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Abstract

Coupled electron-ion dynamics, at the Ehrenfest dynamics level, us-

ing the time dependent density functional theory with the Siesta

pseudopotential code is used to simulate strongly non-adiabatic pro-

cess of the passage of slow ions through solids. It is an improvement

over a previous method that considers only the electron dynamics,

describes the moving ion with its screened Coulomb potential, and

places a chain of atomic orbital bases along its trajectory. We con-

sider the projectile and the atoms of the target material on equal

footing. That is, just like the target atoms, the projectile is described

with its pseudo-potentials and atomic orbital basis is attached to it.

This improved description of the process and the projectile leads to a

much better agreement with the experiments.

We calculate the electronic stopping power of slow ions with velocity

v ∼ 0.05− 0.50 a.u. in various crystalline metals and ceramics. Non-

linearities in the velocity dependence of the stopping and the threshold

effect are discussed. We find reasonably good qualitative and quanti-

tative agreement with the available experimental data. For H and He

ions moving in gold, we also calculate the electron-hole pair spectrum

around the fermi level by projecting the time evolved electronic state

onto the ground state for the instantaneous nuclear configuration. We

find that there is a significant contribution to the stopping from the

deep lying d-band states even for a slow projectile. For the series

of insulators explored, the material dependence of the threshold and

other electronic stopping features are presented. Interesting results

are found for the variation with the impact parameter and projectile

dependence, especially when comparing sparsely packed with densely

packed systems.
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Chapter 1

Introduction

1.1 Passage of charged particles through matter

Passage of charged particles through matter involves a rich variety of physical

phenomena of fundamental as well as technological importance. For example,

Rutherford scattering, ionisation and secondary electron emission, Auger effect,

bremsstrahlung, defect production, compositional changes, radiation damage and

structural phase transformations. Sputtering, ion-implantation and ion-beam

mixing are only a few examples of important processes whereby moving ions are

employed for materials modification producing materials for modern technological

applications.

1.2 Radiation damage

Solids have a rigid arrangement of atoms — on a periodic lattice in case of crys-

talline solids. A charged particle moving through solid that can transfer a few

tens of eV energy to these atoms (their nuclei, to be more precise) can displace

them from their original position giving rise to vacancies and other point defects

in the crystal structure. At higher transferred energies when a displaced atom,

usually called primary knocked-on atom (PKA), acquires appreciable kinetic en-

ergy and velocity, it can displace more atoms in the solid just like the original

charged particle. A displacement cascade develops due to the repetition of this

process, producing damage to the initial atomic arrangement. For example, in

nuclear waste from the nuclear reactors that consists of radioactive elements, ra-

1



dioactive decays producing swift α-particles along with the recoil atoms damage

the structure of the encapsulating material decreasing its durability and strength

of withholding the radiations coming out. It is interesting that even a neutron

that is electrically neutral can start a cascade by colliding with an atom and set-

ting it in motion or by inducing a nuclear reaction releasing an α-particle. This

is exactly what happens inside nuclear reactors where neutrons produce damage

to the reactor walls impacting their lifetime.

1.3 Electronic and Nuclear stopping power

A charged particle moving through matter interacts with its constituent electrons

and nuclei and slows down by losing its kinetic energy to them. The terms

projectile and target are usually used for the moving particle and the material

it is moving through. While the projectile moves a unit distance, the amount

of energy it transfers to the electrons and nuclei of the target are defined as

its electronic and nuclear stopping powers in that target material. These are

usually denoted by Se and Sn. For a given target and projectile traversing it

(along a specific direction for crystalline solid targets), these quantities depend

on the velocity of the latter. Both Se and Sn first increase and then decrease

with velocity, however, as schematically shown in Fig. 1.1, maximum of Se occurs

at much higher velocity than that of Sn. For very slow projectiles with velocity

v << v0, where v0 is the Bohr velocity, nuclear stopping Sn dominates, while for

fast projectiles with v & v0 nuclear stopping is suppressed and electronic stopping

Se contributes almost exclusively to the energy loss of the projectile.1 These two

velocity regimes are shown in Fig. 1.1.

The energy that a projectile transfers to the nuclei, measured by the nuclear

stopping power, is used to work against their potential energy displacing them

from their original positions either permanently producing disorder in the struc-

ture or just creating vibrations or phonons. On the other hand, the energy that a

projectile transfers to the electrons, measured by the electronic stopping power, is

used to excite them to the higher energy quantum states raising the effective elec-

tronic temperature that helps heal any damage present in the crystal structure.

1At still higher velocities, radiative losses appear that increase with projectile velocity.
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Figure 1.1: Typical dependence of electronic and nuclear stopping on projectile
velocity.

Since, as can be seen in Fig. 1.1, appreciable nuclear stopping occurs only at very

low velocities, a projectile produce most of the damage when it has sufficiently

slowed down, i.e., just before it comes to rest. It seems counterintuitive but a

slow moving ion gets a longer interaction time so it can transfer more energy to

the target nuclei.

1.4 Ion ranges in solids

Ions from a beam incident on a solid penetrate it, slow down, produce damage and

finally stop. Even for a beam of mono-energetic ions, various factors, e.g., a range

of the available impact parameters for their scattering from the nuclei, lead to a

straggling in their range — the total distance travelled, and the penetration depth

relative to the target surface. The depth profile and the range distribution are

very important quantities that determine, for example, the electronic properties in

semiconductor devices doped with the projectile impurity using ion-implantation

technique. Similarly, for cancer treatment, radiotherapy to be effective, killing

cancerous cells need producing damage to the right region of the target tissue.

3



1.5 Including electronic stopping in radiation damage simulations

Various methods have been developed to calculate the damage to solids on irra-

diation with ions. Stopping and Range of Ions in Matter (SRIM) program, uses

binary collision theory for nuclear stopping with interatomic potentials derived

from quantum mechanical calculations and an average fitting to a large number

of the available experiments for the electronic stopping [1]. Molecular dynam-

ics simulations can give more insight into the process. Electronic stopping can

be included as a friction term in the equations of motion describing the nuclear

dynamics [2]. Based on a model given by Caro and Victoria [3], Duffy and Ruther-

ford devised a method [4–8] that also allows transfer of energy from the electronic

subsystem back to the nuclei. They couple the nuclear dynamics with a model

for the electronic energy that obeys the heat diffusion equation. The energy given

to the electrons by the moving ions act as a source term in the diffusion equation

while the energy transferred back to the nuclei is controlled by a local Langevin

thermostat. As a result, this model is able to describe the defect annealing that

tend to repair the damage. Empirical time dependent tight binding model [9, 10]

is an efficient way to simulate the quantum dynamics of the electrons coupled

to the classical nuclear dynamics [11–16] giving a more accurate picture of the

radiation damage event.

1.6 Channeling

Trajectories of ions moving through crystalline solids can get aligned to the open

channels’ axes — the space between the atomic rows or planes. This is called

channeling. It is also done purposefully, by aligning the ion beam with a par-

ticular crystallographic direction of the target crystal. Under this condition, the

projectile avoids small impact parameter collisions with the target ions reducing

its nuclear stopping and increasing its range significantly.

1.7 Electronic stopping of slow ions in solids

In this thesis we focus on the role of electrons in the projectile energy loss process,

i.e., the electronic stopping power. In the high velocity regime shown in Fig. 1.1,
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the problem of projectile energy loss is relatively transparent and simple. A

fast enough positively charged projectile cannot keep bound electrons with it.

It is quite like a structureless point object with its bare charge and unscreened

Coulomb potential. This simplifies the theory. After the work of a large number

of people over many decades we now have Bohr-Bethe-Bloch formula that gives

very accurate values of electronic stopping power at high projectile velocities. We

will give a brief description of it in chapter 2.

In contrast to this, in the low velocity regime screening of the projectile charge

by the target electrons is very effective and the character of the electronic states

bound to the projectile, i.e., projectile’s atomic electronic structure, is a major

player in the problem. The projectile is no more a structureless point object but

a complex entity with a significant size. The extent of screening and hence the

effective charge and size of the projectile depend on its velocity as well as on

the electronic structure of the target material. This means that the projectile,

the moving object, is not a fixed entity but its very own nature depends on its

velocity and the stopping medium or target material.

1.7.1 Theory vs experiment

Several theories and methods that we briefly review in chapter 2 have been de-

veloped to calculate the electronic stopping power S of slow projectiles. Except a

model developed based on the density of electronic states [17], a common feature

to the methods that do not consider explicit dynamics of the electrons is that they

lead to a velocity proportional electronic stopping power, i.e., S ∝ v. Perhaps

the most accurate of these methods is based on quantum scattering of electrons

at the fermi surface from the screened potential of the projectile that is obtained

using density functional theory [18, 19]. For a free electron gas or jellium model of

solids, these non-linear calculations for stopping of slow H and He, SH and SHe,

show a cross-over between two regimes: for a low electron density with rs > 2.77,

where rs is Wigner-Seitz radius, SH > SHe, where as for a higher electron density

with rs < 2.77, the converse it true. This is shown in the left panel of Fig. 1.2.

A velocity proportional stopping has been observed experimentally in many

free-electron-like sp-bonded metals [22, 23] and the jellium model has allowed a

deep understanding of the dynamic screening of the projectile and its relation to
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Figure 1.2: Left: Electronic stopping power of slow H and He in jellium as a func-
tion of electron density showing a cross-over at rs = 2.77, taken from Echenique
et al., Ref. [18]. Right: Experimental results for gold taken from Refs. [20, 21]
showing non-linear velocity dependence of electronic stopping power.

the stopping phenomenon [24]. Even the jellium prediction of an oscillation of

the proportionality coefficient with the projectile’s atomic number Z1 has been

verified [25] and reproduced by ab initio atomistic simulations [26]. However,

phenomena that cannot be accounted for within the jellium paradigm have been

described only qualitatively so far [17, 27–29]. Experiments on noble metals Cu,

Ag and Au, show pronounced nonlinearities in Se(v) [20–22, 27, 30–32]. For ex-

ample, in the case of slow H and He ions in gold, Se(v) is shown in the right panel

of Fig. 1.2. It displays an increase in the slope roughly around v w 0.18 a.u. [20,

21, 32]. This is usually attributed to a threshold projectile velocity vth needed to

excite the d-band electrons that are relatively tightly bound. That is, below vth,

only the s-band electrons are considered to contribute to the stopping. But, this

also means rs = 3.04 > 2.77 for v < vth that should give SHe < SH , which is

not true — SHe > SH down to very low velocities v ∼ 0.05 a.u.. Similarly, it is

very interesting that in Al that is an sp-bonded metal for which jellium model

works well for H, i.e., SH ∝ v, SHe(v) shows three regimes with different slopes

[33]. These flagrant discrepancies with the established paradigm for such prob-
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lems [18, 25] demand a more complete theory that can capture all the essential

physics behind the non-adiabatic processes of energy transfer from the projectile

to the target electrons and give us an insight into the problem.

1.7.2 Threshold effect in insulators

Electronic stopping of slow projectiles in insulators is expected to get severely

suppressed below a threshold velocity due to the fact that the valence and the

conduction bands in the latter are separated by a band gap requiring a finite

amount of energy to create electronic excitations. The threshold velocity vth

and the velocity dependence of the electronic stopping around it depend on the

projectile-target system. These are hard to observe experimentally due to techni-

cal problems at very low velocities. However, calculations show that the electronic

stopping kicks off with a high power of projectile velocity [34, 35].

The band gap of target insulator is affected by the presence of the projectile.

Calculation on LiF (band gap ∼ 14 eV) shows that a proton reduces its band

gap by ∼ 2 eV while an antiproton closes it [36]. This is supposed to be the

reason that the earliest experiments [37] on slow H in Al2O3, SiO2 and LiF did

not see the effect down to very low projectile velocities (v = 0.33 a.u.) even

though all these target materials are wide band gap insulators. Later experiments

covering velocities down to 0.2 a.u. also found no threshold effect [38, 39] except

under grazing incidence, which showed a threshold velocity of v ' 0.2 a.u. in

LiF[40]. Recently, measurements at velocities as low as 0.1 a.u.[41, 42] found

a clear velocity threshold. First-principles simulations [29] based on TD-DFT

were able to reproduce the behaviour, albeit with a clear underestimation of

the stopping power and overestimation of the threshold. In this thesis, for the

projectile-target systems for which the electronic stopping remains significant at

the lowest velocity considered, we find that it usually goes down with velocity

linearly. That is the reason that we linearly extrapolate our results to estimate

the threshold velocity in such cases.

1.7.3 First principles simulations

First-principles calculations provide predictions of varied ground state properties

within a few percent accuracy. However, despite a long history, our ability to
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perform predictive theoretical simulations of non-adiabatic processes coupling

many adiabatic energy surfaces is very much behind what has been accomplished

for adiabatic situations. A substantial progress has only been made for weakly

non-adiabatic problems such as the chemistry of vibrationally excited molecules

landing on metal surfaces [43], but not in the stronger coupling regime of the

electronic stopping.

Recently, simulating the electron dynamics explicitly using time dependent

density functional theory with real-time evolution of the electronic wavefunction

has been very successful for study of electronic stopping phenomena [29]. Siesta

code [44–46] was used that employs pseudopotentials and the numerical atomic

orbital basis set. The projectile was described with its screened Coulomb poten-

tial moving at constant velocity and a chain of atomic orbital bases was placed

along its trajectory. As the dynamics of ions was not considered, all the target

atoms were fixed.

1.7.4 Coupled ion-electron dynamics

We upgrade this method by simultaneouly considering, on the Ehrenfest dy-

namics level, the ion dynamics so that we can simulate the coupled ion-electron

dynamics of a system of ions and electrons. This means that for simulating the

passage of ions through solids, we can now use the projectile atom described by

its pseudopotentials with attached basis orbitals just like the target atoms. This

improved description of the process and the projectile lead to a much better quan-

titative agreement with the experiments [47, 48] showing that this method can

give usual first-principles accuracies for strongly coupled non-adiabatic processes

in condensed matter.

1.8 Thesis structure

In the next chapter we briefly review the current theories and methods used to

calculate the electronic stopping both in the high velocity regime and in the low

velocity regime. Our method is described in detail in chapter 3 while we explain

some important relevant technical details in chapter 4. We present our results

for the electronic stopping power of H and He in gold in chapter 5. In the same

8



chapter, we also present our results for the evolution of the excitation spectrum

as the projectile excites more and more electrons above the fermi surface. Results

for the electronic stopping of H and He in Al and Na are given in chapter 6 and

7. We consider three different impact parameters in Al while two cases, the bulk

and a 8 unit cell thick film for Na.

Insulators are considered in chapters 8 and 9. In chapter 8, we calculate the

stopping of the same two projectiles, H and He, in LiF and compare our results

with previous Siesta-TDDFT calculations [29]. We also see the effect of low

impact parameter trajectories on the stopping in this chapter. More insulators

— quartz, magnesia, zircon, alumina and SiC — are considered in chapter 9. We

present our results for the electronic stopping of H and He in various channels of

α-quartz sampling a range of impact parameters. The same two projectiles are

considered in magnesia and zircon, while in alumina we also consider Li. For SiC,

electronic stopping of gold is presented. The summary, conclusion and outlook

is given in chapter 10. Appendix A gives some supplementary details related to

chapter 5. I also worked on a smaller project that is not related to the title of

this thesis. It is included at the end as Appendix B.
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Chapter 2

Electronic stopping

A Brief Review

When a projectile propagates in a material, electrons are scattered off its screened

Coulomb potential. A slow projectile tends to neutralise itself by capturing elec-

trons from the target material, while a fast projectile tends to lose its electrons.

Whether a projectile would be considered slow or fast depends on the mean or-

bital speed of its atomic electrons. Bohr used Thomas-Fermi model of atom and

suggested that the projectile would lose all its electrons at v > Z
2/3
1 v0, while at

v < Z
2/3
1 v0, the charge on the projectile would increase linearly with velocity [49–

51]. Here, Z1 is the atomic number of the projectile and v0 is the Bohr velocity.

In different velocity regimes, different approximations are employed to calculate

the energy loss of a projectile. In the following we present some theories that

have been developed to calculate the electronic stopping power.

