Preliminaries: Concepts and Definitions

- Crnatimy of tyyinal entarumons fluce trandites
- Motunate ntatistical field thoy

Let us conider the simplat example: liguid -gns

Pients to note
1). Cousistence line terminates at a enitical proit
2). Ofs $T<T_{C}$, liguid $\left(e_{L}=\frac{1}{v_{L}}\right)$ and gas ($e_{g}=\frac{1}{v_{j}}$) wesait.
3). Lig \rightarrow Eer tranation sivodues a eliscomtimuns chonge of volume V (excest at trielich point) wheve latent heat is exchenged (oplin trenition is ealled fint ords.)

$$
\text { Dl } \rightarrow \text { order parametes. }
$$

4. Yos \rightarrow ligend esen oceur withat a phace tramution ly going eround the cistian foint.
Clone to the erdial poist
5. ets $T \rightarrow T_{c}^{-} \quad l_{L} \rightarrow \rho_{g}$
6. cts $T \rightarrow T_{L}^{+}$"sisthermbl" compresibibity

$$
\begin{array}{r}
k_{T}=-\left.\frac{1}{V} \frac{\partial v}{\partial \rho}\right|_{T} \rightarrow \infty \\
\left.\quad \searrow_{\frac{1}{e}} \frac{\partial f}{\partial \rho}\right|_{T}
\end{array}
$$

7. System becomes "milly" nuer cribual point - eritical spalescence
cf. boilling kattle, clouds
\Rightarrow eharactesctio fluctuation at baggh reale of liget.
\rightarrow i.e. $>$ lorger Than typical patcde spacing.

Fig. 4.4.4. Phase boundary in units of reduced temperature and density for eight different molecular fluids near their liquid-gas transitions. Note the universal behavior and the fact that the solid line is $\Delta \phi \propto\left(T_{c}-T\right)^{\beta}$ with $\beta=1 / 3$ rather than the mean-field result $\beta=1 / 2$. [E.A. Guggenheim, J. Chem. Phys. 13, 253 (1945).]

Ising model - lattice of yis ± 1

$$
H=-J \sum_{\langle i j\rangle} \delta_{i} \delta_{j}
$$

${ }^{*}$ rearest neighbous

$$
M=\sum_{i} \sigma_{i}
$$

Note that loth liquid \leftrightarrow gas al ging muchel here identeal topoliggies. (ufts oottation)

Pients to note

$$
\begin{aligned}
& c h T \rightarrow T_{c}^{-}(a t H=0), M \rightarrow 0 \\
& 2^{n l} \text { adr ementruoss } \\
& \text { tranate. } \\
& \text { nois lif } \rightarrow \text { g }
\end{aligned}
$$

itt $T=T_{c}(c a l ~ H=0)$, ther is apontorions symnoty brating, $M \neq 0$

Critual Plenorma
Spuind mole played by cirteal foint (CP)
O_{n} eppromedy $C P$, the comelaten ligth divirys
\Rightarrow scale einarianc, univeralty, pon-aralytic reymone fuectos wilt a sit ff cribual expouts (a.k.a firgorent of timisias)
olyfinitios
Ordor farmeter

- diviengüdes phase en the coexuctin. line ad ravich at C?
e.g. $M, e-e c$
olfin $m(H, T)=\frac{M(H, T)}{V}$

$$
m\left(H=0^{+}, T\right) \sim\left\{\begin{array}{cc}
(-t)^{\beta} & t<0 \\
0 & t>0
\end{array}\right.
$$

wher $t=\frac{T-T_{c}}{T_{c}}$-redued terpedtre

$$
\left[\beta=\lim _{t \rightarrow 0^{-}} \frac{l_{r y}|m|}{y_{y}|t|}\right]
$$

$$
m\left(H, T=T_{c}\right) \sim H^{\frac{1}{\delta}} \quad H>0
$$

Susculbidy $X=\frac{\partial M}{\partial H}(H, T)$

$$
\gamma_{+}=\gamma_{-}=\gamma \underbrace{x_{ \pm}=|t|^{-\gamma_{ \pm}}}_{T_{c}}
$$

Joleat expinty

$$
\begin{aligned}
& c_{ \pm}=\frac{\partial E}{\partial T} \sim|t|^{-\alpha_{1}} \\
& \alpha_{+}=\alpha_{-}=\alpha
\end{aligned} \frac{T_{L}^{\prime}}{T_{L}}
$$

Coroulder fantis
phiergeree of \Leftrightarrow lony ronge resprae functa corondation

$$
\begin{aligned}
& z=\operatorname{tr} e^{-\beta\left(H_{0}-h m\right)} \\
&\langle M\rangle=\frac{1}{z} \operatorname{Ir} M e^{-\beta\left(H_{0}-h m\right)} \\
&=\frac{\partial \log _{g} z}{\partial(\beta h)} \\
& X=\frac{1}{V} \frac{\partial\langle M\rangle}{\partial h}=\frac{\beta}{V} \frac{\partial\langle m\rangle}{\partial(\beta h)} \\
&=\frac{\beta}{V}\left(\left\langle m^{2}\right\rangle-\langle m\rangle^{2}\right) \\
&=\frac{\beta}{V} V_{a r} m \\
& \Leftrightarrow V K_{B} T X=\left\langle m^{2}\right\rangle-\langle m\rangle^{2}
\end{aligned}
$$

$$
\begin{aligned}
& M=\int d^{d} \leq m(s) \\
& V k_{B} T X=\int d^{d} _\int d^{d} \rho^{\prime}\left[\left\langle m(\underline{r}) m\left(\rho^{\prime}\right)\right\rangle\right. \\
& -\langle m(\underline{f})\rangle\left\langle m\left(\rho^{\prime}\right)\right\rangle \\
& \text { III } \\
& G\left(\underline{\rho}-\rho^{\prime}\right)=\left\langle m(\underline{\rho}) m\left(\rho^{\prime}\right)\right\rangle_{c} \\
& \uparrow \\
& \text { Connected correlation } \\
& k_{e} T X=\int d^{d} \rho\langle m(\underline{\rho}) m(\underline{0})\rangle_{c} . \\
& \left.G\left(1-e^{\prime}\right)\right) \text { C }
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } x \rightarrow \infty \text { at } T_{L} \\
& \text { the } \xi \rightarrow \infty \text { at } T_{c} .
\end{aligned}
$$

$$
\xi_{z} \sim|t|^{-\nu_{t}}
$$

