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Problem Set II

Lent 2023

Perturbative Renormalisation Group Questions

1. Perturbative RG (adpated from 2018 Part III NatSci Tripos): Consider the long-
wavelength expansion of the Hamiltonian of the 2-dimensional XY model:

βH[φ(r)] =

∫
d2r

(
K

2
(∇φ)2 + u (∇φ)4

)
,

where φ(r) is the azimuthal angle that describes the transverse fluctuations of the
magnetisation. Longitudinal fluctuations can be assumed to be frozen out. r spans
2-dimensional Euclidean space.

(a) By integrating out the Fourier modes of φ(r) with wavevectors Λe−l < |q| < Λ,
implement the momentum-shell renormalisation group procedure to first order in u
and derive the following flow equations

dK

dl
=

4uΛ2

Kπ
,

du

dl
= −2u.

Let

G(r,K, u) ≡ 〈eiφ(r)−iφ(0)〉βH,

where the expectation value with respect to the above Hamiltonian depends on the
parameters (K, u).

(b) Show that

G(r,K, u = 0) =
1

(r/a)
1

2πK

,

where a is the lattice constant.

(c) Show that an RG trajectory starting at the point (K0, u0) in the (K, u) plane
flows towards the point (

√
K2

0 + 4u0Λ2/π, 0).

(d) Considering an infinitesimal RG flow from l to l + δl starting at the point
(K � 1, u), show that

G(r,K, u) = e−
δl

2πKG

(
r (1− δl) , K +

dK

dl
δl, u+

du

dl
δl

)
. (1)
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(e) Now, consider a series of infinitesimal RG flows from l = 0 to l = ln r0
r

, starting
at the point (K0, u0) and ending at the point

(
K
(
ln r0

r

)
, u
(
ln r0

r

))
, to show that

G(r0, K0, u0) = exp

(
−
∫ ln(r0/r)

0

dl

2πK(l)

)
G
(
r,K

(
ln
r0

r

)
, u
(

ln
r0

r

))
. (2)

(f) Hence, show that the asymptotic limit of the correlator is given by

G(r0, K0, u0)
r0/r→∞

= (1 +O(u0))
1

(r0/a)
1

2πK∗
,

i.e. the long-distance physics is given by the quadratic theory, but with a renor-
malised coupling constant K∗ =

√
K2

0 + 4u0Λ2/π.
——————————————–

The next problem concerns the ε-expansion of the Ginzburg-Landau Hamiltonian
to second order. Although outlined in the lectures, this problem leads you through
a detailed investigation of the O(n) fixed point. In attacking this problem one may
wish to consult a reference text such as Chaikin and Lubensky (p. 263).

2. Using Wilson’s perturbative renormalisation group, the aim of this problem is to
obtain the second-order ε = 4− d expansion of the Ginzburg-Landau functional

βH =

∫
dx

[
t

2
m2 +

K

2
(∇m)2 + u(m2)2

]
,

where m denotes an n-component field.

(a) Treating the quartic interaction as a perturbation, show that an application of
the momentum shell RG generates a Hamiltonian of the form

βH[m<] =

∫ Λ/b

0

(dq)
G−1(q)

2
|m<(q)|2 − ln

〈
e−U

〉
m>

, G−1(q) = t+Kq2,

where we have used the shorthand (dq) ≡ dq/(2π)d.

(b) Expressing the interaction in terms of the Fourier modes of the Gaussian Hamil-
tonian, represent diagrammatically those contributions from the second order of the
cummulant expansion. [Remember that the cummulant expansion involves only
those diagrams which are connected.]

(c) Focusing only on those second order contributions that renormalise the quartic
interaction, show that the renormalised coefficient u takes the form

ũ = u− 4u2(n+ 8)

∫ Λ

Λ/b

(dq)G(q)2.
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Comment on the nature of those additional terms generated at second-order.

(d) Applying the rescaling q = q′/b, performing the renormalisation m< = zm, and
arranging that K ′ = K, show that the differential recursion relations take the form
(b = e`)

dt

d`
= 2t+ 4u(n+ 2)G(Λ)KdΛ

d − u2A(q = 0),

du

d`
= (4− d)u− 4(n+ 8)u2G(Λ)2KdΛ

d.

(e) From this result, show that for d < 4 the Gaussian fixed point becomes unsta-
ble against a new fixed point (known as the O(n) fixed point). [Remember to be
consistent in keeping terms of definite order in ε!] Linearising in the vicinity of the
new fixed point, show that the scaling dimensions take the form

yt = 2−
(
n+ 2

n+ 8

)
ε+O(ε2), yu = −ε+O(ε2).

Sketch the RG flows for d > 4 and d < 4.

(f) Adding the magnetic field dependent part of the Hamiltonian, show that to
leading order in ε, the magnetic exponent yh is unchanged from the mean-field
value.

(g) From the scaling relations for the free energy density and correlation length

f(g1 = δt, h) = b−df(bytδt, byhh),

ξ(δt, h) = b−1ξ(bytδt, byhh).

determine the critical exponents ν, α, β, and γ. [Recall: ξ ∼ (δt)−ν , C ∼ (δt)−α,
m ∼ (δt)β, χ ∼ (δt)−γ.]

——————————————–

Optional Problem for Enthusiasts: The final problem in this set is optional
and involves another investigation of an ε-expansion this time applied to continuous
spins near two-dimensions. In contrast to the 4 − ε expansion of the Ginzburg-
Landau Hamiltonian described above, a non-trivial fixed point emerges already at
first order. The aim of this calculation is to study properties of the fixed point in
the vicinity of two-dimensions. This calculation repeats steps first performed by
Polyakov (Phys. Lett. 59B, 79 (1975)) in a seminal work on the properties of the
non-linear σ-model. Once again, this calculation should be attempted with reference
to a standard text such as Chaikin and Lubensky (p. 341).

