Problem Set 11

Lent 2023

Perturbative Renormalisation Group Questions

1. Perturbative RG (adpated from 2018 Part I1I NatSci Tripos): Consider the long-
wavelength expansion of the Hamiltonian of the 2-dimensional XY model:

lofw] = [ @ (G (Vor +u(ve)').

where ¢(r) is the azimuthal angle that describes the transverse fluctuations of the
magnetisation. Longitudinal fluctuations can be assumed to be frozen out. r spans
2-dimensional Euclidean space.

(a) By integrating out the Fourier modes of ¢(r) with wavevectors Ae™! < |q| < A,
implement the momentum-shell renormalisation group procedure to first order in u
and derive the following flow equations

dK  duh?
d  Kr’
du

i, ¥
dl b

Let
G(r,K,u) = (e"‘z’(r)’mm))gﬂ,

where the expectation value with respect to the above Hamiltonian depends on the
parameters (K, u).

(b) Show that

1
G(T,K,U = 0) = T 1>

(r/a)=x
where a is the lattice constant.

(c) Show that an RG trajectory starting at the point (Ko, up) in the (K, u) plane
flows towards the point (y/K2 + 4ugA2/7,0).

(d) Considering an infinitesimal RG flow from [ to [ + Jl starting at the point
(K > 1,u), show that

G(r,K,u) = e 2k G (r (1-60),K + ‘;—}f(sz, u+ ‘;—Tl‘&) . (1)
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(e) Now, consider a series of infinitesimal RG flows from [ = 0 to [ = In "2, starting
at the point (Ky,up) and ending at the point (K (ln %0) U (ln %’)), to show that

s oo ([ g ) (R () ()

(f) Hence, show that the asymptotic limit of the correlator is given by

T0/r—00 1

G(ro, Ko,up) = (14 O(up))

?

(roa) 75

i.e. the long-distance physics is given by the quadratic theory, but with a renor-
malised coupling constant K, = /K2 + 4uoA2/.

The next problem concerns the e-expansion of the Ginzburg-Landau Hamiltonian
to second order. Although outlined in the lectures, this problem leads you through
a detailed investigation of the O(n) fixed point. In attacking this problem one may
wish to consult a reference text such as Chaikin and Lubensky (p. 263).

2. Using Wilson’s perturbative renormalisation group, the aim of this problem is to
obtain the second-order ¢ = 4 — d expansion of the Ginzburg-Landau functional

BH — / dx EmQ + §<Vm)2 +u(m?)?|,

where m denotes an n-component field.

(a) Treating the quartic interaction as a perturbation, show that an application of
the momentum shell RG generates a Hamiltonian of the form

G~'(q)
2

m.(q))?—In(eY) . Glaq)=t+Kq

m>

AJb
6mmd=A (dq)

where we have used the shorthand (dq) = dq/(27)%.

(b) Expressing the interaction in terms of the Fourier modes of the Gaussian Hamil-
tonian, represent diagrammatically those contributions from the second order of the
cummulant expansion. [Remember that the cummulant expansion involves only
those diagrams which are connected.

(c) Focusing only on those second order contributions that renormalise the quartic
interaction, show that the renormalised coefficient u takes the form

i o= u—4ui(n+8) / (dQ)G(q)?.

AJb
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Comment on the nature of those additional terms generated at second-order.

(d) Applying the rescaling q = ¢'/b, performing the renormalisation m. = zm, and
arranging that K’ = K, show that the differential recursion relations take the form

(b=¢)
dt d 2
7 = 2+ du(n+2)GA) KA —u?A(q = 0),
%ﬁz (4 = d)u — 4(n + 8)u"G(A)* KA.

(e) From this result, show that for d < 4 the Gaussian fixed point becomes unsta-
ble against a new fixed point (known as the O(n) fixed point). [Remember to be
consistent in keeping terms of definite order in €!] Linearising in the vicinity of the
new fixed point, show that the scaling dimensions take the form

n—+ 2

—g_ (T 2 — 2y,
n=2-(E52) e+ 0@, m=ctOE)

Sketch the RG flows for d > 4 and d < 4.

(f) Adding the magnetic field dependent part of the Hamiltonian, show that to
leading order in €, the magnetic exponent y;, is unchanged from the mean-field
value.

