoped that parts of this disserta


tion will develop in that direction�

�Coined by H� Eugene Stanley�

���
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