2.1 High velocity regime

At v > Z
2/3
1 v0, the projectile is a bare nucleus that interacts with the target

electrons through its unscreened Coulomb potential. Bohr assumed [52–54] that

during the passage of such a fast projectile, the target electrons do not move

and their interaction with the projectile imparts only a transverse momentum
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impulse to them. As the projectile moves a distance dx, the corresponding change

in momentum ∆p of a target electron, using classical mechanics, is given by

∆p =
∫
F⊥dt. Here, F⊥ is the Coulomb force on the electron transverse to the

projectile motion and dt = dx/v is the interaction time. For an impact parameter

b and normal distance between the projectile and the electron x, F⊥ = Z1e2

x2+b2
b√

x2+b2

(in Gaussian units). Substituting these values of F⊥ and dt, we obtain

∆p =

∫ +∞

−∞

Z1e
2

x2 + b2
b√

x2 + b2
dx

v
=

2Z1e
2

vb
(2.1)

The electron gets a kinetic energy T, given by

T =
∆p2

2m
=

2Z2
1e

4

mv2b2
(2.2)

where m is the electron mass. Total energy dE transferred to the target electrons

of density ne while the projectile moves a distance dx, is given by

dE = nedx

∫ bmax

bmin

T 2πb db (2.3)

Here, using the cylindrical coordinates with the axis along the projectile motion,

we have integrated over all possible values of impact parameter b taken between

bmin and bmax that are estimated below. Substituting value of T, the electronic

stopping Se is given by

Se =
dE

dx

=
4πZ2

1e
4ne

mv2

∫ bmax

bmin

db

b

=
4πZ2

1e
4ne

mv2
ln(bmax/bmin) (2.4)

Since the maximum energy Tmax that can be transferred to an electron in a

collision with the projectile corresponds to electron velocity equal to 2v, using
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Eq. 2.2, we can write

Tmax =
1

2
m 4v2 =

2Z2
1e

4

mv2b2min

bmin =
Z1e

2

mv2
(2.5)

The minimum energy that can be transferred to the electrons cannot be taken

to be zero because it gives a divergent contribution to the stopping power. It is

taken as the mean excitation energy I instead. This gives,

Tmin = I =
2Z2

1e
4

mv2b2max

bmax =
2Z1e

2

(2mv2I)1/2
(2.6)

Using the bmin and bmax given above, Eq. 2.4 becomes,

Se =
2πZ2

1e
4ne

mv2
ln(

2mv2

I
) (2.7)

Bohr formula above contains all the essential features, however, later after

the invention of quantum mechanics, a more precise calculation by Bethe [55]

employing quantisation rules and accounting for the uncertainty in the electron’s

position obtained the stopping power twice the above result:

Se =
4πZ2

1e
4ne

mv2
ln(

2mv2

I
) (2.8)

This result is further improved by Bethe [56, 57], Møller [58], Bloch [59, 60] and

a number of other authors taking into account relativity, shell structure of atoms,

and polarisation or Barkas-Anderson effect. [61–88] With these corrections, Bethe-

Bloch formula becomes very accurate (within a few %) for projectile velocities

higher than its atomic electron velocities. The radiative effects at still higher

velocities set an upper limit to the projectile velocity for the validity of this

formula. For intermediate values of target atom’s atomic number Z2, the Bethe-

Bloch formula is valid for 10−1 . v/
√
c2 − v2 . 103 where c is the speed of light

in vacuum. [89, 90] A discussion on Bethe-Bloch formula along with its various
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corrections is tempting but beyond our scope as we will primarily deal with the

electronic stopping power of slow ions in this thesis. A description of various

corrections can be found in, for example, Refs.[91, 92] and various theoretical

and experimental aspects of the problem are discussed in Ref. [80].

2.2 Low velocity regime

The target electrons screen the charge of a slow projectile very efficiently. The

extent of screening and hence the effective charge and size of the projectile depend

on both its electronic structure and velocity as well as on the electronic structure

of the target material. In the following, various theories employing different

assumptions for slow projectile stopping are reviewed.

2.2.1 Binary collision theories

Firsov assumed that at low velocities (v < v0) the projectile forms quasi-molecules

with individual target atoms over its interaction period with them. He considered

a surface between the two atoms of such a quasi-molecule where the normal

component of the electric field vanishes. Flux of electrons across this surface

from the target atom side to the projectile side leads to a momentum transfer to

the projectile equal to −mv. During its passage through a material, a series of

such events slow down the projectile. Using Thomas-Fermi atomic model, Firsov

obtained the electronic stopping cross section εe (Se/atom) as

εe =
0.35(Z1 + Z2)

5/3

1 + 0.16(Z1 + Z2)1/3rmin/a0

~
a0
v (2.9)

where rmin is the distance of closest approach between the projectile and the

target atoms. We note here that the Firsov theory gives a linear dependance of

stopping on the projectile velocity v.

Lindhard-Scharff model considers binary collision between the projectile ion

and the target electrons. They derived an expression for the electronic stopping
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power, given by [93]

Se = ξe8πnee
2a0

Z1Z2

(Z
2/3
1 + Z

2/3
2 )3/2

v

v0
(2.10)

where ξe ≈ Z
1/6
1 . Their derivation is not published but their basic treatment of

the problem of projectile energy loss can be found in Ref.[94]. A detailed deriva-

tion, based on Thomas-Fermi model of atom, can also be found in a relatively

recent article by Tilinin [95]. A common feature of the above formula with that of

Firsov’s is the linear dependance of electronic stopping power on projectile veloc-

ity. Experiments on several simple metals agree with such a linear behaviour of

electronic stopping with projectile velocity, for example, for a H moving through

Al [33].

2.2.2 Target as electron gas I

Fermi and Teller [96] derived an expression for the electronic stopping power of a

slow (v << vF ) muon in a free electron gas with Fermi velocity vF . They assumed

that only electrons within a thickness v at the fermi surface can exchange energy

with the projectile. They further assumed that collisions at a distance greater

than the size of neutralised screened projectile will not contribute to the energy

loss process and thus set a corresponding lower cutoff on the momentum transfer.

Their result is the following.

Se =
2

3π

m2e4v

~3
ln
vF
αc

(2.11)

where α = 1/137 and c is speed of light in vacuum. Just like Firsov and Linhar-

Scharff formulae, this result gives a linear velocity dependance to the electronic

stopping power.

As suggested by Fermi [97], Lindhard considered the target material as a

dielectric medium and calculated the electronic stopping of a non-relativistic

charged projectile moving in it [98]. He assumed that the projectile is a point

charge moving with a constant velocity. The electronic stopping power in this

formalism is simply Z1e times the electric field at the projectile’s position. His
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result is:

Se = −Z
2
1e

2

πv2
Im

{∫ ∞
0

dk

k

∫ +kv

−kv
dω

ω

ε(k, ω)

}
(2.12)

where ε(k, ω) is dielectric constant of the medium that depends on wavevector

k and frequency ω. At high projectile speed where classical dielectric function

can be used, above result reduces to the Bethe stopping formula [55]. At low

velocities, using the Random Phase Approximation (RPA) Lindhard obtained,

Se = −C(χ)
4Z2

1e
4m2

3π~3
v (2.13)

where C(χ) =
∫ 1

0
z3dz

(z2+χ2f(z))2
, χ =

√
e2/π~vF and f(z) = 1

2
+ 1−z2

4z
log
∣∣ z+1
z−1

∣∣. A

simplified result [98] is

Se = const.(
2mv2

~ω0

)3/2
4πZ2

1e
4

mv2
(2.14)

∝ v

where ω0 = (4πe2ne/m)1/2 is classical plasma frequency of the electron gas and

const. ∼ 0.05− 0.1.

Instead of the classical electric field, Ritchie [99] used the quantum perturba-

tion theory to calculate the charge density in presence of the projectile. Using a

different approximation for the dielectric function he obtained

Se =
2

3π

Z2
1e

4m2

~3

[
ln (1 + πvF/αc)−

1

1 + αc/πvF

]
v (2.15)

This also gives a velocity proportional stopping power for a slow projectile as all

previous results in this section.

2.2.3 Target as electron gas II

The problem of electron scattering off the screened potential of the projectile can

be treated with Feynman-diagrams. Summing over all the terms in diagrammatic

perturbation series and and accounting for the Pauli’s exclusion principle only in
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the very last transition by restricting the final states to empty states outside the

fermi surface, the electronic stopping power of a proton is calculated [100], given

by

Se = nevFσtr v (2.16)

σtr =
4π

k2F

∞∑
l=0

(l + 1)sin2(δl − δl+1)

where σtr is transport cross-section, kF is Fermi wavevector and δl is phase shift

for lth partial wave for scattering of electrons at the Fermi surface. Atomic units

(~ = e = m = 1) are used here. This method also gives a velocity proportional

stopping power.

Ferrell and Ritchie [101] calculated the phase shifts by direct numerical in-

tegration [102] of the radial part of Schrodinger equation with a Yukawa-type

screened proton potential with a screening length κ = 3( 4
9π

)1/3 1√
rs

. The Friedel

sum rule 2
π

∑
l (2l + 1)δl = 1 [103] was satisfied to within 1.7% at electron density

parameter rs = 2 but deviations were found for lower electron densities (90% at

rs = 6). They overcome this problem by adjusting the screening length κ such

that the Friedel sum rule is satisfied.

Density functional theory based non-linear calculations of electron distribution

around a proton in electron gas [104, 105] showed that the results are consider-

ably different from the linear response theory or linear screening calculations.

Echenique et al. [18, 19] assumed that for a slow projectile, the charge distribu-

tion and hence the potential around it is approximately the same as if it were a

fixed impurity atom. They used the density functional theory to calculate the

phase shifts for the scattering of electrons at the fermi surface of an electron gas

off the self-consistent screened potential of the projectile. The Friedel sum rule

was satisfied to within 0.02 electrons. Their results for the electronic stopping

power of slow H and He projectiles in a free electron gas are extensively used as

a standard for comparison with experiments and other more advanced methods,

e.g., time dependent density functional theory (TDDFT) for electron dynamics

or Ehrenfest dynamics based on TDDFT that we use.

All above theories and methods for calculating stopping of a slow projectile
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give a velocity proportional electronic stopping. However, experiments on tran-

sition metals show a clear deviation from this behaviour [22, 106]. By setting a

minimum on the energy transfer from the projectile to the electrons by limiting

scattering angle or by limiting the effective electron density depending on the

average energy transfer to an electron in a binary collision with the projectile the

non-linear behaviour of the electronic stopping was qualitatively reproduced [17,

22, 27, 28, 30, 32, 107, 108].

2.2.4 Molecular Dynamics Methods

Electronic stopping power can be calculated using molecular dynamics methods

that explicitly treat the electrons as quantum mechanical objects. Time depen-

dent tight binding [9, 10] with empirically parametrized functions for Hamiltonian

and overlap matrix elements [109, 110] is a very efficient method to simulate the

dynamics of a system of ions and electrons [9, 11–16]. Ions are treated classically

with forces derived from Hellmann-Feynman theorem. Electrons are represented

by single-particle density matrix ρ(t). Time evolution of ρ(t) is determined by

quantum Liouville equation

ι~
∂ρ(t)

∂t
= [he(R(t)), ρ(t)]

where he(R(t)) is single-electron Hamiltonian at time t when nuclear configu-

ration is R(t) = {R1(t),R2(t),R3(t), ....} and [.., ..] shows the commutation.

Electronic energy E(t) is given by

E(t) = Tr[ρ(t)he(R(t)]

where Tr[..] is taking the trace [13].

During the passage of a projectile through a material, its energy loss to the

electrons increases the electronic energy that can be calculated using above equa-

tion [14–16]. This semi-empirical approach is very efficient and reasonably accu-

rate for large scale simulation of the whole radiation damage event.

A more accurate method to calculate the electronic stopping power is treat-

ing the problem with time dependent density functional theory [111]. This ab
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initio approach has proven reasonably successful [29]. First, the single particle

Kohn-Sham ground state is calculated using ground state (time independent)

density functional theory. Time evolution of this state governs the dynamics of

the electrons. Under the action of a time dependent potential (due to a mov-

ing projectile, for example) energy of the electronic system becomes a function

of time. Using this method, Pruneda et al. [29] calculated the electronic stop-

ping power of proton and antiproton in LiF. The target atoms, Li and F, were

fixed and the projectiles were described with their screened Coulomb potential

propagating at a constant speed. Despite somewhat poor representation of the

projectiles, they recovered the threshold [41] and Barkas-Anderson [67, 74, 91]

effects.

In this thesis, we take a step further. First, we improve the description of the

projectile by considering it an atom just like all the target atoms. Second, the

coupled dynamics of both the nuclei and the electrons is simulated. This so called

Ehrenfest dynamics is implemented in Siesta code [45, 46] and can also be used

to study other non-adiabatic processes. We present detailed implementation of

this method in chapter 3.
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Chapter 3

Coupled ion-electron dynamics

based on TDDFT

Siesta implementation

In classical molecular dynamics (MD) simulations, nuclei follow classical tra-

jectories in a potential determined by the electronic ground state, whereas the

dynamics of electrons is constrained to the ground state only. They are assumed

to follow the nuclei adiabatically. That is, electrons stay in the ground state

corresponding to the instantaneous configuration of the nuclei. In Ehrenfest dy-

namics (ED), on the contrary, we explicitly describe the dynamics of the electrons

without this constraint. The effective mean field potential offered to the electrons

is time dependent due to nuclear motion. It leads to transitions between various

electronic states and thus a non-adiabatic energy exchange between the electronic

and nuclear subsystems.

A set of initial single particle states — solutions to the Kohn Sham density

functional theory equations — is evolved with time using the Hamiltonian of the

electronic subsystem. The latter is calculated using the instantaneous electron

density and nuclear positions. Nuclear dynamics is determined using Newton’s

equations of motions. The forces on the nuclei are calculated from the instanta-

neous electronic potential energy surface. We will describe how all this is done
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in the following sections.

3.1 Electron Dynamics

In this section we will describe how the dynamics of electrons is simulated using

density functional theory. First, we obtain electronic ground state for the initial

configuration of the nuclei. Then we evolve it with time simultaneously with

nuclear motion under classical equations of motion. Time is discretised with a

small time step (∼ asec) to do this numerically. We use atomic orbitals basis set

that is attached to the nuclear positions and changes with time due to nuclear

motion. We keep the electronic wavefunction in instantaneous basis by changing

the basis set whenever nuclei move. Details of these steps is described below.

3.1.1 Obtaining initial state

Although, it does not have to be so, we start electron dynamics with electrons in

the ground state. To obtain the ground state of electrons, we solve a set of single

particle Schrodinger-like Kohn-Sham (KS) DFT equations,

[
−~2

2m
∇2 + VKS(r)]ψi(r) = εiψi(r) (3.1)

where ∇2 is Laplace operator, m is the electron mass. {εi} and {ψi(r)} are the

single particle KS energy eigenvalues and eigenstates. VKS(r) in Eq. 3.1 is given

by

VKS(r) = Ke2
∫
dr′

n(r′)

|r− r′|
−Ke2

Nn∑
α=1

Zα
|r−Rα|

+
δExc
δn(r)

(3.2)

n(r) = 2

N/2∑
i=1

|ψi(r)|2 (3.3)

where Rα is the position of αth nucleus, K is Coulomb constant, e is the elemen-

tary charge, and Zα is the atomic number of αth nucleus. Exc is the exchange

correlation energy of the electrons. Its exact functional form is not known so
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it is approximated either with local density approximation (LDA) or generalised

gradient approximation (GGA).

Although, the KS equations 3.1 are exact in principle, their solutions and

hence the corresponding electron density are only approximate not only due to

the approximate nature of Exc but also due to the self interaction present in

the Hartree potential, the first term in Eq. 3.2. The latter usually results in an

extra delocalisation of the electron cloud. Since VKS(r) is a functional of electron

density n(r) that is determined by the occupied single particle states {ψi(r)},
a self-consistent solution of Eq. 3.1 is found by iteration. We assume a spin-

compensated non-magnetic system here so the sum in Eq. 3.3 is over the lowest

energy N/2 KS states where N is total number of electrons.

3.1.1.1 Energy of the electronic subsystem

The total energy of the electronic subsystem including the nuclear-nuclear inter-

action is given by

EKS =
−~2

2m

N/2∑
i=1

∫
drψ∗i (r)∇2ψi(r) +

1

2
Ke2

∫
drdr′

n(r)n(r′)

|r− r′|
−Ke2

Nn∑
α=1

∫
dr

Zαn(r)

|r−Rα|

+ Exc[n(r)] +Ke2
Nn∑

α 6=β=1

ZαZβ
|Rα −Rβ|

(3.4)

where the first term is kinetic energy, second term is electron-electron Coulomb

interaction or Hartree energy, third term is electron-nuclear Coulomb interaction,

fourth term is exchange correlation energy and the last term is nuclear-nuclear

Coulomb interaction energy. Using Eq. 3.1, we can write

EKS = Tr[Hρ]− 1

2
Ke2

∫
drdr′

n(r)n(r′)

|r− r′|
−
∫
drn(r)

δExc
δn(r)

+ Exc[n(r)] +Ke2
Nn∑

α 6=β=1

ZαZβ
|Rα −Rβ|

(3.5)

H =
−~2

2m
∇2 + VKS(r) (3.6)

21



where ρ is the density matrix and Tr stands for taking trace. When nuclei or ions

start moving, Rα → Rα(t). Hence VKS(r)→ VKS(r, t) and H → H(t). Further,

due to time evolution under H(t), ψi(r) = ψi(r, t = 0) → ψi(r, t) and hence

n(r)→ n(r, t), which in turn feeds back a time dependence to H other than the

one through Rα(t). For clarity, we omit these time dependences and always write

H[{Rα(t)}, n(r, t)] as H(t). In the next section, we will describe how the initial

electronic state, solution set of Eq. 3.1 is propagated.

3.1.2 Time evolution

Time dependent density functional theory (TDDFT) gives us time dependent

version of Eq. 3.1

ι

~
∂

∂t
ψi(r, t) = H(t)ψi(r, t) (3.7)

where

H(t) =
−~2

2m
∇2 + VKS(r, t) (3.8)

VKS(r, t) = Ke2
∫
dr′

n(r′, t)

|r− r′|
−Ke2

Nn∑
α=1

Zα
|r−Rα(t)|

+
δExc[n(r, t)]

δn(r, t)
(3.9)

n(r, t) = 2

N/2∑
i=1

|ψi(r, t)|2 (3.10)

We approximate the exchange correlation energy Exc using LDA or GGA with

instantaneous electron density and ignore any history effects. For an initial state

ψi(r, t = 0) at t = 0, solution of Eq. 3.7 gives us state at a later time t

ψi(r, t) = exp [
ιt

~
H(t)]ψi(r, t = 0) (3.11)

In practice, the above equation is not solved at once, instead, it is evolved over

infinitesimal time steps using some suitable algorithm. We use Crank-Nicholson

algorithm for this purpose which preserves time reversal symmetry and is very

stable for time steps as big as a few atto seconds.
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3.1.2.1 Crank-Nicholson algorithm

For an infinitesimal time dt after any time t, ψi(r, t+ dt) can be written in terms

of ψi(r, t) as

ψi(r, t+ dt) = exp [
ιdt

~
H(t)]ψi(r, t) (3.12)

Crank-Nicholson algorithm approximates the exponential factor as

exp [
ιdt

~
H(t)] ' 1− ιHdt/2

1 + ιHdt/2
(3.13)

so we can write

ψi(r, t+ dt) ' 1− ιHdt/2
1 + ιHdt/2

ψi(r, t) (3.14)

In practice, since we use atomic orbital basis set that is non-orthogonal, above

relation is changed to

ψi(r, t+ dt) ' 1− ιS−1Hdt/2
1 + ιS−1Hdt/2

ψi(r, t) (3.15)

=
S − ιHdt/2
S + ιHdt/2

ψi(r, t) (3.16)

where S is the overlap matrix of instantaneous basis set. The last relation in-

creases computational efficiency by saving an inversion and a multiplication.

