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Problem Set III

Lent 2023

Quantum Phase Transitions

1. Following from the question about the Lifshitz point in Problem Set I, we are now
going to apply the RG scaling to find the upper critical dimension of several quantum
phase transitions. The correspondence is most easily seen if we let x‖ → τ , x⊥ → x,
and q‖ → ω, q⊥ → k. Note that unlike GL Hamiltonians for classical systems, GL
Hamiltonians (better known as imaginary time actions in this context) for quantum
systems are in general complex.

The following effective Hamiltonian is realised in some (d− 1)-dimensional quantum
systems

βH =

∫
dτ dd−1x

∫
dτ ′ dd−1x′ Ψ(x, τ)K(x− x′, τ − τ ′)Ψ(x′, τ ′)

+

∫
dτ dd−1x

(
t

2
Ψ2(x, τ) + uΨ4(x, τ)

)
, (1)

where Ψ(x, τ) hasN real components and the Fourier transform of the kernelK(x, τ)
for small frequency is given below. The kernel is translationally invariant along
x and τ . For each kernel, find the upper critical dimension du for validity of the
Gaussian exponents. [ Hint: Rescale ω′ = cω and k′ = bk and choose an appropriate
renormalisation factor z for the order parameter so that the couplings that govern
the long distance behaviour along τ and x both remain the same.]

(a) K(ω, k) = dω + ek2 (T = 0 antiferromagnetic transition for itinerant electrons
when N = 3),

(b) K(ω, k) = idω + ek2 (superfluid transition when N = 2),

(c) K(ω, k) = d|ω|/k + ek2 (ferromagnetic transition for itinerant electrons when
N = 3),

(d) K(ω, k) = dω2 + ek2 (superfluid transition for bosons on a lattice and at a
commensurate density when N = 2),

(e) K(ω, k) = d|ω|+ eω2 + fk2 (superconducting transition for dirty d-wave super-
conductor when N = 2).

2. Quantum-Classical Mapping: The following problem explores the quantum-classical
analogy in the context of O(N) quantum rotor systems.

In d = 3 the quantum O(2) rotor Hamiltonian is given by

ĤO(2) =
∑
i

L̂2
i

2m
− g

2

∑
<ij>

cos(θ̂i − θ̂j), (2)
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where L̂i = −i ∂
∂θ

is the angular momentum operator and θ̂i the conjugate azimuthal

angle operator, [θ̂, L̂j] = iδij. Close to the critical point the zero-temperature pari-
tion function of the Hamiltonian is well described by the following Ginzburg-Landau
action

S[Ψ(r, τ)] =

∫
d3r

a3
dτ
[
t|Ψ(r, τ)|2 +

a2g−1

18
|∇Ψ(r, τ)|2 + 8m3|∂τΨ(r, τ)|2 + cm3|Ψ(r, τ)|4

]
,

where Ψ(r, τ) is a complex order parameter.

(a) Outline the derivation of the Ginzburg-Landau action and find the reduced
temperature t. In particular, state which angular momentum states participate in
the GL action and why, and explain the origin of the quartic term and why c > 0.

(b) Write down the quantum field Hamiltonian whose Feynman-path representation
generates the action S.

(c) Assuming the validity of the mean-field approximation at the upper critical
dimension, find the singular behaviour of the correlation length in the GL action S,
close the critical point. Using this result find the corresponding critical behaviour
of the energy gap in ĤO(2).

(d) Now, consider the Hamiltonian Ĥ in d = 2, with the rotors placed on sites of
a square lattice. By looking at the stability of high mg � 1 and low mg � 1
phases, and deriving the low-energy spectrum in each case, deduce the presence of
a zero-temperature phase transition. Identify the universality class to which this
transition belongs. By quoting the relevant exponent from the lecture notes, state
the singular behaviour of the energy gap at the transition. Finally, comment on the
non-zero temperature behaviour of this model.

(e) We now turn to analysisng the mg = 0 limit, where the quantum rotors decouple
and the second term in the Hamiltonian can be neglected.

Setting m = 1, show that the quantum partition function for a single rotor is given
by

Z =
∞∑

n=−∞

exp

[
−βn

2

2

]
. (3)

Hence, find the low and high temperature limits of the following imaginary time
correlator

〈eiθ̂(t)−iθ̂(0)〉T =
1

Z
∑
n

〈n|e−βĤeiθ̂(τ)e−iθ̂(0)|n〉, (4)

where eiθ̂(τ) = eτĤeiθ̂e−τĤ , τ > 0 and |n〉 are the energy eigenstates.
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(f) Cast as a Feynman path integral, show that the quantum partition function
takes the form

Z =
∞∑

n=−∞

∫
θ(β)=θ(0)+2πn

Dθ(τ) exp

[
−1

2

∫ β

0

dτ θ̇2
]
,

where β = 1/kT .

(g) Parametrising paths as θ(τ) = 2πnτ/β+θp(τ), where θp(τ) is a periodic function
of Euclidean time, show that

Z =
∞∑

n=−∞

exp

[
−1

2

(2πn)2

β

]
Dθ(τ) exp

[
−1

2

∫ β

0

dτ θ̇p
2
]
. (5)

Use the Feynman path integral to find the the T → 0 limit of the correlator

〈eiθ̂(τ)e−iθ̂(0)〉. (6)

How does your answer compare with the result from part (e)? Explain.

(h) By analytically continuing the high-temperature limit of the correlator found in
(e) to real time τ → it, show that

〈eiθ̂(t)−iθ̂(0)〉T = e−it−Tt
2

(7)

and comment on the implications of your result for the relevance of temperature to
real time correlators.

The following questions consider finite-size scaling effects around the quantum crit-
ical point associated with non-zero temperature, which is a non-examinable topic:

†(i) Consider the behaviour of the 3-dimensional O(2) quantum rotor Hamiltonian
at non-zero temperature T . Sketch the RG flow in the {t, T} plane, paying partic-
ular attention to the phase boundary and its behaviour with t close to the critical
point. Identify the classical and quantum critical regions and how the crossover
temperatures vary with t. [You can assume mean-field critical exponents at the
upper critical dimension.]

† (j) How does the susceptibility of the 3-dimensional quantum O(2) rotor model
diverge in the quantum critical region as T → 0? [You can assume mean-field
critical exponents at the upper critical dimension. ]

† (k) Using the fluctuation-dissipation theorem and your answer to part (e), find
the singular behaviour of the correlation length as T → 0 in the quantum critical
region.
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