(g) From the scaling relations for the free energy density and correlation length

flgr =0dt,h) = b~ f(b¥5t, b h),
E(0t,h) = bTLE(LYSL, bUrR).

determine the critical exponents v, «, 3, and . [Recall: £ ~ (0t)7", C ~ (§t)~ ¢,
m o~ (6t)7, x ~ (5t)7 ]

Optional Problem for Enthusiasts: The final problem in this set is optional
and involves another investigation of an e-expansion this time applied to continuous
spins near two-dimensions. In contrast to the 4 — e expansion of the Ginzburg-
Landau Hamiltonian described above, a non-trivial fixed point emerges already at
first order. The aim of this calculation is to study properties of the fixed point in
the vicinity of two-dimensions. This calculation repeats steps first performed by
Polyakov (Phys. Lett. 59B, 79 (1975)) in a seminal work on the properties of the
non-linear o-model. Once again, this calculation should be attempted with reference
to a standard text such as Chaikin and Lubensky (p. 341).
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3. *x Optional Question on Continuous Spin Systems Near Two-Dimensions: The aim
of this problem is to employ Wilson’s perturbative renormalisation group, to obtain
the e = d — 2 expansion of the n-component non-linear o-model

z- / DS(x)5 (S%(x) — 1) exp {-% / dx(vsf] |

In the vicinity of the transition temperature, it is convenient to expand the spin de-
grees of freedom around the (arbitrary) direction of spontaneous symmetry breaking,
So(x) = (0,---0,1),

S(x) = (I (%), - - I (%), 0(x)) = (II(x), 0(x)) ,

where o(x) = (1 — I12)/2,

(i) Substituting this expression, and expanding o in powers of II, show that the
Hamiltonian takes the form

BH = g/dx [(VH)2+%(VH2)2+...

(i) Treating this expansion to quadratic order, show that the lower critical dimen-
sion is 2.

(iii) Taking o > 0, and using the expression (true when o > 0)

1

2, 2 qy__
5(H +o 1) 20 )2

§(o—(1—-1%)Y?),
show that the partition function can be written in the form
Z = /DH(X) exp [—g/dXhl(l - H2)}
X exp {—g/dx [(VH)2 +(V(1 - H2)1/2)2] }

where p = (N/V) = fOA(dq) denotes the density of states.

(iv) Polyakov’s Perturbative Renormalisation Group: Expanding the Hamiltonian
perturbatively in II, show that K(I1?) ~ O(1), K(VII?*)? ~ O(K™!), and pII*> ~
O(K™1).

This suggests that we define

BH,y = %/dx (VII)?,

/dXH27

as the unperturbed Hamiltonian and treat

Uz%/dx(H-VH)Z—

NI
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as a perturbation.

(v) Expand the interaction in terms of the Fourier modes and obtain an expression
for the propagator (Il,(qi)Ils(q2))o. Sketch a diagrammatic representation of the
components of the perturbation.

(vi) Perturbative Renormalisation Group: Applying the perturbative RG procedure,
and integrating out the fast degrees of freedom, show that the partition function
takes the form

Z = /DH<€_6f19_5H0[H<]—ln<e_U[n<»H>]>;’

where § f represents some constant.

(vii) Expanding to first order, identify and obtain an expression for the two diagrams
that contribute towards a renormalisation of the coupling constants. (Others either

vanish or give a constant contribution.) [Note: the density of states is given by

p = (N/V) = fOA(dq) = ! OA/b(dq).] As a result, show that the renormalised

Hamiltonian takes the form

K AJb p AJb
S = afof = [ ax(VIL e et [

K AJb

5 dx (TI.oVIIo)? + O(K72),
0

where K = K (1 + 1,(b)/K) and 60, 0} are constants. Specify the function I,(b).

(viii) Applying the rescaling x’ = x/b and renormalising the spins,

S
S/ = l_[< = CH/a
¢
obtain an expression for the renormalised coupling constant K.

To determine (, it is necessary to evaluate the average of the renormalised spin
(S)o = ((TToy + sy, - -+ (1 — T2 —T12)Y/2))o. Expanding, we find

(S)g = (Hay,-oo, 1 -TIZ/2—(T12) /2)
~ (1=(12) /2) (May, oo 1= TM2/2) = (S
From this expression, show that ( =1 — (n — 1)1,(b)/2K.

(ix) Using the expression for K’ and ¢, show that the differential recursion relation
takes the form

dK
= (d—2)K — (n — 2) K4\,
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where b = e’. Setting the temperature 7 = K !, obtain the recursion relation

dT'/d¢ and confirm that the fixed point is given by

d—2 2me
T* — _ 2
kA oz O

where d = 2+ €. Sketch the RG flow diagram for d > 2, d = 2 and d < 2, for various
values of n.

(x) Linearising the RG flow in the vicinity of the fixed point, obtain the thermal
exponent y; to leading order in e. Using this result, obtain the correlation length
exponent v = 1/y;.

(xi) Adding a term — [ dxh - S show that the magnetic exponent takes the form

B n—3 2
yh—2+2(n_2)6+0(6 ).

(xii) Using an exponent identity, obtain the critical exponent ~. Setting d = 3 and
n = 3, how does this estimate compare to the best estimate of 1.38.
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