Phase Transitions and Collective Phenomena



4

3. ∗∗ Optional Question on Continuous Spin Systems Near Two-Dimensions: The aim
of this problem is to employ Wilson’s perturbative renormalisation group, to obtain
the ε = d− 2 expansion of the n-component non-linear σ-model

Z =

∫
DS(x)δ

(
S2(x)− 1

)
exp

[
−K

2

∫
dx (∇S)2

]
.

In the vicinity of the transition temperature, it is convenient to expand the spin de-
grees of freedom around the (arbitrary) direction of spontaneous symmetry breaking,
S0(x) = (0, · · · 0, 1),

S(x) = (Π1(x), · · ·Πn−1(x), σ(x)) ≡ (Π(x), σ(x)) ,

where σ(x) = (1− Π2)1/2.

(i) Substituting this expression, and expanding σ in powers of Π, show that the
Hamiltonian takes the form

βH =
K

2

∫
dx

[
(∇Π)2 +

1

2

(
∇Π2

)2
+ · · ·

]
.

(ii) Treating this expansion to quadratic order, show that the lower critical dimen-
sion is 2.

(iii) Taking σ > 0, and using the expression (true when σ > 0)

δ
(
Π2 + σ2 − 1

)
=

1

2(1− Π2)1/2
δ
(
σ − (1− Π2)1/2

)
,

show that the partition function can be written in the form

Z =

∫
DΠ(x) exp

[
−ρ

2

∫
dx ln(1− Π2)

]
× exp

{
−K

2

∫
dx
[
(∇Π)2 +

(
∇(1− Π2)1/2

)2
]}

,

where ρ ≡ (N/V ) =
∫ Λ

0
(dq) denotes the density of states.

(iv) Polyakov’s Perturbative Renormalisation Group: Expanding the Hamiltonian
perturbatively in Π, show that K〈Π2〉 ∼ O(1), K(∇Π2)2 ∼ O(K−1), and ρΠ2 ∼
O(K−1).

This suggests that we define

βH0 =
K

2

∫
dx (∇Π)2 ,

as the unperturbed Hamiltonian and treat

U =
K

2

∫
dx (Π · ∇Π)2 − ρ

2

∫
dxΠ2,
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as a perturbation.

(v) Expand the interaction in terms of the Fourier modes and obtain an expression
for the propagator 〈Πα(q1)Πβ(q2)〉0. Sketch a diagrammatic representation of the
components of the perturbation.

(vi) Perturbative Renormalisation Group: Applying the perturbative RG procedure,
and integrating out the fast degrees of freedom, show that the partition function
takes the form

Z =

∫
DΠ<e

−δf0
b−βH0[Π<]−ln〈e−U [Π<,Π>]〉>

0 ,

where δf 0
b represents some constant.

(vii) Expanding to first order, identify and obtain an expression for the two diagrams
that contribute towards a renormalisation of the coupling constants. (Others either
vanish or give a constant contribution.) [Note: the density of states is given by

ρ = (N/V ) =
∫ Λ

0
(dq) = bd

∫ Λ/b

0
(dq).] As a result, show that the renormalised

Hamiltonian takes the form

−βH[Π<] = δf 0
b + δf 1

b −
K̃

2

∫ Λ/b

0

dx(∇Π<)2 +
ρ

2
b−d
∫ Λ/b

0

dx|Π<|2

−K
2

∫ Λ/b

0

dx (Π<α∇Π<α)2 +O(K−2),

where K̃ = K(1 + Id(b)/K) and δf 0
b , δf 1

b are constants. Specify the function Id(b).

(viii) Applying the rescaling x′ = x/b and renormalising the spins,

S′ =
S

ζ
, Π< = ζΠ′,

obtain an expression for the renormalised coupling constant K ′.

To determine ζ, it is necessary to evaluate the average of the renormalised spin
〈S〉0 = 〈(Π<1 + Π>1, · · · (1− Π2

< − Π2
>)1/2)〉0. Expanding, we find

〈S〉>0 =
(
Π<1, · · · , 1− Π2

</2−
〈
Π2
>

〉
/2
)

≈
(
1−

〈
Π2
>

〉
/2
) (

Π<1, · · · , 1− Π2
</2
)

= ζS′

From this expression, show that ζ = 1− (n− 1)Id(b)/2K.

(ix) Using the expression for K ′ and ζ, show that the differential recursion relation
takes the form

dK

d`
= (d− 2)K − (n− 2)KdΛ

d−2,
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where b = e`. Setting the temperature T = K−1, obtain the recursion relation
dT/d` and confirm that the fixed point is given by

T ∗ =
d− 2

(n− 2)KdΛd−2
=

2πε

(n− 2)
+O(ε2),

where d = 2+ ε. Sketch the RG flow diagram for d > 2, d = 2 and d < 2, for various
values of n.

(x) Linearising the RG flow in the vicinity of the fixed point, obtain the thermal
exponent yt to leading order in ε. Using this result, obtain the correlation length
exponent ν = 1/yt.

(xi) Adding a term −
∫
dxh · S show that the magnetic exponent takes the form

yh = 2 +
n− 3

2(n− 2)
ε+O(ε2).

(xii) Using an exponent identity, obtain the critical exponent γ. Setting d = 3 and
n = 3, how does this estimate compare to the best estimate of 1.38.
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