In the following section, we will describe how ψi(r, t) is written in new basis

when the latter is changed due to nuclear motion.

3.1.3 Changing atomic orbitals basis set

We use an incomplete basis set of localised atomic orbitals that are attached to the

nuclear positions to best describe the electronic system. When nuclei move, the

basis orbitals move with them and our basis set is changed. We need to update KS

wavefunctions for this change to advance our calculations in instantaneous basis

set. Since we always seek computational efficiency, a method due to Tomfohr and

Sankey [112] is widely used for this purpose.
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3.1.3.1 Tomfohr-Sankey method

J. K. Tomfohr and O. F. Sankey devised a method [112] to update the wavefunc-

tion for the change in the basis set. What they did is very simple. They integrated

time-dependent Schrodinger (or KS) equation written in orthogonalised basis over

an infinitesimal time ∆t during which the basis set changes abruptly. Taking limit

∆t→ 0, they found the following result.

S
1/2
f Cf = S

1/2
i Ci (3.17)

Cf = S
−1/2
f S

1/2
i Ci (3.18)

where Si and Sf are initial and final (old and new) overlap matrix and Ci and Cf

are expansion coefficients of the wavefunction in initial and final (old and new)

basis sets.

In the following section, we will describe how the nuclear dynamics is simu-

lated.

3.2 Nuclear Dynamics

Nuclei (ions) are treated as classical particles so their dynamics is described by

Newton’s equations of motion. To compute the dynamics numerically, all we

need is initial conditions and forces on the nuclei at every time step. We can then

use some suitable algorithm to compute the nuclear trajectories in position and

velocity spaces. In the following, we will describe how the forces on the nuclei

are calculated. We will give a brief description of Velocity Verlet algorithm that

is widely used due to its stability.

3.2.1 Forces on the nuclei

Nuclei move in a potential that is determined by the electronic state. This po-

tential is the expectation value of the electronic Hamiltonian, i.e., the electronic

energy EKS:

EKS =
∑
i=occ

〈ψi(r, t)|H(t)|ψi(r, t)〉
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where the sum is over the occupied states. Considering EKS = EKS[{Rα(t)}, t],
the force on the ith nucleus Fi is expressed as

Fi = −∇Ri
EKS (3.19)

where ∇Ri
is gradient operator with respect to the position of ith nucleus. The

forces on nuclei are calculated a step before updating their positions and velocities.

How the latter task is carried out is described below.

3.2.2 Atomic positions and velocities

We start the dynamics with atoms including the projectile at desired positions

and with desired velocities. As time passes, we update the atomic positions and

velocities using the so called velocity Verlet algorithm as described below.

3.2.2.1 Velocity Verlet algorithm

For nuclear dynamics, we calculate velocities at current time step and positions

at the next time step using forces at current and previous time steps. Suppose the

quantities to compute at current time step are denoted by new and their values

computed at previous time step are denoted by old in subscript. Velocity verlet

algorithm then gives vnew and xnew:

vnew = vold +
(Fold + Fnew)

2M
dt (3.20)

xnew = xold + vnewdt+
1

2

Fnew
M

dt2 (3.21)

where M , x, and v are mass, position and velocity of a particle and F is force

acting on it. This is how we update atomic or nuclear positions and velocities.

This completes our description of the Ehrenfest dynamics as implemented in

the Siesta code [44–46].
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Chapter 4

Simulating the passage of ions

through matter

Technical details

In this chapter, we will describe how we simulate the passage of a projectile atom

through a crystalline material and how we calculate the electronic stopping power

of the projectile in that material from the energy of the electronic subsystem.

4.1 A projectile moving through a solid target

We perform all calculations using the Siesta method [44, 45] with atomic orbitals

basis set [113]. Since we are only interested in the very low energy regime that

is far below the core electrons excitation thresholds, only the valence electrons

are considered explicitly and norm-conserving pseudopotentials generated using

the Troullier-Martins scheme [114] are used to describe the core electrons. We

consider a nx×ny×nz supercell , i.e., a larger unit cell with dimensions determined

by nx, ny and nz conventional unit cells along the three cartesian axes. The

projectile is placed somewhere in the desired channel and DFT ground state is

found. The projectile is then given an initial velocity along the channel axis

while all atoms of the target material are initially quiescent. Using a time step of
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∼ 1 asec or smaller, depending on the projectile velocity, the system evolves by

following the Ehrenfest coupled electron-ion dynamics until the projectile travels

a distance of about 10 Å along the channel axis. While the electronic subsystem

evolves at every time step, the nuclei are moved only at every third step under

the action of quantum mechanical forces derived from the electron density at a

step earlier. Due to technical issues, at least three electronic evolution steps are

needed before we move the nuclei. We keep a record of the projectile’s position

and the electronic energy for all time steps of the Ehrenfest dynamics. This

data is used to get the electronic energy as a function of distance travelled by

the projectile that is used to calculate the electronic stopping power. How the

stopping power is extracted is explained in the next section.

We use the generalised gradient approximation (GGA) for the exchange-

correlation energy functional in the case of gold target and the local density

approximation (LDA) in the case of other targets considered including various

insulators. This choice is made quite arbitrarily except in the case of LiF for

which we want to make a comparison with previous LDA calculations.
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Figure 4.1: Extracting electronic stopping by fitting a line on energy E (left) and

from the difference in energy and the ground state energy E −Egs (right). Note

the difference in the slopes of the fitted lines between the two cases for v = 0.05

a.u..
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4.2 Extracting the electronic stopping power

A projectile moving through a material excites electrons in the system to higher

energy states. Electronic stopping power is the rate of change of electronic energy

with respect to the distance travelled by the projectile. In our simulations, we

compute the electronic energy as a function of time and projectile’s position. To

simulate the dynamics of a projectile moving in an infinitely extended solid, we

consider the projectile in a “supercell” and use periodic boundary conditions.

That is, the supercell is periodically repeated in all three spatial direction. The

size of the supercell is taken large enough so that spurious effects of the repetition

of the projectile are minimal.

However, due to limited computational power, the size of the supercell even

along the direction of motion of the projectile cannot exceed a few lattice con-

stants. Thus, the “energy vs distance” data that we obtain from our simulations

is limited to only a few lattice constants. Obtaining an accurate value of the

electronic stopping power from this data needs special care as the oscillations in

the energy due to the periodicity of the target material becomes significant on

the scale of total energy change.

Furthermore, at low velocities, where the nuclear stopping is sizable, the atoms

in the target material are displaced from their initial positions by large distances.

The corresponding change in the ground state electron energy of the system needs

to be separated from the non-adiabatic change in it.

In the following, we will describe how we minimise the influence of the above

factors on our electronic stopping power results. We will give some real examples

as well.

4.2.1 Fitting a line on the total energy

If the electronic energy vs distance travelled by the projectile — E vs d — is linear

with superimposed periodic oscillations, the electronic stopping Se is simply the

slope of the linear part. We use least square fitting to fit a line on the E vs d

data and obtain the slope. This is demonstrated in the left panel of the Fig. 4.1

where we plot the E against d for a gold atom projectile in a [001] channel in SiC

(red lines) for a set of projectile velocities. Electronic stopping power at a given
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Figure 4.2: Electronic stopping power of gold in SiC calculated by fitting a line
on the energy E (blue curve) and the excitation energy E − Egs (red curve).

velocity is the slope of the fitted line (dotted blue) for the corresponding curve.

However, this method has some flaws, especially for low velocity cases where some

factors other than the non-adiabatic energy transfer to the electrons also change

the electronic energy significantly. How such cases are handled is discussed in the

next section.

4.2.2 Fitting a line on the excitation energy

When atoms in the target material are displaced from their original positions,

electronic energy of the system changes. For a violent channel that allows low

impact parameter collisions between the projectile and the target atoms, or for a

slow projectile that has a relatively larger interaction time, such contributions to

the change in the electronic energy can be significant. As a result, E vs d loses

the periodic oscillations part so we can not use fitting method described above

to extract the electronic stopping power. To cure this problem, we calculate the

ground state electron energy Egs for the same atomic configurations as followed by

the atoms under Ehrenfest dynamics (ED). For this purpose, we save the positions

of all atoms at each time step during ED. Once we have these atomic trajectories,

we calculate the ground state energy for a selected set of configurations from these
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Figure 4.3: Left: Electronic energy E as a function of the distance travelled by a
H projectile moving in LiF. Fitting a line on these curves does not give accurate
stopping power. Right: The difference E − Egs is used to evaluate the stopping
power.
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Figure 4.5: Electronic excitation energy E−Egs as a function of distance travelled
by a H projectile moving in Al2O3. The peaks in the energy E in the left panel
of Fig. 4.4 are due to the changes in the ground state energy Egs and not in the
excitation energy E−Egs. This is the reason that clipping these peaks gives quite
accurate electronic stopping power as shown in Fig. 4.6.

saved ones with a given interval of the ED time steps. For practical purposes,

only a few points per Å travelled by the projectile suffice. Then the ground state

energy Egs is subtracted from the corresponding ED electron energy E. The

stopping power is obtained by fitting a line to the difference E − Egs. The right

panel of Fig. 4.1 demonstrates this. As can be seen in Fig. 4.1, the slopes of

the fitted lines for v = 0.05 a.u. obtained by the two methods described above

are different. Fig. 4.2 shows the electronic stopping power calculated by the two

methods described above. We consider the latter method more reliable. A more

complicated situation is shown in Fig. 4.3, where due to violent collisions between

the projectile and the target material atoms, the E vs d data alone cannot be

used to obtain the stopping power and we have to employ the second method.

The importance and power of this method is evident from this example case.
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Figure 4.6: Electronic stopping power calculated by fitting a line on the energy
E(d) after removing the problematic peaks (dotted lines with filled symbols) and
on the excitation energy E−Egs (solid lines with empty symbols). Although, the
first method does not work at low velocities, it agrees reasonably well with the
more accurate second method at higher velocities.

4.2.3 Clipping large peaks in the energy

When the energy has large peaks that change the slope of the fitted line from the

average slope of the energy curves, we cannot find the stopping by fitting a line

on the full data. Instead, trimming off the peaks removes their influence on the

filling process and we obtain reasonably good agreement with the fitting on the

excitation energy E −Egs, except at very low velocities. This is demonstrated in

Fig. 4.4. The reason that removing the peaks works is that these peaks are due

to the changes in the ground state energy Egs and not in the excitation energy

E − Egs as shown in Fig. 4.5. In Fig. 4.6, we present the results obtained using

these two methods for H, He and Li in alumina. At v = 0.05 a.u., fitting on

E −Egs needs to be done to get accurate value of the stopping power. At higher

velocities, simply clipping the “bad” peaks works well. However, we have not

used this method for any projectile-target system studied in this thesis.
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4.3 Summary

In this chapter, we describe the technical details of simulating the passage of a

projectile atom through a crystalline material. We also describe how we extract

the electronic stopping power from the energy vs distance data. Three methods

are described and their results are compared for demonstration purpose.
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Chapter 5

Electronic stopping power of H

and He in gold

The role of d electrons and the H/He anomaly

5.1 Introduction

Recently, the electronic stopping power for swift ions in gold has been carefully

characterized by experiments [20, 21, 32, 106, 107]. The experimental results show

flagrant discrepancies with the established paradigm for such problems [18, 25].

Theoretical calculations based on time-dependent tight-binding [13], and detailed

studies for protons based on first principles [30], only qualitatively agree with the

experiments. This leaves us with very fundamental questions unanswered in spite

of the apparent simplicity of the system. Most notably the H/He anomaly: the

present understanding predicts a stopping power for H higher than for He at low

velocities [25], which strongly contradicts the recent experiments [21].

Based on the jellium model (homogeneous electron gas) the electronic stopping

power, Se, is predicted to be Se ∝ v for a slow projectile traversing a metallic

medium [115, 116]. Such behaviour has been observed experimentally in many

sp-bonded metals [22, 23], and the jellium model has allowed deep understanding

of the dynamic screening of the projectile and its relation to stopping [24]. Even
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the jellium prediction of an oscillation of the proportionality coefficient with the

projectile’s atomic number Z has been verified [25] and reproduced by ab initio

atomistic simulations [26]. However, phenomena that cannot be accounted for

within the jellium paradigm have been described only qualitatively so far [17, 27–

29]. Experiments on noble metals Cu, Ag and Au, show pronounced nonlinearities

in Se(v) [20–22, 27, 30–32, 106, 107, 117]. In the case of slow H and He ions in

gold [20, 21, 32, 106, 107], Se(v) displays an increase in the slope roughly around

v w 0.18 a.u. This is usually attributed to a threshold projectile velocity needed

to excite the d-band electrons that are relatively tightly bound. A model was

developed based on the ab initio density of electronic states and a stochastic

treatment of excitations [17], which reproduces the threshold for protons.

Here we obtain the non-linear Se(v) and the H/He anomaly with our ab initio

method described in chapter 3. We find very good quantitative agreement with

some recent low energy ion scattering experiments on thin gold films [20, 21,

32, 107]. The results are analyzed in terms of the electronic excitations that

are responsible for the energy loss, which very clearly shows why the slope of

Se increases with projectile velocity. In contrast to the usual idea that at low

projectile velocity only electrons close to the Fermi energy contribute to the

stopping, we find that there is a significant contribution from deep lying states

even for a slow projectile. This means that at low velocities (v < 0.2 a.u.) the

electrons accessible to excitations (s) are different from the ones involved in the

screening of the projectile (s+ d), the latter providing the excitation mechanism.

In the following sections, we give the computational details and present our

results.

5.2 Computational Details

We used the Perdew-Burke-Ernzerhof (PBE) version [118] of the Generalised

Gradient Approximation (GGA) to the instantaneous exchange and correlation

functional. Only valence electrons in Au are considered explicitly and a norm-

conserving pseudopotential is used to describe the core electrons (up to the 5p

sub-shell). A double-zeta polarised split-valence basis was used for the valence

electrons both for the projectile and the gold atoms. The grid cutoff for real
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Figure 5.1: Electronic stopping power of H and He projectiles in gold as a function
of projectile velocity. Results of our simulations are compared with the experi-
mental data from Refs. [20, 21, 32, 107] on single and polycrystalline thin gold
films.

space integration was 200 Ry [45]. Gold has a face centred cubic lattice with a

single atom motif. The lattice parameter obtained for bulk gold was a = 4.12

Å, which is slightly larger than the experimental value of 4.08 Å as expected for

GGA. After convergence tests, a 2 × 2 × 4 supercell consisting of 64 gold atoms

was selected. For integration in the Brillouin zone, 8 k-points were used with a

2× 2× 2 Monkhorst-Pack [119] grid equivalent to a k-grid cutoff [45] of 8.256 Å.

The projectile (H or He) was initially placed at (3
4
a, 3

4
a, a) in the supercell

and set in motion along 〈100〉 channel with a given initial velocity along the

z-direction while all gold atoms are initially quiescent. We used a time step of

1 asec for the time evolution of the electronic wavefunctions. The nuclei were

moved only at every third step. On the time scale of the simulation (∼ 0.75−6.0

fs for v = 0.05 − 0.50 a.u.), the gold nuclei only gained negligible velocities and

did not move significantly. Electronic stopping power is extracted as the average

slope of the electronic energy vs distance curve as described in section 4.2.1.
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5.3 Results and Discussion

Fig. 5.1 shows our results for Se(v) for H and He projectiles in gold for the velocity

range v = 0.06 − 0.50 a.u. We also plot results of some recent experiments

performed on thin single crystal gold films oriented along 〈100〉 [32, 107] and

polycrystalline gold films [20, 21]. The agreement between our simulations and the

experiments is noticeable. Although the stopping power is still underestimated

(especially for H around v = 0.3 a.u.), no previous ab initio approach had this

level of agreement on the non-linear velocity dependence of the stopping power

of real materials. Our results for the stopping power are well converged with

respect to the basis size and the density of points on the real and the momentum

space grids. A larger basis set for the projectile, however, (TZDP instead of DZP

) increases the stopping power about 5% at v = 0.5 a.u., but considerably less

at low velocity. The error bars in Fig. 5.1 indicate the dispersion in our results

for v =0.08, 0.1 and 0.5 a.u. when the various parameters are varied, including

the basis set (the bars for low velocities are hardly larger than the size of the

circles). Details of all these convergence tests is included in Appendix A. The

strict channelling in the simulation is partly behind the observed underestimation:

calculations for a 30% smaller impact parameter give a 25% increase in SH
e at

v = 0.28 a.u. that reduces to 1% at v = 0.5 a.u.

We see a clear deviation from the linear behaviour around v = 0.2 a.u. in

Se of both H and He. This is unlike the Se ∝ v of the uniform electron gas. It

seems a plausible explanation that at low projectile velocity only s-band electrons

from the states around the Fermi energy contribute to the stopping and at higher

velocity electrons in the d band that lie relatively deeper in energy are also able

to take part in it, resulting in an increase in the slope of Se. Thus, comparisons

have been made [21, 32, 107] with jellium using the average electron density ne

of the s electrons (rs = 3.01 a.u., where n−1e = 4
3
πr3s), using rs = 1.49 a.u.,

corresponding to an effective number of s and d electrons [21], or of the density

in the 〈100〉 channel (rs = 1.8 a.u.). However, the jellium predictions do not

agree with the experimental results except at projectile velocities around v = 0.6

a.u. in the latter case, despite the expectation that all the d-band electrons are

active for a projectile velocity v ≥ 0.47 a.u. [27]. There is a further problem in
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Figure 5.2: Excitation distribution P (E) when H passes through gold with ve-
locity 0.05 a.u., for time values between t = 0.1 fs and 1.1 fs in steps of ∆t = 0.1
fs (light color; larger amplitude for longer t; Gaussian broadening σ = 0.2 eV).
The dark curve is the electronic density of states g(E) (σ = 0.5 eV). P (E) and
g(E) are in different scales.

the comparison with jellium: If we assume that at low velocity only s electrons

are actively participating in the stopping mechanism, the jellium model predicts

SH
e > SHe

e [18], which is not the case.

