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Problem Set I

Lent 2023

Questions on Ginzburg-Landau Theory

Discontinuous Transitions: In lectures we focussed on the study of Landau theory of
second order phase transitions in which the order parameter goes to zero continuously.
When the order parameter vanishes discontinuously, the transition is said to be first order.
Amongst those first order transitions most commonly encountered in Landau theory there
includes the following model:

——————————————–

1. Tricritical Point: In class we examined the Ginzburg-Landau Hamiltonian

βH =

∫
dx

[
t

2
m2 + um4 + vm6 +

K

2
(∇m)2 − h ·m

]
,

with u > 0 and v = 0. If u < 0, then a positive v is necessary to ensure stability.

(a) By sketching the free energy F (m) for various values of t, show that there is a
first order transition for u < 0 and h = 0.

(b) Calculate t̄ and the discontinuity in m̄ at the transition.

(c) For h = 0 and v > 0 plot the phase boundary in the (u, t) plane, identifying the
phases, and the order of the phase transitions.

(d) The special point u = t = 0, separating first and second order phase boundaries,
is called a tricritical point. For u = 0 calculate the exponents α, β, γ, and δ. (A
discussion of the tricritical point and multi-critical points in general can be found
on p. 172 in Chaikin and Lubensky — although you should attempt to complete
the question yourself before resorting to the text!)

[Recall: C ∼ t−α; m̄ ∼ tβ; χ ∼ t−γ; and m̄ ∼ h1/δ.]

——————————————–

Fluctuations: The final set of questions on the problem set are concerned with
studying the fluctuation corrections to the mean-field.

——————————————–

2. Following on from the previous question, taking the Ginzburg-Landau Hamiltonian
from above with u = 0:

(a) Calculate the heat capacity singularity as t→ 0 using the saddle-point approx-
imation.
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(b) Setting

m(x) = (m̄+ φl(x))êl +
n∑

α=2

φαt (x)êα,

expand βH to quadratic order in longitudinal and transverse fluctuations φ.

(c) Following the Fourier analysis developed in the lectures, and making use of
the integral identity below, obtain an estimate for the longitudinal and transverse
correlation functions 〈φl,t(x)φl,t(0)〉.
(d) Taking into account the leading contribution from fluctuations obtain the first
correction to the saddle-point free energy.

(e) From this result, obtain the leading fluctuation corrections to the heat capacity.

(f) By comparing the results from parts (a) and (e) obtain the Ginzburg criterion
for mean-field theory to apply, and show that, for the tricritical point, the upper
critical dimension du = 3.

(g) A generalised multi-critical point is described by replacing the term vm6 with
u2nm

2n. Using only power counting arguments, show that the upper critical dimen-
sion of the multi-critical point is du = 2n/(n− 1).−∫ dq

(2π)d
eiq·x

q2 + ξ−2
'


|x|2−d

(2− d)Sd
|x| � ξ,

ξ(3−d)/2

(2− d)Sd|x|(d−1)/2
exp(−|x|/ξ) |x| � ξ.


——————————————–

3. Spin Waves: In the XY-model of magnetism, a unit two-component vector S =
(Sx, Sy) (with S2 = 1), is placed on each site of a d-dimensional lattice. There is an
interaction that tends to keep nearest neighbours parallel, i.e. a Hamiltonian

βH = −K
∑
〈ij〉

Si · Sj.

[The notation
∑
〈ij〉 is conventionally used to indicate a sum over all nearest neigh-

bour pairs (i, j).]

(a) Rewrite the partition function

Z =

∫ ∏
i

dSi exp[−βH]

as an integral over the set of angles {θi} between the spins {Si} and some arbitrary
axis.

(b) At low temperatures (i.e. K � 1), the angles {θi} vary slowly from site to site.
In this case expand βH to obtain a quadratic expansion in {θi}.
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(c) For d = 1 consider L sites with periodic boundary conditions (i.e. forming a
chain). Find the normal (spin-wave) modes θq that diagonalise the quadratic form
(by Fourier transformation), and show that the corresponding eigenvalue spectrum,
the dispersion relation, is given by K(q) = 2K(1−cos q). [Hint: Compare this result
to the phonon dispersion curve obtained from a weakly coupled chain of oscillators
— the phonon modes of a lattice.]

(d) Generalise the results from (c) to a d-dimensional simple cubic lattice with
periodic boundary conditions.

(e) Obtain an estimate of the contribution of these modes to the free energy in the
form of an integral. (Evaluate the classical partition function, i.e. do not quantise
the modes.) Without performing the integration explicitly (i.e. by examining the
temperature dependence alone), determine the contribution of these modes to the
specific heat. Show that, at high temperatures, this result is in accord with the
equipartition theorem.

(f) Find an expression for 〈S0 ·Sx〉 = Re 〈exp[i(θx− θ0)]〉 in the form of an integral.
Convince yourself that for |x| → ∞, only q→ 0 modes contribute appreciably to this
expression, and hence obtain an expression for the asymptotic limit in dimensions
1, 2, and 3. [Hint: Note that this calculation is simply the discrete analogue of the
continuum calculation made in the text.]

Problems on Scaling and the Renormalisation Group

The problems below are designed to develop some of the ideas concerning scaling and the
renormalisation group introduced in lectures.

Although it was not discussed in lectures, the first (and in some sense the easiest)
application of the Renormalisation Group was to a lattice spin Hamiltonian. The first
problem in this section goes, step by step, through the RG transformation for the one-
dimensional Ising model (where in fact the RG is exact). If you get lost refer to e.g. Chaikin
and Lubensky, section 5.6 p. 242.

