Fluctuation Corrections to London Hear Field though

2.7 Comparison of Theory and Experiment

The validity of the mean-field approximation is assessed in the table below by comparing the results with (approximate) exponents for d=3 from experiment.

Transition type	Material	α	β	γ	ν
		$C \sim t ^{-\alpha}$	$\langle m \rangle \sim t ^{\beta}$	$\chi \sim t ^{-\gamma}$	$\xi \sim t ^{-\nu}$
Ferromag. $(n=3)$	Fe, Ni	-0.1	0.34	1.4	0.7
Superfluid $(n=2)$	$\mathrm{He^4}$	0	0.3	1.3	0.7
Liquid-gas $(n=1)$	CO_2 , Xe	0.11	0.32	1.24	0.63
Superconductors		0	1/2	1	1/2
Mean-field		0	1/2	1	1/2

Recall

$$\beta H = \beta H \left[\frac{1}{m} \right] + \frac{1}{2} \int d^{3}x \, \varphi_{L} \, K(-\nabla^{2} + \tilde{g}^{2}) \varphi_{L} + \varphi_{E} \, tems^{4}$$

$$\left[\frac{t}{2} m^{2} + u m^{4} \right] V + \frac{1}{2} \int \frac{d^{3}g}{(2\pi)^{3}} \, \varphi(g) \, K(g^{2} + \tilde{g}^{2}) \, \varphi(-g)$$

Free energy $f = \frac{1}{V} = -\frac{1}{V} = -\frac{1}{V} \log \left(\frac{-\beta H[\tilde{m}]}{e} \right) \det G^{\frac{1}{2}}$

 $\int \frac{dq}{(2\pi)^d} \frac{1}{(g^2+\xi^{-2})^2} \sim \int \frac{1}{\xi^{-1}(\xi^2q^2+1)^2}$ $\int dx \frac{x^2}{(x^2+1)^2}$ $\frac{\chi^{l-1}}{\chi^{4}} = \chi^{l-5}$ diving it the uff lint = impose a cut-off at a Er snill x cont. slift

d < 4 desintently

has been negled

by a

drugues se saddle fit corret is not small. 2 d < 4, there is a brushdown of MFT (it applies to X, m,...). Sights potubation theory finds. d=4 is Iron as the upper critical diviens 134 MFT exponents are correct. But what about suprembutors?

Vo see fluctuate domistel behavior, me mest har experiment raddle foit Jung 1 54-1 ~ 1 (TK t - 2)4-1 ~ OC ξ_{0}^{4-d} $t_{c}^{-\frac{1}{2}(4-1)} \triangle 0 \subset \xi_{0}^{4}$

 $t \ll \ell_G \sim \left(\frac{k_B a^d}{\Delta c \xi^d}\right)^{\frac{1}{4-d}}$

AC ~ 1 kg for fartish Typiely 3. ~ my of entration Za Mend mardyth ~ \ ~ 2-3 Å ey sofflind ~ to ~ 10'-102 accerible Mircondute 30 - rig of book ~ 10 Å to ~ 100%! - out of exprimental