To explain the above inconsistencies and get a better idea of the energy loss

mechanism we compute the changes in the electronic distribution due to the exci-

tation of the electrons when a projectile propagates through the material. Having

{|ψn(t)〉} and X(t), the set of evolved occupied KS states, and the correspond-

ing atomic positions at time t, we calculate the adiabatic states {|φi,X〉}, i.e.,

the set of self-consistent static KS states for X(t). By projecting the evolved

states onto the adiabatic states, Cin = 〈φi,X(t)|ψn(t)〉, the density of occu-

pied energy states O(E) at time t as a function of energy E are obtained as

O(E) =
∑

i,n |Cin|2δ(E − Ei). Here Ei is the eigenvalue of the adiabatic state

|φi,X〉. To compute the change in the electronic distribution or the (electron-
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Figure 5.3: Left: Excitation distribution P (E) due to the passage of a H (top)
or He projectile (bottom) in gold evaluated at t = 0.25 fs for various projectile
velocities, v = 0.05− 0.50 a.u. in steps of 0.05 a.u. Increased projectile velocity
gives curve with larger amplitude (indicated by arrows). The dashed and dotted
vertical lines show the upper edge of the gold’s 5d-band Ed and the Fermi energy
EF . Right: Number of empty states below and above Ed, N1 and N2, and fraction
N1/(N1 +N2) versus projectile velocity, due to the excitations for H or He.

hole) excitation distribution, P (E), we subtract the ground state electronic dis-

tribution from O(E). That is, P (E) = O(E)−Θ(EF −E)g(E), where EF is the

Fermi energy of the system, g(E) is the electronic density of states and Θ(E) is

the Heaviside step function.

Fig. 5.2 shows the excitation distribution P (E) as a function of energy at

various instants from t = 0.1 fs to t = 1.1 fs with an interval ∆t = 0.1 fs, for

the passage of a H atom in gold along 〈100〉 with velocity v = 0.05 a.u. The

electronic density of states of the bulk Au host g(E) is also plotted in Fig. 5.2.

The negative and the positive values of P (E) show the density of empty and

filled states below and above EF , respectively, due to the electronic excitations

caused by the moving projectile. Notice that despite being very slow (v = 0.05

a.u), the projectile is able to excite relatively tightly bound d-band electrons. A

short initial transient behaviour is noticeable in Fig. 5.2: at energies deep below

the Fermi energy, the number of empty states becomes larger initially, requiring

a short time to adjust to a stationary regime. This is because in our simulations

the projectile is a static impurity atom at t = 0 that suddenly acquires a finite
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velocity resulting in a large initial perturbation.

To see how the excitation distribution after the transient depends on the ve-

locity of the projectile, we plot P (E) against E in Fig. 5.3 at t = 0.25 fs for

various projectile velocities, between 0.05 a.u. and 0.50 a.u. We see that, com-

pared to the states just below the Fermi energy, the number of excitations from

deep inside the d-band increases more quickly with the velocity of the projectile.

This means that the effective number of d-band electrons involved directly in

excitations provoking the stopping process increases with the projectile velocity.

To see this more clearly, we separated the energy window into two parts at the

upper edge of the d-band at energy Ed and calculated the total number of exci-

tations N1 and N2 from the states below and above Ed for a constant distance

travelled by the projectile. We find that P (E) ∝ t after the initial transient so

we can estimate N1 and N2 as N1 = 1
v

∫ Ed

−∞ |P (E)|dE and N2 = 1
v

∫ EF

Ed
|P (E)|dE,

which we did using P (E) at t = 0.25 fs. In the right panel of Fig. 5.3 we plot N1

and N2 and the fraction N1/(N1 +N2) = N1/N against the projectile velocity as

dashed, dotted and solid lines for H and He projectiles. We see that N1 and N1/N

increase with v for both projectiles. For H, N2 increases and saturates whereas

for He it increases up to v = 0.3 a.u. but decreases for a faster projectile. Since

there is one s electron and ten d electrons and N1 also includes the contribution

from the s-band states, ideally it should tend to N1/N ∼ 10/11 = 0.909 for high

projectile velocity. N1/N reaches only 0.88 and 0.78 for H and He at v = 0.5 a.u.

Although the fraction of excitations from the deep lying states is higher for H,

the absolute number is lower, as can be seen in the figure. Furthermore, in the

case of H, N1 > N2 for the whole velocity range shown whereas for He, N2 > N1

in the very low velocity range.

We address now the low-velocity H/He anomaly. Fig. 5.4 presents the ratio

R = SHe
e /SH

e in jellium [18]. The values of R for Au for v = 0.1 and v = 0.5

a.u. are plotted on the two dotted vertical lines at rs = 3.04 and rs = 1.49 a.u.,

which correspond to 1 and 8.24 electrons per bulk unit cell, i.e., the s electrons

and the effective number of valence electrons (s and d) that fit the plasmon pole

for bulk Au [21]. We see that for the faster projectile R is close to the jellium

value and significantly larger than 1. However, for the slower one, we obtain

R = 4.7, in clear disagreement with the jellium value of 0.79, but in agreement
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Figure 5.4: Left: The curve shows R = SHe
e /SH

e for jellium versus the electron
density parameter rs [18]. The values of R obtained for Au for v = 0.1 and 0.5 a.u.
are associated with rs = 3.04 and 1.49 a.u, respectively, following Ref. [21]. The
calculated ratio R for a system made of Na atoms in bulk Au positions, rs = 3.04,
is also presented. Right: Projection of KS states for the system with projectile
onto the KS states of bulk Au, for H and He, subtracting the Au density of states.

with experiment. We also plot R for the fictitious system built by putting Na

atoms in the Au positions, which corresponds to an electron gas with rs = 3.04.

The plot shows a perfect agreement for the R values of Na and jellium 1. These

differences between jellium (or Na) and gold are thus due to the presence of gold’s

d electrons. This is consistent with the fact that, even if a slow projectile were

unable to excite the d-band electrons appreciably, the presence of the projectile

in gold constitutes a large static perturbation for the d electrons. This can be

clearly seen by calculating the projection of the ground state of the gold with the

projectile onto that without it and obtaining a distribution analogous to P (E),

now describing the static screening of the projectile. i.e., projecting the wave-

functions of Au with the projectile onto the states of pure Au (Fig. 5.4). This

means that for a slow projectile the response of the electrons in gold is far from

the one described by the homogeneous electron gas model that includes just the

1 The stopping power values for H and He in this Na are 3.902 eV/Å and 3.083 eV/Å, re-
spectively, for v = 0.5 a.u., and 1.024 eV/Å and 0.715 eV/Å, for v = 0.1 a.u.; the corresponding
values for jellium as extracted from Ref. [18] are 7.741 eV/Å and 17.874 eV/Å, respectively,
for v = 0.5 a.u., and rs = 1.49 Bohr; and 0.861 eV/Å and 0.710 eV/Å, for v = 0.1 a.u. and
rs = 3.04 Bohr.
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s-band electrons.

5.4 Summary

To summarize, we have shown that realistic non-adiabatic stopping of projec-

tiles in real metals can now be described from first-principles with acceptable

accuracy, even at the Ehrenfest dynamics level. We used it to calculate the elec-

tronic energy loss on passage of H and He through Au and find good quantitative

agreement with experiments. Many other problems involving non-adiabatic pro-

cesses coupling many adiabatic energy surfaces can now be addressed with this

technique.

42



Chapter 6

Electronic stopping power of H

and He in Al

6.1 Introduction

Recent experiments on nanometer thick polycrystalline Al films show that while

the jellium model for Al (Se ∝ v) works well for hydrogen (H+ , D+), the elec-

tronic stopping of He+ ions in Al deviates from linearity.[33] The reason behind

this was proposed to be the charge exchange processes due to the repeated shift-

ing of 1s level of He up and down along the trajectory.[33] We demonstrated

a successful application of coupled ion-electron dynamics using TDDFT to the

electronic stopping power problem of low-velocity H and He projectiles in gold

[47] in chapter 5 and of high-velocity H in aluminium [120, 121]. Using the same

method we calculate here the electronic stopping power of low-velocity H and He

in Al to see whether we can reproduce the experimental results.

6.2 Computational Details

The local density approximation (LDA) for the instantaneous exchange and corre-

lation energy functional in the Ceperley-Alder [122] form parametrized by Perdew

and Zunger [123] was employed. We considered two cases.

(i) electrons in up to 2p sub-shell of Al are described by norm-conserving
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Figure 6.1: Position of [001] channels 1,2 and 3 in the xy-plane in the unit cell
of Al crystal. Two {001} atomic planes spaced a/2 are shown with two different
symbols.

pseudopotentials. We use a double-ζ polarised split-valence basis for the valence

electrons of the host Al atoms as well as for the projectiles (H and He). The

grid cutoff for real space integration is 200 Ry [44, 45]. The lattice parameters

obtained from the relaxation of the bulk Al is 3.995 Å that is slightly smaller than

the experimental value of 4.0495 Å as expected for LDA. We used (2 × 2 × 4)

supercell that is large enough to beat the spurious effects of the repetition. The

Brillouin Zone integrations were performed with 9 k-points using a 3× 3× 3 grid

displaced by (π/a, π/a, π/a), that is equivalent to a k-grid cutoff [45] of ' 12 Å.

(ii) Only 1s electrons of Al are described by a norm-conserving pseudopoten-

tial. All other electrons of Al atoms are considered explicitly. We use single-ζ

for 2s and 2p, and a double-ζ polarised split-valence basis for the other valence

electrons of Al atoms. To account for a more rapid variation of inner-shell wave-

functions of Al and resulting electron density and potentials in real space, we

doubled the density of real space grid sampling points by increasing the grid cut-

off four times to 800 Ry. The Brillouin Zone integrations were performed in this

case with 8 k-points using a 2× 2× 2 grid.

We considered three [001] channels at y/a = 9/12 and, x/a = 12/16, 14/16

and 16/16. These are labelled as channel 1, 2 and 3 respectively, as shown in
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Figure 6.2: Electronic stopping power of H (open symbols) and He (filled sym-
bols) in Al. Comparing the simulations with the experimental results from
Ref. [33]. The two thin straight lines are the DFT results for H and He in jellium
with rs = 2.13 (dotted and dash-dotted lines, respectively).

Fig. 6.1. The projectile is placed at z = a and given an initial velocity along the z-

direction. Using a time step of 1 asec, the system evolves by following Ehrenfest

coupled electron-ion dynamics. This is continued until the projectile travels a

distance of 2a along the z-direction. Once the transient due to the sudden start

of the projectile motion has disappeared [29], Se is extracted as the average rate

of change of the electronic energy with the distance travelled by the projectile as

described in section 4.2.1.

6.3 Results and Discussion

Fig. 6.2 shows our results for the electronic stopping power of H and He in Al

channel 1 for both cases i (black lines with circles) and ii (blue lines with squares),

that is, for two different types of Al pseudoatoms. Experimental [33] and DFT

results[18] for a jellium of electron density rs = 2.13 that is adequate for Al [124],

are also presented for comparison. We see that our results agree fairly with the

experiments. For H, our simulations underestimate the electronic stopping by
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Figure 6.3: Electronic stopping power of H (open symbols) and He (filled sym-
bols) in Al in three channels 1,2 and 3 shown in Fig. 6.1. Comparison is made
with the experimental results from Ref. [33].

∼ 15%, while for He our calculations underestimate it for v ≥ 0.35 a.u. (up

to ∼ 10%) for case i and overestimate it for v ≤ 0.25 a.u. (up to∼ 40%) for

both Al pseudopotentials. With explicit inclusion of Al 2s and 2p electrons in

calculations, the agreement of He stopping with the experiments for v ≥ 0.35

a.u. becomes excellent. The change in the stopping power at lower velocities is

small, which makes sense as a slow projectile is less likely to excite inner-shell

Al electrons. In case of H, including inner-shell electrons of Al explicitly slightly

decreases the electronic stopping at v ≥ 0.30 a.u., whereas both pseudopotentials

give identical stopping at lower velocities. This is interesting as including the

inner-shell Al electrons is expected to do exactly the opposite.

As can be seen in Fig. 6.2, our results show that the stopping power is almost

proportional to the velocity in the velocity range shown. There is, however, a

slight decrease in the slope around v = 0.4 a.u. for both H and He projectiles.

The jellium results shown in Fig. 6.2 perfectly agree with the experimental results

for H in Al but for He they overestimate the electronic stopping in the jellium at

low velocity and underestimate it at higher velocity. As Fig. 6.2 shows, compared

to the jellium, our results for He are in much better agreement at higher velocities
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even without 2s, 2p Al’s electrons.

Fig. 6.3 shows the stopping power of H and He in three different channels 1,2

and 3 shown in Fig. 6.1. Let’s take H case first. As can be seen, the stopping

power increases for channels 1 through 3 for v ≥ 0.4 a.u. while a tiny decrease

can be seen for lower velocities. As Fig. 6.1 shows, the projectile approaches the

host Al atoms closer and closer as we move from channel 1 to 3. The stopping

increases accordingly and for channel 3 we get almost a perfect agreement with

the experiments. However, in an experiment, there is a distribution of positions

relative to channel 1 with a range of impact parameter. But, at the moment,

we do not have a method to find the weights i.e., the contributions of different

channels to the stopping. All we can guess is that the projectile will tend to follow

a low stopping path. For He, all the three channels considered produce almost

the same stopping. However, as for H, the agreement with the experiments is

improved as we move from channel 1 to 3.

The change of the slope observed in the experiments for He remains thus un-

clear. The authors of the experimental paper, however, point to charge effects on

the projectile. They have not been contemplated here inasmuch the calculations

always start with the adiabatic solution of the projectile in the solid, which un-

avoidably leads to a fully occupied 1s level. If a cationic projectile is used, there

will be a time needed for that level to be filled, and there will also be a velocity

dependence to this. An exploration of this effect would be thus timely. We leave

it to the future work.

6.4 Summary

Theoretical simulations from first principles for the low-velocity electronic stop-

ping power of light projectiles in Al have been presented. A good agreement

with the experiments is obtained, although some key features have not been ad-

equately reproduced. The observed change in the slope of the stopping power

versus velocity curve escapes the simulations. Considering channels with smaller

impact parameters improves the stopping. A proper consideration of possibly

long transients related to charge could be revealing.
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Chapter 7

Electronic stopping power of H

and He in Na

7.1 Introduction

Energy loss of charged particles passing through a gas of free electrons has been

a subject of extensive study using a variety of methods [125–131]. For H and

He projectiles, theoretical calculations [18] based on phase shifts for electron

scattering off the screened potential of the projectile obtained using DFT predict

a crossover between two regimes with electron density: for low electron density

with density parameter rs < 2.77, electronic stopping power of H is higher than

He, while for higher electron densities, the converse is true. In chapter 6, we

calculated electronic stopping power of H and He in aluminium that is a free

electron metal with rs = 2.07 and lies in the higher density regime. In accordance

with the DFT prediction, in Al indeed the stopping of He is larger than that of

H. In this chapter, we consider sodium that is perhaps the best example of a free

electron gas [132–135]. The valence electron density in sodium is low (rs = 3.86)

and according to the DFT results [18], the electronic stopping power of H in Na

should be larger than that of He. Our calculations not only confirm this, we find

a quantitative agreement with this free electron model for the electronic stopping

power of H and He projectiles at low velocities. To see the effect of surfaces, we

also perform calculations on a few-unit-cell-thick film of sodium. We find that
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the energy loss to the electrons in top few atomic layers at the surface is different

than the bulk crystal.

7.2 Computational Details

The exchange and correlation energy functional is computed with the local density

approximation (LDA) in the Ceperley-Alder [122] form parametrized by Perdew

and Zunger [123]. Na pseudoatoms that we considered contain only the 3s valence

electrons with the rest electrons in the inner atomic orbitals described by norm-

conserving pseudopotentials. A double-ζ doubly polarised split-valence basis is

used for all atoms. The grid cutoff for real space integration is 200 Ry [44, 45].

Sodium has a body centred cubic lattice with single atom motif. The lattice

parameter we obtained by relaxing the structure is a = 4.1486 Å . This is slightly

smaller than the experimental value of 4.23 Å as expected for an LDA functional.

We used a 2×2×8 supercell containing 64 Na atoms with a 3×3×1 Monkhorst-

Pack grid for the Brillouin zone integrations. This is equivalent to a k-grid cutoff

[45] of ' 12.45 Å. We consider two cases, with the target sodium in the bulk or

a film form.

(i) The bulk case: We considered a [001] channel at (x/a, y/a) = (3/4, 3/4).

The projectile was placed in the channel and, using a time step of an asec, allowed

to move a distance of 30 a.u. along the z-direction with a given initial velocity.

(ii) The film case: We considered an 8 unit cell (∼ 62.7 a.u.) thick film with

a vacuum layer 28.26 a.u. wide. The film has the same structural parameters

as the bulk Na, i.e., its structure is not relaxed. The lateral dimensions of the

supercell we used are again 2× 2. Relaxing the structure with the same supercell

size decreases the interlayer distance close to the surfaces but does not change

the position in the xy-plane significantly. The projectile starts moving towards

the film from a distance of 11 a.u. away from the film surface and aims for the

same [001] channel that is at (x/a, y/a) = (3/4, 3/4). The dynamics is studied

until the projectile penetrates the film around 20 a.u. deep.

Electronic stopping power is computed in both cases as the slope of a straight

line fitted on the electronic excitation energy vs distance curve as described in

section 4.2.2.
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7.3 Results and Discussion

7.3.1 Na vs jellium

Figure 7.1: Electronic stopping power of slow H and He in the bulk Na and
jellium with rs = 3.86 that corresponds to average density of valence electrons in
Na.

Fig. 7.1 shows the electronic stopping power of H and He, SH and SHe, in

the bulk Na. The stopping power of the same two projectiles in jellium with

electron density parameter rs = 3.86, that is appropriate for Na, are also plotted

for comparison. First, note the agreement between the jellium and Na. There

are only slight differences between the stopping in the two media. This is not

surprising as the valence electrons in Na are only weakly bound and behave quite

like jellium. At higher velocities, however, differences become more pronounced.

At v = 0.5 a.u., for example, compared to the stopping in the jellium, H stopping

power in the bulk Na is 7.8% lower while He stopping power is 10.3% higher.

As we expect for a free electron metal, there seems no threshold effect for Na.

Se(v) in Na is linear with approximately the same slope as in jellium, except at
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v > 0.3 a.u. where the slope for the H stopping slightly increases while that for

He stopping slightly decreases. The ratio of the electronic stopping of He to that

of H — SHe/SH — for Na and jellium also agree reasonably well with each other.

The differences are within ∼ 20% in the velocity range shown.

7.3.2 The bulk vs the film

Figure 7.2: Electronic stopping power of slow H and He in an 8 unit cell thick
film and the bulk Na.

In Fig. 7.2 we plot the electronic stopping power of H and He in the film

and the bulk Na. As the figure shows, the stopping power for the bulk Na is

slightly different than the film. It is interesting that, in the velocity range shown

in Fig. 7.2, the latter always has higher stopping for He in contrast to H for which

the stopping power is slightly smaller than the bulk for v > 0.3 a.u..

Fig. 7.3 shows the change in the electronic excitation energy E − Egs as the

projectile moves for the four cases with H and He projectiles and the bulk and

the film targets. Here, E is the electronic energy of evolved system while Egs
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Figure 7.3: The change in the electronic excitation energy E−Egs as a function of
the distance travelled by the projectile for the H (top row) and He (bottom row)
projectiles and the bulk Na (left column) and the Na film (right column) targets.
The horizontal axes of the plots show the distance measured from the projectile’s
initial position in the case of the bulk target and from the top atomic layer on
the front surface of the film in the case of the film target. Electronic stopping
power is taken as the average slope of these curves after the initial transient.

is the ground state electronic energy for the corresponding atomic arrangement.

The horizontal axes of the plots show the distance measured from the projectile’s

initial position in the case of the bulk target and from the top atomic layer on

the front surface of the film in the case of the film target. As can be seen, the

initial transients in the energy for the bulk and the film cases are different as

the projectile is present inside the bulk in the former case when the simulation
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Figure 7.4: The time evolution of the change in the average areal electron density
in the xy-plan as a function of the position along the film width, the z-direction,
as a H (top) or He (bottom) projectile enters it. The position is labelled by the
distance from the top atomic layer on the front surface of the film.
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starts. However, the stopping power shown in Fig. 7.2 is calculated from the

average slope of the energy vs distance curve only after it becomes stationary.

Thus the difference in the stopping power calculated for the bulk and the film

arise only due to the difference in their responses to the perturbation.

Comparing the bulk and the film plots in Fig. 7.3, we can see that the E −
Egs curves for the film are much more oscillatory meaning that the position

dependence of the electronic stopping is quite strong in case of the film while

the bulk behaves more like a uniform electron gas. Remember that the film we

consider is just 8 unit cell thick so its interior is not exactly like a bulk crystal.

7.3.3 Surface effects

In Fig. 7.4, we plot the change in the average areal charge density in the xy-plan

as a function of the distance along the z-direction and time for the film case for

the projectile velocity v = 0.05 a.u.. As in Fig. 7.3, the horizontal axes of the

plots show the distance measured from the top atomic layer on the front surface

of the film. Comparing the H and He projectiles — the top and the bottom plots

— the response to the He atom stays very weak until it enters the film at about

0.15 fs while the H atom induces longitudinal oscillations in the electron density

even when it is 5 Å away from the surface (at about 0.05 fs) and has travelled

just more than an Å towards it. This is also seen in the right column of Fig. 7.3:

compared to He, when a H atom moves towards the film, it not only excites a

lot more electrons, it does so from a larger distance. He perturbs the electrons

only when it reaches the film electrons. Note that relaxing the structure of the

film pulls the atoms in the surface layers inwards by upto ∼ 0.5 a.u., however,

as we checked for v = 0.5 a.u., it does not alter the electronic stopping power

for any of the H or He projectiles. Coming back to Fig. 7.4, we see that while

travelling inside the film both projectiles induce a wake-like feature in the valence

electron density as expected. We see that, compared to the H atom, the charge

density oscillation behind the He atom is larger in the magnitude and shorter in

the “wavelength” . However, H induces a much stronger oscillation at the far end

of the film at ∼ 0.25 fs whereas the corresponding feature in the He plot is at

∼ 0.30 fs, which is not only much weaker but also delayed by ∼ 0.05 fs. Since at
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Figure 7.5: Electronic stopping power of slow H and He in metals — Na, Al and
Au. Na that has low valence electron density (rs > 2.77) offers a higher stopping
to H than He.

v = 0.05 a.u., comparing the film and the bulk targets (see Fig. 7.2), the stopping

power of H is lower in the film while that of He is higher in the film, the role of

the oscillations in the charge density seems to lower the stopping. However, this

needs more investigation and is not the final word.

7.3.4 Na, Al and Au

In Fig. 7.5, we compare electronic stopping power of H and He in Na, Al and

Au. We see that for Na and Al, the stopping power is linear with the projectile

velocity for both H and He projectiles. However, in case of Au, the slopes of the

stopping curves change with the velocity as described in detail in chapter 5.

Fig. 7.6 shows results from Ref. [18] for jellium calculated using scattering
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Figure 7.6: Stopping power of slow H and He in jellium as a function of elec-
tron density, from Echenique et al., Ref. [18]. Electrons at the fermi surface are
scattered by the screened potential of the projectile. The scattering potential of
static projectile atom calculated self consistently using density functional theory
is used.

theory [101] with scattering potential of the projectile calculated using density

functional theory. The slopes of the Se(v) curves for H and He are plotted against

the electrons density parameter rs. As mentioned in the introduction above and

in section 1.7.1, the stopping power of He is larger than that of H for a high

density jellium with rs < 2.77 and the converse is true for jellium with low

electron density (rs > 2.77). The average density of valence electrons in Na and

Al correspond to rs = 3.86 and 2.07. In Au, considering only s electrons (Au6s)

gives rs = 3.04 and all 11 s and d electrons (Au5d6s) gives rs = 1.49. These rs

values for the three metals are marked in Fig. 7.6 with vertical dot-dashed lines.

Keeping these numbers in mind, we see that in Fig. 7.5, the relative stopping
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power of H and He agree with the jellium model: in Na, H has a higher stopping

than He, whereas in Al and Au5d6s, the opposite is true.

At v ≥ 0.2 a.u., although, there is a small velocity window where the stopping

power of both projectiles in Au are lower than Al, the slopes of the stopping curves

are still larger for Au that, considering that its d electrons also taking part in

the stopping process, has a higher valence electron density than Al. However,

it is surprising that, even if we consider only s electrons in Au, its rs is smaller

than that for Na, but, stopping of H is smaller in Au than in Na at low velocities

(v < 0.2 a.u.). Since Na agrees with the jellium model, as in we see in Fig. 7.1,

this implies that behaviour of the valence electrons in Au differs from a free

electrons gas even at low velocities when only s electrons are considered actively

contributing in the stopping — the same conclusion we reached in chapter 5

before.

7.4 Summary

Electronic stopping power of H and He in the bulk Na and a film (8 unit cell

thick) of it are calculated. We find good agreement with previous theoretical

results for a homogeneous free electron gas target for the absolute and relative

electronic stopping power of H and He projectiles. The stopping changes linearly

with projectile velocity and shows no threshold effect for H and He projectiles.

The difference between the stopping power in the bulk and the film targets is at-

tributed to the charge density oscillations close the film surface but is surprisingly

small.
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Chapter 8

Electronic stopping power of H

and He in LiF

8.1 Introduction

The electronic stopping power in insulators is expected to be substantially de-

pressed for velocities below a threshold related to the finite band gap [34]. Exper-

imental results on several insulators covering velocities down to ∼ 0.2 a.u. were

not clearly displaying such behaviour, [37–39] except under grazing incidence,

which showed a threshold velocity of v ' 0.2 a.u. in LiF [40]. LiF was chosen as

paradigmatic insulator, with its large band gap (in excess of 13 eV). Recent exper-

iments managed to measure velocities as low as 0.1 a.u.[41, 42] displaying a clear

velocity threshold, and first-principles simulations based on TD-DFT were able

to reproduce the behaviour, albeit with a clear underestimation of the stopping

power and overestimation of the threshold [29]. The simulation focused on the

proton - antiproton comparison (achieving a remarkable agreement in the Barkas

effect [29]), but was using a simplified description of the projectile, both for the

basis set and for the potential. In this chapter, we calculate the electronic stop-

ping power of H and He in LiF using the Ehrenfest coupled electron-ion dynamics.

We sample a range of impact parameters by offsetting the projectile’s initial po-

sition from [001] channel axis at (x/a, y/a) = (3/4, 3/4) (we call them “channels”

henceforth). We find a significant improvement over previous TD-DFT results
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Figure 8.1: Position of [001] channels 1 through 9 in the xy-plane in the unit cell
of LiF crystal. Sampling over the impact parameter is done using these channels.
Two {001} (Li or F) atomic planes spaced a/2 are shown with two different
symbols.

for H [29] and a good agreement with the experiments [42].

8.2 Computational Details

The local density approximation (LDA) for the instantaneous exchange and corre-

lation energy functional in the Ceperley-Alder [122] form parametrized by Perdew

and Zunger [123] was employed. All three electrons of Li and only valence elec-

trons of F are considered explicitly. We use a double-ζ polarised split-valence

basis for the valence electrons of the host material (LiF) as well as for the pro-

jectiles (H and He). The grid cutoff used for real space integration is 200 Ry [44,

45]. Relaxation of the cell size of bulk LiF gives a lattice parameter a = 3.98 Å.

As expected for an LDA functional, it is slightly smaller than the experimental

value (4.03 Å). A 2× 2× 4 supercell with only the gamma point for the Brillouin

Zone integrations is used.

Other than the most obvious choice for a [001] channel at (x/a, y/a) =

(3/4, 3/4), we sampled eight more channels or impact parameters. These are

shown in Fig. 8.1 and labelled 1 through 9. For every channel, the projectile is
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Figure 8.2: Electronic stopping power of H in LiF. Our results in a [001] channel
(X, (x/a, y/a) = (3/4, 3/4)] are shown as black line with circles. Earlier TDDFT
results from Ref. [29] with and without a chain of H basis orbitals along the tra-
jectory are shown as red and blue lines with squares and triangles. Experimental
results from Refs. [41, 42] are shown as stars.

given an initial velocity along the z-direction. A time step of 1 asec is used to

integrate the coupled electron-ion dynamics until the projectile travels a distance

of approximately 2a. Electronic stopping power is extracted using the fitting

scheme described in section 4.2.2, i.e., using the rate of change of the electronic

excitation energy with the distance travelled by the projectile.

8.3 Results and Discussion

Fig. 8.2 shows our results for the electronic stopping power of H in LiF in channel

1. We also plot the experimental data [41, 42] and earlier TDDFT results [29] for

a proton projectile represented by its bare (Fourier filtered) Coulomb potential.

The host nuclei were fixed in Ref. [29] and only the dynamics of electrons was

considered. Given the fact that there were no basis functions associated to the

projectile and only the basis states of the host were used to describe the electrons
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Figure 8.3: Electronic stopping power of H in LiF for various channels shown in
Fig. 8.1. Comparison is made with the experimental results from Refs. [41, 42].

and their deformation to screen the projectile, a basis deficiency was expected

then, which was corroborated by the substantial change in the electronic stopping

power when corrected by inserting extra atomic orbitals along the path of the

projectile [29]. Both (corrected and uncorrected) curves for the electronic stopping

power from that paper are reproduced in Fig. 8.2, where they are compared with

the results of the present study and the experimental ones. It is apparent that the

full description of the projectile, with a moving basis set, and the use of the full

ion-electron dynamics, offer a considerable improvement in the simulation with

respect to Ref. [29].

As can be seen in Fig. 8.2, our results (black line with circles) show the same

trend at low velocities as that of Ref. [29]. The electronic stopping power increases

from zero smoothly around v = 0.1 a.u., the slope of the curve increasing with

v for v ≤ 0.4 a.u. and decreasing at higher velocities. Although the agreement

is greatly increased, especially at high velocities, the threshold effect is overesti-

mated in the simulations. In addition to possible deficiencies in the theory, let us

stress here an important difference between theory and experiment: the theory
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Figure 8.4: Electronic stopping power of He in LiF for various channels shown
in Fig. 8.1. Comparison is made with the experimental results from Ref. [42].

simulates an ideal [001] channel, channel 1 in Fig. 8.1, while experiments use a

beam in which different ions have essentially the same propagation direction but

different impact parameter with respect to the nuclei in the target.

Fig. 8.3 shows the stopping power of H in LiF for various channels shown in

Fig. 8.1. For the three pairs of symmetry related channels, the figure shows the

averages. As expected, an enhanced electronic stopping power is obtained when

sampling over higher electron-density regions, e.g., channels 4, 5 & 6 (or 7, 8 &

9) that offer smaller impact parameters compared to channel 1. Actual stopping

that can be compared with the experimental results is a weighted average over

all possible impact parameters. Furthermore, the experimental results here are

for polycrystalline samples for which the random orientations of crystallites make

the small impact parameter scattering highly probable. We have not averaged

the results over the sampled channels (impact paramters) as there is no simple

criteria to determine their relative contributions.

We can see in Fig. 8.3 that, compared to channels 4-9, channels 1,2 and 3 that

offer relatively larger impact parameters give lower stopping for v ≤ 0.40 a.u.,
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Figure 8.5: Position dependence of the electronic stopping power for H and He
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between the energy of evolved electronic state and the ground state with the same
atomic configuration, is plotted against the distance travelled by the projectile
along the channel axis. Electronic stopping is the slope of these curves.

but higher stopping for higher velocities shown in the figure. Thus overall, even

taking a simple average over channels 1-9 leads to a much better agreement with

the experiments. As, can be seen in Fig. 8.3, sampling over channels with lower

impact parameters pushes the threshold velocity down. Thus by averaging over

the channels the threshold effect is reduced.

Stopping power of He in LiF is shown in Fig. 8.4 for the same channels dis-

cussed above. The experimental results taken from Ref. [42] are also plotted for

comparison. Unlike the H case, our simulations hugely underestimate the stop-

ping power of He in LiF, especially for channel 1 for v ≤ 0.10 a.u.. Channels 6

and 9 that offer very small impact parameter, closely reproduce the experimental

results for v ≤ 0.10 a.u., but the slope of Se(v) curve for these channels is still

marginally underestimated producing a lower threshold velocity (∼ 0.05 a.u.)

compared to the experiments (∼ 0.09 a.u.). As can be seen in Fig. 8.4, the slopes

of the other curves are even smaller. However, as expected, the lower the impact

parameter, the higher the stopping and the slope of the stopping curve. But,

compared to the H case, the differences are unexpectedly huge. For example, at

v ≤ 0.5 a.u., the ratio of the highest to the lowest stopping for channels 6,9 and
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1 is about 5. The difference between the variation of H and He stopping with

impact parameter is likely to be due to the difference in the sizes of these pro-

jectiles. A He atom is almost half the size of a H atom and the electron cloud of

1s orbital of a He atom is much more compact with peak electron density about

four times higher than the corresponding orbital of a H atom. When a H atom is

inside a solid, the electronic state bound to it resonates with the bulk spectrum

of the solid, i.e., its valence band states, and spreads out. On the other hand,

the electronic state bound to a He atom is much deeper in energy and hence,

relatively speaking, keeps its identity. In other words, He nucleus will be much

better screened than H’s in the channel. This makes He much more sensitive

to probe the target electron density gradients leading to larger differences in the

electronic stopping for different impact parameter channels.

The stopping power presented above is the average slope of the electronic

excitation energy vs distance curve. However, as we see in Fig. 8.5, the rate

with which the projectile excites the electrons strongly depends on its position

when we consider a channel offering small impact parameter, e.g, channel 6 and

9. Positions of Li and F atoms (or Li+ and F− to be more precise) that are

the nearest atoms along the projectile trajectory are marked with vertical dotted

lines. It is interesting that in case of H, the “local stopping” is very small when

it is moving from F to Li and is quite large when it is moving from Li to F. On

the other hand, He excites the electrons relatively more uniformly, with both the

high and the low stopping regions occurring between the two types of the host

atoms irrespective of the direction of motion relative to them. This means that

this position dependence is not directly linked with the Li and F positions but

arises due to some other reason. We leave further investigation of this to future

work.

8.4 Summary

Theoretical simulations from first principles for the low-velocity electronic stop-

ping power of light projectiles in LiF have been presented. For H projectile,

a considerable improvement on previously reported simulations has been found.

Compared to the experiments, our simulations overestimate the threshold effect.
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Sampling a range of impact parameters leads to a better agreement of electronic

stopping power with the experiments.
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Chapter 9

Electronic stopping power in

quartz, magnesia, alumina, zircon

and SiC

In the previous chapter, LiF was introduced because it is the best studied — both

theoretically and experimentally — wide band gap insulator in this field. As we

see there, it shows some unexpected unknowns: the so very different impact pa-

rameter dependence when changing projectile from H to He. Some questions also

arise there, e.g., how to average over the impact parameter to compare with the

experiments? Apparently, it seems that the trajectories through denser regions

are closer to the experiments. It also shows a threshold behaviour that should

depend on the band gap but in a way that is still not understood. This stim-

ulates further characterisation of the situation by making a comparative study

with different insulators. We select quartz, magnesia and alumina — SiO2, MgO

and Al2O3 — because they represent varying packing of their structures (related

to varying chemistry). Zircon is chosen because it is a prototypical case very

heavily studied for nuclear waste storage. There is also interest (in both funda-

mentals and applications) in heavy projectiles. We consider Au in SiC because

this projectile-target system has been extensively studied [136, 137].
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9.1 Quartz, magnesia and alumina

9.1.1 Introduction

In this section we consider H and He projectiles moving in SiO2, MgO and Al2O3.

In case of quartz that has a narrow and a wide [001] channel, we consider both

these and also sample low impact parameters by choosing an offset from the wide

channel axis as the projectile’s initial position. We find a good agreement with

the available experimental data for H and He in quartz and alumina. Electronic

stopping for projectile velocities down to v = 0.05 a.u. is calculated for all

projectiles. We also consider Li in Al2O3.

9.1.2 Computational Details

The local density approximation (LDA) for the instantaneous exchange and corre-

lation energy functional in the Ceperley-Alder [122] form parametrized by Perdew

and Zunger [123] was employed. A double-ζ doubly polarised split-valence basis

is used for all atoms. The grid cutoff [44, 45] for real space integration is 200 Ry

and only the gamma point is considered for sampling the Brillouin zone. These

details apply to all cases studied in this chapter.
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Figure 9.1: Crystal structure of α-quartz and the positions of the four [001]

channels 1-4 in the xy-plane in its unit cell marked with small balls and labelled.

Channel 1 and 2 are at the centres of the big and small hollow channels while

channel 3 and 4 are used to sample smaller impact parameters in the bigger

channel along the projectile trajectory.

Quartz has chemical formula SiO2. We considered α-quartz with lattice pa-

rameters of the hexagonal crystal lattice: a = b = 4.916 Å and c = 5.4054 Å

[138]. α-quartz has 3 formula units per unit cell. We used a 2 × 2 × 3 super-

cell containing 12 SiO2 formula units or 108 Si and O atoms. The structure of

quartz is sparsely packed, showing ample interstices and channels of low electron

density, e.g., a prominent wide and a relatively narrow channel along the c-axis

at (x, y) = (2.458, 2.458) Å and (x, y) = (0.15, 2.80) Å in the supercell shown

in Fig. 9.1. We considered both these as well as two more “channels” inside

the big cavity with smaller impact parameters at (x, y) = (0.4916, 0.8515) Å and

(x, y) = (1.9664, 3.4059) Å. The electronic stopping power of H and He projectiles

is calculated for these four channels labelled 1,2,3 and 4 in Fig. 9.1. Electronic

stopping power is extracted as the average slope of the electronic energy vs dis-

tance curve as described in section 4.2.1.
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Figure 9.2: Crystal structure of α-alumina and the position of the [001] channel

in the xy-plane in its unit cell marked with a small ball.

Figure 9.3: Crystal structure of zircon and the position of the [001] channel in

the xy-plane in its unit cell marked with a small ball.
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Figure 9.4: Crystal structure of α-SiC and the position of the [001] channel in

the xy-plane in its unit cell marked with a small ball. 2×2×4 supercell is shown

in this figure.

Magnesia, MgO, has rock salt structure. The relaxed lattice parameter ob-

tained is a = 4.2086 Å that is slightly smaller than the experimental value of

4.217 Å [139]. We used a 2× 2× 4 supercell containing 128 Mg and O atoms or

64 MgO formula units. The stopping is calculated for H and He atom projectiles

in a [001] channel at (x/a, y/a) = (3/4, 3/4). Electronic stopping power is ex-

tracted as the slope of a straight line fitted on the electronic energy as described

in section 4.2.1.

Alumina or corundum, Al2O3, has corundum structure with lattice parameters

of its hexagonal crystal lattice a = b = 4.7540 Å and c = 12.9820 Å [140]. It has

6 formula units per unit cell. We used a 2 × 2 × 1 supercell containing 120 Al

and O atoms or 24 Al2O3 formula units. The electronic stopping power of H,

He and Li atom projectiles is calculated for a [001] channel in the middle of the

supercell shown in Fig. 9.2. The projectile atom is shown placed in the channel

as the smaller aqua sphere. Electronic stopping power is computed as the slope

of a straight line fitted on the electronic excitation energy.
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Figure 9.5: Electronic stopping power of H (left) and He (right) in α-quartz in the
four channels 1-4 shown in Fig. 9.1. Comparison is made with the experimental
results taken from Refs. [37, 42, 141].

9.1.3 Results and Discussion

Fig. 9.5 shows the electronic stopping of H and He in SiO2 in four channels shown

in Fig. 9.1. Experimental results [42] for polycrystalline SiO2 are also plotted for

comparison. We see that, just like the LiF case in chapter 8, simulations agree

with the experiments mainly for the channels for which the projectile trajectory

is closer to the target atoms. Similar to LiF case, the stopping power of H varies

less when we move from a channel with low valence electron density to a channel

with high valence electron density in SiO2. As mentioned before in chapter 8, this

difference in H and He stopping behaviour is likely to be due to the difference in

the size and the density of electron clouds of these projectiles. The dependence

of stopping on the channel in SiO2 is more sensitive as compared to the LiF case.

This makes sense because of the presence of channels with much lower density in

SiO2.

For H, we find a velocity threshold of vth ∼ 0.05 a.u. which is the same

as obtained by linearly extrapolating the experimental data. However, for He

projectile, unlike the experiments that would give no threshold by a linear ex-

trapolating down to v = 0, we find that the stopping power practically vanishes

at v ≤ 0.05 a.u. for all four channels considered. For channel 1 that, compared
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Figure 9.6: Electronic stopping power of H, He and Li in Al2O3. Comparison is
made with the experimental results taken for H from Refs. [37, 142, 143] and for
He from Ref. [141].

to other channels, has a lower density of valence electrons and offers a large im-

pact parameter to the projectile moving on its axis centre, we find almost no

electronic stopping even for a projectile moving with velocity as large as v = 0.2

a.u. (red curve with filled circles in Fig. 9.5). Interestingly, the ratio of stopping

power of He to that of H is less than unity for channel 1 and larger than unity

for other channels. That is, in the low density channel the stopping of H goes

above that of He, in agreement with the stopping acting as if it depended on the

low local density. It also raises the further point on how to average for directions

and impact parameters in the calculations to compare with the experiments. Not

easy! It seems, however, that the higher density ones have more weight in the

averaging for some reason just like LiF case.

Fig. 9.6 shows our results for the electronic stopping power of H, He and Li

in Al2O3. Experimental data for H [37, 142, 143] and He [141] is also plotted for

comparison. First, we see that there is a good agreement between the calculated

stopping powers and the experimental results. The slope of the He curve is
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Figure 9.7: Electronic stopping power of H and He in MgO.

slightly higher than the experimental data but the latter extrapolates to it at

lower velocities. It is interesting that stopping power of Li is only slightly higher

than He at v < 0.5 a.u. and, at v = 0.05 a.u., it even becomes smaller than He.

We find a threshold velocity vth ' 0.05 a.u. for H but there is still appreciable

electronic energy loss for He and Li at this velocity. A linear extrapolation of

calculated stopping powers of these two projectiles gives no threshold for He and

vth ' 0.02 a.u. for Li.

Fig. 9.7 shows the electronic stopping power of H and He in MgO. We see that

the energy loss in MgO for both H and He projectiles up to a velocity of v = 0.1

a.u. is negligible. Further, the stopping is quite similar for the two projectiles at

v ≤ 0.4 a.u. but the increasing slope of the He curve means that it is going to be

substantially higher at higher velocities.

Let’s now compare the three materials considered above — SiO2, MgO and

Al2O3. Since we present electronic stopping that is energy loss per distance

travelled, we need to consider the compactness of the materials along the channel

axes for a valid comparison. The values of the average volume per atom for

SiO2, MgO and Al2O3 are 2.95, 2.21 and 2.05 Å3 per atom. Now coming to the

channel openness that would affect the local electron density along the projectile

trajectory (which does not deviate much from the channel axis in all cases), we

have approximate average distances to the nearest neighbours along the channel

axis as 2.46, 1.48 and 1.19 Å for SiO2 (channel 1), MgO and Al2O3. From
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Figure 9.8: Electronic stopping power of H (open symbols) and He (filled sym-
bols) in three wide band gap insulators: α-quartz (channel 1 shown in Fig. 9.1),
LiF (channel 1 shown in Fig. 8.1), and MgO.

Figs. 9.5-9.7, we see that the stopping increases when we go from SiO2 to Al2O3

through MgO as the local electron density increases as a result of small impact

parameter and more compact atomic structure. At v = 0.5 a.u. for example,

values of Se for these three materials are approximately 2.33, 5.7 and 7.5 eV/Å for

H and 1.71, 7.6 and 21 for He projectile, just in the expected order of decreasing

impact parameter. Interestingly, adiabatic simulations with a phenomenological

descriptions of the electronic stopping are performed by introducing the latter as

a friction term dependent on the local electron density in the nuclear dynamics

[144–146].

In Fig. 9.8, we compare our results for SiO2, LiF and MgO. We see that like in

a low density jellium (with rs < 2.77), electronic stopping of H is higher than that

of He in these media for a range of low velocities. In the velocity range shown in

Fig. 9.8, the slopes of He stopping curves show two distinct velocity regimes: at

low velocities it is continuously increasing and at higher velocities it is constant.

In contrast, the slope of the H stopping curves decreases after an initial increase.

Why this happens is an interesting question. We leave it as an open question for

74



the future work.

9.2 H and He in zircon

9.2.1 Introduction

Zircon, ZrSiO4, is an important material considering its potential for the nuclear

waste encapsulation due to its mechanical and chemical durability. Nuclear waste

contains radioactive elements that constantly tend to damage the structure of

the host material. For example when a U238 atom decays to a Th234 atom,

an α particle is released with an energy of 4.198 MeV while the recoiling Th

has 72 keV. The emitted α particle moves at a speed of 6.50 a.u., whereas the

recoiling Th moves at a speed of about 0.11 a.u.. The former is the main source

of electronic heating in an α-decay event. However, the speed of the recoiling

heavy atom is large enough that it may fall in the super-threshold regime for

the electronic stopping. If so, the radiation damage simulations employing the

Born-Openhenimer approximation would not work as the forces on the nuclei

are modified due to the electronic excitations. Although, most of the damage

produced is caused by the heavy recoiling atom, the contribution of the lighter

particle is also substantial as it slows down [147, 148]. Here we study slow lighter

particles moving in zircon crystal under channeling conditions. We calculate the

electronic stopping of H and He in zircon. We find that the threshold velocity

for these two projectiles is much smaller than Th recoil velocity in an α-decay.

Thus assuming that the threshold does not strongly depend on the projectile, the

electronic stopping effects even for a slow moving Th atom are important and

should be included in the radiation damage simulations. Furthermore, we find

that compared to LiF, quartz and MgO, the velocity dependence of the electronic

stopping of He in zircon is very different below v = 0.2 a.u..

9.2.2 Computational Details

Zircon has tetragonal crystal lattice with lattice parameters a = b = 6.6069 Å and

c = 5.9894 Å [149]. It has 4 formula units per unit cell. We used a 3×1×1 supercell
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Figure 9.9: Electronic stopping power of H and He in zircon.

containing 12 ZrSiO4 formula units, i.e., 72 atoms. The H or He atom projectile

is given a velocity along the x-direction in a channel at (y/b, z/c) = (1/2, 1/2)

shown in Fig. 9.3 and the electronic stopping power is calculated. Other details

are the same as given in section 9.1.2. Electronic stopping power is extracted as

the average slope of the electronic energy vs distance curve, the same method

that is used in case of MgO above.

9.2.3 Results

Fig. 9.9 shows the electronic stopping power of H and He in Zircon. Just like

in MgO, the electronic stopping of the two projectiles in zircon is of comparable

magnitudes and of the same order as in MgO and LiF. However, compared to LiF,

SiO2 and MgO, the stopping power of He in ZrSiO4 shows a different behaviour

with the projectile velocity v below v ∼ 0.2 a.u. where its slope is higher at lower

velocities and decreases with the velocity. We see that in ZrSiO4 the threshold

velocity vth for H and He projectiles is smaller than 0.05 a.u. and is a little higher

for H than He. This shows the importance of the methods simulating the radiation

damage, for example, by Duffy et al. [4–8], which include the electronic stopping

that in some materials can be significant even when the atoms are moving as slow

as with a velocity of about 0.1 a.u..
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Figure 9.10: Electronic stopping power of gold in [001] channel of SiC.

9.3 Au in SiC

9.3.1 Introduction

SiC is an important material for high temperature and high voltage applications

due to its chemical and mechanical stability under these conditions. The effects of

ionising radiations, that are present in harsh environment of nuclear reactors, on

various allotropic forms of SiC has been extensively studied due to its relevance

to the fusion reactors, e.g., International Thermonuclear Experimental Reactor

(ITER) [150, 151], see for example, Ref. [152] and references therein. Experi-

mental characterisation of heavy ions irradiation on SiC has been done for many

elements, for example, Ag, Pd, Pt and Au [136, 137, 153–155]. Not only that the

electronic stopping of heavy projectiles in compound targets is not well described

in the literature, the available experimental and theoretical data is not consistent

[152]. Here, in this section, using our ab initio method, we calculate the stopping

of a slow Au atom (v = 0.05 − 0.50 a.u.) in [001] channel of SiC. Experimental

data is not available at such low velocites though.
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9.3.2 Computational Details

We considered β-SiC or 3C-SiC. It has Zinc Blend structure with lattice param-

eter a = 4.36 Å [156, 157]. We used a 2 × 2 × 4 supercell containing 128 Si and

C atoms or 64 SiC formula units. The stopping is calculated for a gold atom

projectile in a [001] channel at (x/a, y/a) = (1, 3/4), shown in Fig. 9.4, by shoot-

ing it along the z-direction with a given initial velocity. Other details are the

same as given in section 9.1.2. Electronic stopping power is extracted using the

fitting scheme described in section 4.2.2. That is, using the rate of change of the

electronic excitation energy with the distance travelled by the projectile.

9.3.3 Results

Electronic stopping power of Au in SiC is shown in Fig. 9.10. We see that the

electronic stopping has a linear dependence on velocity in the velocity range

shown. Au has a finite stopping power at velocities as low as v = 0.05 a.u., but,

as expected for an insulator target, extrapolation of our results shows a threshold

effect with vth = 0.025 a.u. below which the energy transfer to the electrons in

SiC becomes negligible.

9.4 Summary

We calculated the electronic stopping power of H and He in α-quartz, magne-

sia, zircon and β-alumina and a heavy projectile, Au, in SiC. The behaviour of

the impact parameter dependence when changing projectile from H to He found

for LiF target is also observed for quartz. Compared to the quartz, MgO and

alumina that can offer relatively lower impact parameter show an increased stop-

ping as expected. At very low velocities (v ≤ 0.2 a.u.), the velocity dependence

of the electronic stopping of He is very different in zircon than in other insulators

considered in this thesis. In contrast to the extrapolated experimental results,

we find a threshold velocity vth ' 0.05 a.u. for He in quartz, the same as that

for H in it. For the same two projectiles vth ' 0.1 a.u. in MgO, but vth < 0.05

a.u. in zircon. In alumina, vth ' 0.1 for H, but extrapolation of our results

finds no threshold effect for He. Unlike the jellium model prediction, for the
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Figure 9.11: Energy corresponding to the threshold velocity plotted against the
DFT band gap of various insulators. For quartz and LiF, results are for the lowest
density or the highest impact parameter channels are plotted.

projectile-target combinations investigated in this chapter, stopping power is not

linear with velocity at low velocities in general.

For the adiabatic molecular dynamics simulations that include the effect of

electronic excitations, e.g., Refs. [4–8], the only input needed is the electronic

stopping power and the threshold velocity of energy. Thus, the results presented

in this thesis can be directly used with these methods for the radiation damage

simulations.

In Fig. 9.11, the energy per nucleon Eth corresponding to the threshold velocity

vth of various projectiles is plotted against the DFT band gap of various insulators

targets considered. For H and He projectiles, we see that vth and Eth increase

with the band gap. Electronic excitations across the band gap in a direct band
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gap insulator with parabolic bands would require Eth proportional to the band

gap [34]. However, as we see in Fig. 9.11, there seems no systematic dependence

of Eth on the band gap and its values are quite scattered. The fact that the

model of Ref. [34] is not holding is not surprising as it was based on perturbation

theory, but the projectile represents a large perturbation.
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Chapter 10

Summary and outlook

In this thesis, non-adiabatic dynamics of a system of ions and electrons at the

Ehrenfest level using TDDFT and Siesta is used to simulate the passage of

slow ions through solid matter and calculate the corresponding electronic energy

gain. The pseudopotential description of atoms is employed and numerical atomic

orbital basis set is used to describe the single particle electronic wavefunctions. As

the ion-electron interaction depends mainly on the chemistry in this low energy

regime, the pseudopotentials description of the core electrons is quite appropriate.

The dynamics of the electrons is governed by the time evolution of the electronic

wavefunctions while the nuclei follow the classical equations of motion under

the action of forces calculated using the instantaneous electron density. Even

though this is a mean field description of the electrons, here we show for the

first time that it produces reasonably good agreement with the experimental

results for the electronic stopping power of slow H and He in various types of

materials considered in this thesis. The implementation of this TDDFT-Ehrenfest

dynamics in Siesta code can also serve a more general purpose of studying other

non-adiabatic processes in large systems with usual first-principles accuracy.

We calculate the electronic stopping power of slow projectiles in various crys-

talline metals and ceramics as a function of projectile velocity v for v ∼ 0.05−0.50

a.u.. We calculate stopping of H and He in gold, Al (three impact parameters),

Na (bulk and an 8 unit cell thick film), LiF (six impact parameters), quartz (both

wide and narrow [001] channels), MgO, zircon; and H, He and Li in alumina; and

gold in SiC. We find reasonably good qualitative and quantitative agreement with
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the available experimental data. For H and He moving in gold, we also calculate

the electron-hole pair spectrum around the fermi level by projecting the time

evolved electronic state onto the ground state for the instantaneous nuclear con-

figuration. We analyse the role of s and d-band electrons in stopping and, in

contrast to the usual idea that at low projectile velocity only electrons close to

the Fermi energy contribute to the stopping, we find that there is a significant

contribution from deep lying states even for a slow projectile. In LiF and quartz

for which we considered channels offering a variety of impact parameters, inter-

estingly, impact parameter dependance for H is very different than that of He,

which we speculate is due to their different effective sizes.

Owing to the diversity of the applications of the non-adiabatic processes due

to the ion-election interactions in various areas of physics, chemistry and biology,

a large number of future directions exist for our work. Limiting ourselves to just

interaction of slow ions with matter, we still have a number of important things

to understand.

For example, in experiments measuring the electronic energy loss and elec-

tronic stopping power, the target material is bombarded with a beam of ions.

However, in our calculations, the coupled dynamics of ions and electrons is

started, in contrast to the experiments, with the projectile being an atom just

like all the other atoms in the simulation cell. To understand the charge capture

by the ions and their neutralisation process as they enter the target, simulations

are to be performed with the projectile ion initially outside the target solid with

a well defined charge on it. In chapter 7, we considered a film but not only that

film is too thin, the projectile starts with the self-consistent state just like the

bulk target cases. To perform a more realistic simulation, with a thick enough

film, parallelisation of the code is essential. If the projectile is away enough from

the target at the beginning that the single particle states localised on the pro-

jectile can be separated from the target states, the experimental situation can

be achieved with simply leaving the projectile state empty at each self consistent

iteration and filling only the target states hoping to find a converged solution.

Similarly, ions moving at grazing angles or parallel to the film surface can reveal

the details of the charge exchange processes.

The oscillating rate of excitation energy with the projectile position or the
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“local” electronic stopping seen in case of small impact parameter channels in LiF

(Fig. 8.5) is another interesting open question. Multiple regimes for the slope of

the stopping vs velocity curves for H projectile in case of three insulators, SiO2,

LiF and MgO, (Fig. 9.8) is also not understood.

For a heavy projectile atom with internal electronic structure and a large

enough size, the role of the dynamics of the core states on the electronic energy

loss can be of interest in case of small impact parameter channels in solids. This

can also be important in case of light projectiles as even the valence states are

pseudised within a significant volume around the nucleus.

The effect of the electronic stopping on the nuclear energy loss is another in-

teresting question that can be answered using the coupled ion-electron dynamics.

However, it is more involved than it seems because the integrity of the answer

depends very much on the accuracy of the forces on the nuclei.

Another more ambitious problem is treating the light nuclei like the protons

quantum mechanically. This might not have much effect on the electronic stop-

ping power but it might be relevant to diffusion of light nuclei through solids.

How to treat negative ions and electron projectiles are other open questions.

In conclusion, a line of first principles simulations has been opened here, which

should prove helpful in many different research fields from the space and nuclear

industries to the treatment of cancer, and from quite applied to very fundamental.

The importance of the electronic excitations in the radiation damage simulations

is evident from the magnitude of the electronic stopping power of ions as slow as

moving with a velocity of ∼ 0.1 a.u., showing that the non-adiabatic electronic

effects should be taken into account in these types of simulations. Our method

can complement the adiabatic molecular dynamics methods that include these ef-

fects via a friction term in the equations of motion of the ions. For this purpose,

our method can be used to compile a database of the electronic stopping power

as a function of velocity and impact parameter for various projectiles and tar-

get materials that can be used in these computationally more efficient adiabatic

methods.
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Appendix A

Supplementary material of chapter 5.

1 Pseudopotentials

The pseudopotentials were generated using the Troullier-Martins scheme [114]

for the electronic configurations mentioned below. The numbers in parenthesis

are the cutoff radii (in Bohrs) beyond which the pseudopotentials reproduce the

all-electron orbitals and potential. The pseudopotential for Au included scalar

relativistic effects. No non-linear core corrections have been taken into account.

Au: 6s1(2.63), 6p0(2.77), 5d10(2.63), 5f 0(2.63)

H: 1s1(1.33), 2p0(1.33), 3d0(0.37), 4f 0(1.33)

He: 1s2(1.14), 2p0(1.14), 3d0(1.14), 4f 0(1.14)

2 Basis set details and tests

The parameters used for the generation of the basis sets used are as follows:

H:

DZP: 1s(6.0, 2.56; 50.0, 5.0), 2p(6.0; 1000.0, 0.0)

TZP: 1s(6.0, 3.8, 1.9; 50.0, 5.5), 2p(6.0; 1000.0, 0.0)

He:

DZP:1s(8.0, 3.0), 2p(8.0; 50.0, 0.0)
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TZP: 1s(8.0, 2.0, 3.0), 2p(8.0; 50.0, 0.0)

TZDP: 1s(8.0, 2.0, 3.0), 2p(8.0, 2.0; 50.0, 0.0)

Au:

DZP: 6s(6.5, 5.7; 30.0, 5.6), 6p(6.5; 10.0, 2.3), 5d(6.0, 3.9)

Where DZP, TZP and TZDP stand for double-ζ polarized, triple-ζ polarized

and triple-ζ doubly polarized basis sets. In parenthesis, the first number (or the

first two or three numbers separated by a comma) is the cutoff radius (radii) of the

radial function of the first, second and third-ζ orbitals. The last two numbers after

semicolon, if present, are V0 and ri that determine a soft confinement potential of

the form V (r) = V0
e
− rc−ri

r−ri

rc−r , used for continuity of higher derivatives of the radial

dependence of the orbital at its cutoff radius rc [113]. Results of convergence tests

are summarized in Tables I, II and III, and in Figure 1.

Ec (Ry) 250 300 350 400

SH (eV/Å) 6.417 6.417 6.417 6.417

SHe (eV/Å) 13.189 13.189 13.189 13.189

Table 1: Effect of the fineness of the real-space grid on the electronic stopping

power for projectile velocity v = 0.50 a.u. Ec is the mesh cutoff [45]. All other

parameters are as stated in the main chapter, chapter 5.

Grid 3x3x2 3x3x3 4x4x2 4x4x3 4x4x4

SH (eV/Å) 6.480 6.454 6.465 6.470 6.471

SHe (eV/Å) 13.199 13.221 13.189 13.161 13.162

Table 2: Effect of the fineness of the k-space grid on the electronic stopping power

for projectile velocity v=0.50 a.u. The grid is specified according to Ref. [119].

All other parameters are as stated in the main chapter, chapter 5.
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v (a.u.) DZP TZP TZDP

0.08 0.187 0.191

SH (eV/Å) 0.10 0.269 0.283

0.50 6.334 6.870

0.08 0.769 0.802 0.849

SHe (eV/Å) 0.10 1.126 1.168 1.172

0.50 13.005 13.204 13.699

Table 3: Basis set convergence: Effect of the projectile basis size on the electronic

stopping power. All other parameters are the same as stated in the main chapter,

chapter 5.
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Interplay between spin-orbit coupling and

Hubbard interaction in SrIrO3 and related

Pbnm perovskites

This work is done under supervision of and in collaboration with H. Y.

Kee. It is published in Physical Review B [Phys. Rev. B 86, 085149

(2012)].
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ABSTRACT

There has been a rapidly growing interest on the interplay between spin-orbit coupling (SOC) and Hubbard
interaction U in correlated materials. A current consensus is that the stronger the SOC, the smaller is the critical
interaction Uc required for a spin-orbit Mott insulator, because the atomic SOC splits a band into different total
angular momentum bands narrowing the effective bandwidth. It was further claimed that at large enough SOC,
the stronger the SOC, the weaker the Uc because in general the effective SOC is enhanced with increasing
electron-electron interaction strength. Contrary to this expectation, we find that, in orthorhombic perovskite
oxides (Pbnm), the stronger the SOC, the bigger the Uc. This is originated from a line of Dirac node in Je f f = 1/2
bands near the Fermi level inherited from a combination of the lattice structure and a large SOC. Due to this
protected line of nodes, there are small hole and electron pockets in SrIrO3, and such a small density of states
makes Hubbard interaction less efficient in building a magnetic insulator. The full phase diagram in U vs.
SOC is obtained, where non-magnetic semimetal, magnetic metal, and magnetic insulator are found. Magnetic
ordering patterns beyond Uc are also presented. We further discuss implications of our finding in relation to
other perovskites such as SrRhO3 and SrRuO3.

INTRODUCTION

Perovskite oxides with the chemical formula AMO3 where
A is a cation and M is a transition metal, exhibit an exception-
ally wide range of properties including anomalous Hall effect,
colossal magnetoresistance, ferroelectricity, ferromagnetism,
and superconductivity. Such an ample variety in a rather sim-
ple structure indicates that a detailed balance between charge,
spin, structure, and correlation is important in determining the
ground state.

In particular, orthorhombic perovskite (point group symme-
try, Pbnm) oxides are a large class of anisotropic oxides based
on AMO3 where MO6 octahedra are distorted from the sym-
metric cubic structure. Among them, SrRuO3, SrRhO3 and
SrIrO3 (called perovskite ruthenates, rhodates, and iridates re-
spectively), display correlated metallic ground states. How-
ever, their magnetic properties differ hinting a crucial role of
electron interaction. SrRuO3 is a ferromagnetic metal [1–3]
and SrRhO3 a metal near a critical point [4–6], while SrIrO3
is a semimetal with an extremely small number of charge car-
riers without any magnetic moment [7–9]. Given that Ir has 5d
orbitals in the outer shell, while Rh and Ru have 4d orbitals,
Hubbard interaction is expected to be smaller in iridates [10].
Indeed it was found that the optical gap due to Hubbard in-
teraction is about 0.5eV in Sr2IrO4[11], a sister compound of
SrIrO3. This leads to a naive conclusion that iridates should
be better metal than rhodates or ruthenates, but the reality is
the opposite.

What is missing in the above discussion is the SOC. Ir is
heavier than Rh and the SOC strength is comparable to Hub-
bard interaction in iridates [11]. Since the atomic SOC is a
local interaction, the electronic energy level splits into differ-
ent total angular momentum J levels. For example, starting
from the atomic limit, five d-orbitals split into t2g and eg lev-
els due to the octahedral crystal field, and t2g further splits
into Je f f = 3/2 and Je f f = 1/2 via the SOC when the crys-
tal field splitting is larger than the strength of SOC. Once
these bands form, a larger SOC leads to a smaller bandwidth
of Je f f = 1/2 separated from Je f f = 3/2. Thus, the larger
the SOC, the larger the ratio between Hubbard interaction(U)

FIG. 1: Crystal structure of orthorhombic perovskite SrIrO3. Sr, Ir
and O atoms are shown in aqua, blue and red. The octahedra shown
are rotated about the z−axis and tilted about [110]-axis making the
unit cell four time bigger than that of the cubic perovskite structure.

and the bandwidth(W), U/W where W is the bandwidth of
Je f f = 1/2. While the absolute strength of U is smaller in
iridates, its effect (given by the ratio U/W) is amplified. This
is indeed observed in a layered perovskite, Sr2IrO4, dubbed
a spin-orbit Mott insulator [12–18]. To explain the metallic-
ity of SrIrO3 compared to insulating Sr2IrO4, it was further
suggested that SrIrO3 has a larger bandwidth comparing to
quasi-two dimensional Sr2IrO4 [19, 20]. A growing consen-
sus is that the larger the SOC, the smaller the critical interac-
tion strength Uc that is required for the phase transition from
metal to Mott insulator [13, 21]

However, once the SOC splits the t2g bands into different
Je f f bands, its effect on the bandwidth of Je f f = 1/2 is min-
imal, and the interplay between the SOC and the electron-
electron interaction is intriguing. It was claimed that in gen-
eral the effective spin-orbit coupling is enhanced with in-
creasing strength of the electron-electron interaction leading
to the same conclusion that a larger SOC leads to a smaller
Uc.[19, 21]
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In this paper, we show a counter example where the com-
mon wisdom does not apply. We study the interplay between
SOC and Hubbard interaction in orthorhombic perovskite ox-
ides (Pbnm). It is found that the bigger the SOC, the larger
the Uc in orthorhombic perovskites inherited to the lattice
structure. When SOC is moderate (close to the true SOC
in SrIrO3), the band dispersion exhibit a line of Dirac node
protected by the symmetry of the lattice. We propose that
semimetallicity in SrIrO3 compared to insulating Sr2IrO4 is
due to such a small density of states, which in turn requires a
larger Uc for the transition to a Mott insulator. Hubbard in-
teraction in iridates is smaller than this Uc, and thus SrIrO3
remains metallic with small Fermi pockets . Beyond Uc, non-
collinear and non-coplanar magnetic structures appear, and
the overall phase diagram contains ferromagnetic metal, non-
magnetic semimetal and magnetic insulator. Below we will
show the band structures computed for SrIrO3, where we use
Hubbard U and SOC strength α as tuning parameters to un-
derstand different phases realised in other orthorhombic per-
ovskite oxides such as SrRuO3 and SrRhO3. Our findings
suggest that the SOC together with Hubbard interaction U
plays an important role in realising different ground states in
SrRuO3 [22–27], SrRhO3 [4], and SrIrO3 [28–30].

The paper is organised as follows. In the following section,
the details about the crystal structure is presented. In Sec. 3,
computational method is explained, and the band structures
and phase diagram in U vs. SOC are presented in Sec. 4.
Magnetic metal and insulator appear at small and large U re-
spectively, and their magnetic ordering patterns depend on the
SOC which will be shown in Sec. 5. A brief summary and
implications of our findings are listed in the final section.

CRYSTAL STRUCTURE

Fig. 1 shows the crystal structure of the orthorhombic per-
ovskite SrIrO3 with Sr, Ir and O atoms as aqua, blue and red
balls. As can be seen in Fig. 1, the octahedra enclosing the
Ir atoms are rotated about the z−axis and tilted about [110]-
axis. Due to these rotations and tilts, there are four formula
units of SrIrO3 in a unit cell and the octahedra also get dis-
torted. For any two connected octahedra, the rotations are in
the same (opposite) direction if the two enclosed Ir atoms lie
in different (the same) layers, whereas the tilts are opposite for
all nearest neighbour octahedra.

The experimental lattice parameters of this Pbnm phase
of SrIrO3 are a = 10.5136 a.u., b = 10.5688 a.u.
and c = 14.9 a.u., and an asymmetrical unit is: a Sr
at (0.5085, 0.4901, 0.25), an Ir at (0.5, 0, 0) and two O at
(0.506, 0.073, 0.25) and (0.292, 0.714, 0.044) [31].

This structure is primitive orthorhombic for which the sym-
metry elements include two b glide planes perpendicular to
x-axis at x/a = 1/4 & 3/4, two n glide planes perpendicular
to y-axis at y/b = 1/4 & 3/4 and two mirror planes perpen-
dicular to z-axis at z/c = 1/4 & 3/4. Here, a b (n) glide
plane means that a reflection across the plane followed by a

translation of a/2 ([a + c]/2, i.e, along the diagonal) trans-
forms the structure to self coincidence. Furthermore, there
are four 21 screw axes parallel to each of the three primi-
tive lattice vectors a,b and c. The 21 screw axes parallel to
a or x-axis are at (y/b, z/c) = (1/4, 0), (1/4, 1/2), (3/4, 0) &
(3/4, 1/2); those parallel to b or y-axis are at (x/a, z/c) =

(1/4, 1/4), (1/4, 3/4), (3/4, 1/4) & (3/4, 3/4); and those par-
allel to c or z-axis are at (x/a, y/b) = (0, 0), (0, 1/2), (1/2, 0)
& (1/2, 1/2).

There are eight inversion centres at x/a, y/b, z/c ∈ {0, 1/2}.
The four Ir atoms in the unit cell sit at four of these. This also
means that all the octahedra in Fig. 1 are inversion symmetric.
While this is obvious in case of a cubic perovskite structure
which forms regular octahedra around the Ir atoms, it is not
so in this case where the octahedra are distorted. Two of the
21 screw axes parallel to c passes through the Ir atoms. These
screw axes and the four inversion centres at Ir locations are
necessary for the existence of the mirror planes at z/c = 1/4
& 3/4, which connect the octahedra in two different layers
through the reflection symmetry. It was found in Ref. [32]
that breaking this mirror plane symmetry is a way to generate
a strong topological insulator.

FIRST PRINCIPLE CALCULATIONS

We performed density functional theory (DFT) [33, 34]
calculations including Hubbard U and SOC using the
full-potential linearised augmented-plane-wave (FP-LAPW)
method as implemented in the elk code [35]. The local density
approximation (LDA) for the exchange and correlation energy
functional in the Ceperley-Alder [36] form parametrized by
Perdew and Zunger [37] was employed. We used the “around
mean field” (AMF) scheme [38] for the double-counting-
correction. That is, to correct our DFT+U calculations for
the Coulomb repulsion already present in the DFT Hamilto-
nian. We treated up to 3d of Sr, up to 5s of Ir excluding 4 f ,
and 1s of O with the radial Dirac equation, while the scaler
relativistic approximation is used to include the SOC for the
higher states in the second variational step [39].

To confirm that our main results are robust to the choice of
double counting correction, we have also computed the band
structures using the “fully localized limit” (FLL) correction
[40–42] near the phase boundary. We found that at large SOC,
Uc is essentially the same. However, for small SOC, Uc is
shifted towards a lower value than that found with AMF cor-
rection in such a way that our main conclusion (the larger the
SOC, the larger the Uc) does not alter. The phase boundaries
obtained by these two different corrections are denoted by dif-
ferent colours in the phase diagram shown in Fig. 3, and will
be discussed below.

To obtain the phase diagram of SrIrO3 in the U-SOC phase
space, we tune the SOC term for the 5d orbitals of Ir atoms.
Since the strength of the SOC increases sharply with the
atomic number Z ( as Z4) , it is much stronger for Ir (Z = 77)
as compared to Sr (Z = 38) or O (Z = 8). This means that Ir
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FIG. 2: Some representative band structure diagrams of orthorhom-
bic perovskite oxides for (a) magnetic metal (MM) at U = 1.5 eV
and α = 0, (b) semimetal (SM) at U = 1.5 eV and α = 1.5, and (c)
magnetic insulator at U = 2.5 eV and α = 1.5. The bands near the
Fermi energy are denoted by red color, and remains knotted near U
in SM phase.

contributes almost exclusively to the SOC energy in SrIrO3.
This allows us to safely tune the SOC for all valence states,
because its effect on Sr and O atoms does not count much. A
scaling factor α in the SOC term of the Hamiltonian is intro-
duced in the second variational step [39]. This way, we can

enhance the effect of SOC by taking α > 1 or reduce it by
taking α < 1. For instance, α = 0 would mean no SOC at all,
while α = 1 is the atomic SOC in Ir atoms. A small magnetic
field is used to set the quantisation direction for the angular
momentum. This field reduces exponentially to zero during
the self consistency iterations so it has no other effects.

In the FP-LAPW method, the real space is divided into
spheres around the atoms (muffin-tins) and interstitials else-
where. In the present calculations, the muffin-tin radii 1.86
a.u. , 2.08 a.u. and 1.51 a.u. are used for Strontium (Sr), Irid-
ium (Ir) and Oxygen (O), respectively. The basis set consists
of APW functions with angular momentum l up to 8 and plane
waves with cut-off energy equal to 231.3 eV. The number of
empty states in the basis set in the second variational step was
10. The Brillouin Zone integrations were performed using a
3 × 3 × 3 grid, which is equivalent to using 10 points in the
irreducible part of the Brillouin Zone. This works well, given
that the primitive unit cell of orthorhombic perovskite SrIrO3
is almost four times bigger than that of the cubic structure with
only one formula unit. We checked the k-grid convergence in
the metallic phase using 8×8×8 grid. We only used U for 5d
orbitals of Iridium.

BAND STRUCTURES AND PHASE DIAGRAM

The octahedral crystal field splits the bands derived from
the d-orbitals of transition metal atoms into high energy eg
and low energy t2g groups. Due to the distortion of octahedra,
there are twelve t2g and eight eg bands (each band is doubly
degenerate due to time reversal symmetry). Fig. refrep-bands
shows band structures for various values of U and SOC de-
noted in the inset. The crystal field gap between eg and t2g is
evident for all cases, and only bottom of eg bands are shown
in the plots.

When α = 0 that corresponds to the absence of SOC, a
ferromagnetic order is present, and t2g bands are all mixed
as shown in panel (a). In contrast, when α = 1.5, panel (b)
and (c), the t2g bands form two groups, the higher four half
filled bands originate from the Je f f = 1/2 denoted by red
colour ( the lower two bands near Γ point are mainly Je f f =

3/2 though), and the lower eight completely filled bands from
the Je f f = 3/2. Increasing the SOC increases the splitting
between the Je f f = 1/2 and Je f f = 3/2 bands.

For smaller U of panel (b), the phase is nonmagnetic
semimetal, where four Je f f = 1/2 bands are near the Fermi
level forming small pockets of Fermi surface. While in non-
magnetic semimetal (SM) and magnetic metal (MM) phases,
panel (a) and (b), there is a finite density of states at Fermi
energy, the band topologies are very different in these two
phases. In the non-magnetic semimetallic (SM) phase, the
bands at the fermi energy cross near U point resulting in a line
node, and the magnetisation is zero everywhere in this phase.
In the MM phase, as well as in the magnetic insulator (MI)
phase shown in panel (c), there is no such band crossing. In
both these phases, Ir atoms have finite magnetic moments with
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FIG. 3: The phase diagram of orthorhombic perovskite oxides in the
U-SOC plane. Three phases for U up to 4 eV and α = 0 − 2 are
Magnetic Metal (MM), non-magnetic Metal or Semimetal(M/SM),
and Magnetic Insulator (MI). The colour circles show the points for
which calculations have been performed and magenta, green and red
denote MM, M/SM, and MI, respectively. Small magenta circles
are FLL results showing MM phase where AFM gives M/SM phase.
The solid line separates two phases connected via a first order phase
transition (where blue line is obtained by AMF while magenta line is
by FLL), whereas the dotted line is the phase boundary for a second
order phase transition.

a long range order. Increasing U, keeping the same strength
of SOC, leads to a metal-insulator transition at a critical Uc,
where the insulating state such as panel (c) has an interest-
ing magnetic ordering pattern. Since the time reversal sym-
metry is broken due to the magnetic ordering, there are eight
Je f f = 1/2 bands in this phase as displayed in panel (c). A
further discussion about the magnetic ordering pattern will be
presented below.

These three electronic phases shown in Fig. 2 are found in
the U-SOC phase diagram; (i) M/SM, (ii) MM, and (iii) MI.
The overall phase diagram in U vs. SOC is presented in Fig. 3,
where M/SM, MM, and MI are shown in green, magenta, and
red. M/SM is connected to MM and MI via a first order phase
transition whereby the magnetisation jumps from zero to a fi-
nite value along with a sudden change in the band structure
topology. On the other hand, MM and MI transform into one
another continuously with opening or closing up of a band
gap.

Let us discuss the phase diagram by checking along dif-
ferent cuts. First vertical cuts, i.e., changing U for a given
α. When α = 0, the system remains a pure ferromagnetic
metal at all U. This results from a large density of states at the
Fermi level leading to a Stoner ferromagnet. Tuning SOC to
finite but still small values (for α < 0.3), U interaction does
not make any difference, and system stays in the magnetic
metal phase even for very high values of U (for U close to
5eV, it becomes ferromagnetic insulator, which is not shown
here). However, as the SOC does not favour a pure ferro-

FIG. 4: The Je f f = 1/2 bands of SrIrO3 close to U in the XURS-
plane computed with LDA (without +U) at α = 1 (atomic SOC).
These bands form two pairs of touching cones shown in yellow and
brown. The two pairs are interpenetrated into each other forming
a circular nodal line at the fermi energy. When the time reversal
symmetry is broken (as the magnetic ordering occurs), these band
crossings disappear and a band gap form.

magnetic ordering, it turns the magnetic ordering pattern to a
slightly non-coplanar order with a large ferromagnetic com-
ponent. In contrast, for α > 0.3, increasing U induces a first
order phase transition from non-magnetic semimetal to mag-
netic phases. Whether the magnetic phase is metal or insu-
lator depends on the strengths of both U and α. The phase
boundary separating the non-magnetic semimetal phase from
the two other phases, MM and MI, is shown as a solid line in
Fig. 3. For α > 1.1, increasing U transforms M/SM directly
to MI, while for 0.3 < α < 1.1, increasing U changes the
phase from non-magnetic metal, to magnetic metal followed
by magnetic insulator.

Let us explore the phase diagram using horizontal cuts –
changing α for a fixed U. For small U, increasing α leads
to a first order phase transition from magnetic metal to non-
magnetic metal/semimetal phase. The critical value of α, αc,
at which this transition takes place stays between 0.2− 0.4 for
0 ≤ U < 1.5 eV. This is rather expected, as SOC disfavours
spin density wave ordering within a weak coupling theory.
Fig. 3 shows results for α up to 2. As can be seen, there is
no further phase transitions by increasing α. We checked this
for α up to 5.

For U ≥ 1.5 eV, αc increases sharply with U with an in-
creasing separation between the bands at the Fermi level in
magnetic metal phase. It is also interesting to note that for
2 ≤ U ≤ 2.35 eV, the system undergoes a change in phase by
increasing α from magnetic metal to magnetic insulator, and
then into non-magnetic semimetal, i.e, a re-entrance of metal-
licity (metal-insulator-metal by changing SOC for a given U).
For U ≥ 2.35 eV, increasing α transforms magnetic metal
smoothly to magnetic insulating phase with opening up of a
band gap. The higher the value of U, the lower is the value of
α for this transition. The phase boundary between these two
phases is shown as a dotted line in Fig. 3.
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As can be seen in Fig. 3, the dotted line have the expected
phase boundary curvature in the U-SOC plane. That is, the
critical value of U for MM to MI transition decreases with in-
creasing α since the phase space of magnetic insulator should
be wider as U increases. However, the most unexpected re-
sult presented in Fig. 3 is the opposite phase boundary cur-
vature for transition to magnetic phases from non-magnetic
metallic phase, the solid line. It shows that a stronger SOC
requires a stronger electron-electron interaction to transform
non-magnetic metal to magnetic insulator. The origin of this
unexpected behaviour is likely to be the special band topology
in the semimetal phase as described below.

Fig. 4 shows the band structure near U in the XURS-plane.
The four Je f f = 1/2 bands form two interpenetrated pairs of
cones, each pair consisting of a lower and a higher band (a
yellow and a brown). One pair touches below the fermi level
while the other above it, forming two Dirac-like points and
a circular line node in the XURS-plane at the fermi energy.
Due to this node, there is an extremely small density of states
near the Fermi level, which in turn requires a high Hubbard
U to splits these cones resulting in a magnetic insulator. We
propose that this is the main mechanism whereby SrIrO3 is a
semimetal with a small carrier density, different from its sister
compounds Sr2IrO4 [12, 43–45] and Sr3Ir2O7 [46–48].

We also checked the bandwidth of the upper two bands of
Je f f = 1/2 at the Fermi level when SOC is large enough to
separate Je f f = 1/2 top two bands from the rest (except at
the nodal points). W is plotted in Fig. 5 against α for various
values of U for α ≥ 0.5, since α < 0.5, Je f f = 1/2 is not well
defined. Contrary to the expectation [20], the bandwidth in-
creases with α and U in the non-magnetic semi-metallic phase
most likely due to a steeper slope of Dirac node that confirms
our conclusion above. Whereas in the magnetic phases (the
plots for U = 2.5 − 5 eV), W decreases with α and U as
expected. This makes us believe that the transition from the
non-magnetic to magnetic phases in SrIrO3 is controlled by
the electronic state of the non-magnetic semimetal where the
bandwidth is not relevant. This is further supported by the
fact that the semimetal phase has a special band topology as
described below.

J. M. Carter et al showed in Ref. [32] using a tight binding
model that this line node is proteced by the lattice symmetry.
In other words, any term that opens up a gap near U-point
should break either time reversal, inversion, or Pbnm lattice
symmetry. For example, it was shown that when the mirror
symmetry between the two layers of IrO2 in SrIrO3 is bro-
ken with a staggered potential, this line node changes to a
point node. When the strength of this staggered potential is
increased beyond a critical value that takes the node to the
R point, a change in the topology of the bands occurs owing
to the inversion of the Je f f = 1/2 bands at R. The system is
turned into a strong topological insulator when this happens.
Further increase of this staggered potential leads to inversion
of the bands at Z point, changing the band topology back to
trivial, making the system a band insulator.
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FIG. 5: The bandwidth W of top two bands at fermi level as a func-
tion of α for various values of U. W decreases with α and U in
MM/MI phase (U ≥ 2.5 eV) as expected but increases in SM phase
(U ≤ 1.5 eV).

MAGNETIC ORDERING PATTERNS

As discussed above, when α = 0, there is a pure ferromag-
netic (FM) order in the MM phase at all values of U. This
happens down to U = 0, because the electron-electron repul-
sion is not completely absent even at U = 0, partly due to its
imperfect removal in the 5d orbitals of Ir and partly due to
the presence of many other occupied states in the system. The
magnitude of the magnetic moment of Ir depends on U. It in-
creases with U from 0.38µB at U = 0 to 0.95µB at U = 4 eV,
where it is almost saturated — a rather expected behaviour.
A small contribution to the magnetisation also comes from O
when α ∼ 0.

As we move away from α = 0, system develops a canted
antiferromagnetic (CAFM) order. At smaller U, transition
from FM to CAFM is more gradual leaving a net ferromag-
netic component. This behaviour persists up to α ∼ 1. For
higher α a very small ferromagnetic component develops in
the magnetic insulator phase at higher U. This is expected
since an antiferromagnetic order in the insulating phase low-
ers the energy via virtual hopping of electrons to the nearest
neighbour with the oppositely aligned spin. A small ferromag-
netic component is then due to an effective Dzyalonshinsky-
Moriya interaction as found in Sr2IrO4 [12, 17, 49]. Fig. 6
shows the magnetic structure at α = 0.2 as U is changed from
2 to 4 eV, and at U = 4 eV as α is changed from 0.2 to 1. The
quantisation axis is set along the x-axis.

For any two nearest neighbour Ir atoms in different layers
along c (i.e, those with yellow and green or red and blue ar-
rows in Fig. 6) the components of moments along the y and
the z-axis are always cancelled out. The size and orienta-
tion/direction of individual moments depend on the values of
α and U as does their sum or the total moment per unit cell.
As can be seen in Fig. 6(a), at U = 2 eV and α = 0.2, the mo-
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FIG. 6: The magnetic structure of orthorhombic perovskite oxides
at U = 2 eV and α = 0.2 (a), U = 4 eV and α = 0.2 (b), U = 4
eV and α = 1 (c). In (a), the system has a canted antiferromagnetic
order with a large ferromagnetic component. In (b), the system has
a canted antiferromagnetic order with negligible ferromagnetic com-
ponent. The average magnetisation per unit cell is also zero in (c),
but the moments are aligned in a very different way.

ments are almost co-planer with a large ferromagnetic com-
ponent. Fig. 6(b) shows the magnetic order at U = 4 eV and
α = 0.2. It is clear from this figure that raising the strength of
Coulomb interaction at finite α suppresses the ferromagnetic
component. The magnetic order at the same value of U (4 eV)
and a higher α, α = 1, is shown in Fig. 6(c), where a stronger
SOC has changed the orientations and reduced the sizes of the
individual moments.

DISCUSSION AND SUMMARY

The SOC is an essential ingredient in numerous exciting
phenomena including spintronics and topological insulators.
However, in transition metal oxides with 3d orbitals such as
high temperature cuprates, the SOC has been ignored, while
the strong correlation represented by Hubbard interaction de-
termines their physical properties. Very recently, iridates with
5d-orbital has been a topic of much attractive research due
to intriguing combined effects of the SOC and Hubbard in-
teraction. It was found that the SOC in iridates is unusually
strong, which differs from other 5d compounds such as Re-
oxides [50] even though the atomic SOC should be similar for
Ir and Re.

A set of iridates is the perovskite iridates forming Ruddles-
den Popper series from single layer Sr2IrO4 to three dimen-
sional structure SrIrO3. While both single layer and bilayer
iridates exhibit a magnetic insulating behavior, SrIrO3 shows
a metallic phase with a small number of charge carriers. Given
that the SOC and Hubbard interaction are local, their strengths
should be similar in this series, and thus it was suggested that
the bandwidth should control metal-insulator transition as the
number of layers changes in perovskite iridates.[20] Here we
show that the metallicity is innate to the lattice structure of
three dimensional orthorhombic perovskites in addition to a
large SOC. Due to this combined effect, there are tiny hole
and electron Fermi pockets with small density of states, which

in turn makes Hubbard interaction less efficient in SrIrO3.
Due to strong SOC, the magnetic field dependence of phys-
ical properties would be interesting to study.

We investigate an overall phase diagram of the orthorhom-
bic perovskite structure (space group Pbnm) in U vs. SOC
using density functional theory. The computation is based
on SrIrO3, where tuning U and SOC (by changing α) al-
lows us to explore other possible phases nearby non-magnetic
semimetal in isostructural systems. Three phases – non-
magnetic metal/semimetal, magnetic metal, and magnetic in-
sulator – were found by tuning U and SOC. At smaller α, a
magnetic metal is always found, which is similar to SrRuO3.
While Ru4+ has 4 electrons at the outer shell and thus the
chemical potential is different from SrRhO3, the bands near
the Fermi level are strongly mixed leading to a similar phe-
nomena. Indeed, earlier electronic calculation on SrRuO3 re-
ported it a ferromagnetic metal.At α > 0.3 and U < 1.5eV ,
the system becomes non-magnetic metal which resembles the
ground state of SrRhO3. Indeed, our computations of the elec-
tronic structure of SrRhO3 shows that it is similar to the one
found at α = 0.4 close to the instability towards magnetic
metallic phase. While Rh and Ru are next to each other in
the periodic table, our results imply that the SOC must have
a stronger effect on SrRhO3 than SrRuO3, and agree with an
earlier suggestion that SrRhO3 is near a magnetic critical point
[4–6]. Increasing α further, the bands near the Fermi level
changes to semimetallic-like, and a stronger Uc is required
for a magnetic insulator. The shape of phase boundary be-
tween the non-magnetic semimetal and the magnetic insulator
is emerged from a line of Dirac node leading a small density
of states near the Fermi level. A tight binding approach for a
series of Srn+1IrnO3n+1 has found the same conclusion that Uc

is larger for n = ∞ than n = 1 or n = 2.[51]

In summary, we have studied the interplay between the
SOC and Hubbard interaction in orthorhombic perovskite ox-
ide with the point group symmetry of Pbnm. Three different
phases were identified. A magnetic metal with a finite fer-
romagnetic component found in smaller SOC at all values of
U investigated in this study. Increasing the SOC leads to a
phase transition to a non-magnetic metal for small U, and to
a magnetic insulator for large U. The detailed band structures
near the Fermi level in these phases strongly depend on the
strength of the SOC rather than U, unless the interaction U
leads to another magnetic phase. Our study may be useful in
understanding different ground states found among isostruc-
tural perovskites including SrRuO3, SrRhO3, and SrIrO3. It
also provides a microscopic mechanism for semimetallic be-
haviour in SrIrO3 distinct from its sister compounds, Sr2IrO4
and Sr3Ir2O7.
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