1. The Migdal-Kadanoff Method: The partition function for the one-dimensional fer-
romagnetic Ising model with nearest neighbour interaction is given by

Z =
∑
{σi=±1}

e−βH[σi], βH = −
∑
〈ij〉

[
Jσiσj +

h

2
(σi + σj) + g

]
,

where 〈ij〉 denotes the sum over neighbouring lattice sites. The Migdal-Kadanoff
scheme involves an RG procedure which, by eliminating a certain fraction of the
spins from the partition sum, reduces the number of degrees of freedom by a factor
of b. Their removal induces an effective interaction of the remaining spins which
renormalises the coefficients in the effective Hamiltonian. The precise choice of
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transformation is guided by the simplicity of the resulting RG. For b = 2 (known as
decimation) a natural choice is to eliminate (say) the even numbered spins.

(a) By applying this procedure, show that the partition function is determined by
a renormalised Hamiltonian involving spins at odd numbered sites σ′i,

Z =
∑
{σ′

i=±1}

e−βH
′[σ′

i],

where the Hamiltonian βH ′ has the same form as the original but with renormalised
interactions determined by the equation

exp

[
J ′σ′1σ

′
2 +

h′

2
(σ′1 + σ′2) + g′

]
=

∑
s=±1

exp

[
Js (σ′1 + σ′2) +

h

2
(σ′1 + σ′2) + hs+ 2g

]
.

(b) Substituting different values for σ′1 and σ′2 obtain the relationship between the
renormalised coefficients and the original. Show that the recursion relations take
the general form

g′ = 2g + δg(J, h),

h′ = h+ δh(J, h),

J ′ = J ′(J, h).

(c) For h = 0 check that no term h′ is generated from the renormalisation (as is
clear from symmetry). In this case, show that

J ′ =
1

2
ln cosh(2J).

Show that this implies a stable (infinite T ) fixed point at J = 0 and an unstable
(zero T ) fixed point at J =∞. Any finite interaction renormalises to zero indicating
that the one-dimensional chain is always disordered at sufficiently long length scales.

(d) Linearising (in the exponentials) the recursion relations around the unstable
fixed point, show that

e−J
′
=
√

2e−J , h′ = 2h.

(e) Regarding e−J and h as scaling fields, show that in the vicinity of the fixed point
the correlation length satisfies the homogeneous form (b = 2)

ξ(e−J , h) = 2ξ(
√

2e−J , 2h)

= 2`ξ(2`/2e−J , 2`h).
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Note that choosing 2`/2e−J = 1 we obtain the scaling form

ξ(e−J , h) = e2Jgξ(he
2J).

The correlation length diverges on approaching T = 0 for h = 0. However, its diver-
gence is not a power law of temperature. Thus there is an ambiguity in identifying
the exponent ν related to the choice of measure in the vicinity of T = 0 (1/J or
e−J). The hyperscaling assumption states that the singular part of the free energy
in d-dimensions is proportional to ξ−d. Hence we expect

fsing.(J, h) ∝ ξ−1 = e−2Jgf (he
2J).

At zero field, the magnetisation is always zero, while the susceptibility behaves as

χ(J) ∼ ∂2f

∂h2

∣∣∣
h=0
∼ e2J .

On approaching T = 0, the divergence of the susceptibility is proportional to that
of the correlation length. Using the general form 〈σiσi+x〉 ∼ e−x/ξ/xd−2+η and
χ ∼

∫
dx〈σ0σx〉c ∼ ξ2−η we conclude η = 1.

[The results of the RG are confirmed by exact calculation using the so-called transfer
matrix method.]

——————————————–

2. The Lifshitz Point: (see Chaikin and Lubensky, p. 184) A number of materials, such
as liquid crystals, are highly anisotropic and behave differently along directions
parallel and perpendicular to some axis. An example is provided below. The d
spatial dimensions are grouped into one parallel direction, x‖ and d−1 perpendicular
directions, x⊥. Consider a one-component field m subject to the Hamiltonian

βH = βH0 + U,

βH0 =

∫
dx‖

∫
dx⊥

[
K

2
(∇‖m)2 +

L

2
(∇2
⊥m)2 +

t

2
m2 − hm

]
,

U = u

∫
dx‖

∫
dx⊥m

4.

A Hamiltonian of this kind is realised in the theory of fluctuations in stacked fluid
membranes — the smectic liquid crystal. [Note that βH depends on the first gra-
dient in the x‖ direction, and on the second gradient in the x⊥ directions.]

(a) Write βH0 in terms of the Fourier transforms m(q‖,q⊥).

(b) Construct a renormalisation group transformation for βH0 by rescaling distances
such that q′‖ = bq‖, q

′
⊥ = cq⊥, and the field m′ = m/z.

(c) Choose c and z such that K ′ = K and L′ = L. At the resulting fixed point
calculate the eigenvalues yt and yh.
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(d) Write down the relationship between the free energies f(t, h) and f(t′, h′) in
the original and rescaled problems. Hence write the unperturbed free energy in the
homogeneous form

f(t, h) = t2−αgf (h/t
∆),

and identify the exponents α and ∆.

(e) How does the unperturbed zero-field susceptibility χ(t, 0) diverge as t→ 0?

In the remainder of this problem set h = 0, and treat U as a perturbation.

(f) In the unperturbed Hamiltonian calculate the expectation value 〈m(q)m(q′)〉0,
and the corresponding susceptibility χ(q), where q = (q‖,q⊥).

(g) Write the perturbation U in terms of the Fourier modes m(q).

(h) Obtain the expansion for 〈m(q)m(q′)〉 to first order in U , and reduce the cor-
rection term to a product of two-point expectation values.

(i) Write down the expression for χ(q) in the first order of perturbation theory, and
identify the transition point tc at first order in u. [Do not evaluate the integral
explicitly.]

(j) Using RG, or any other method, find the upper critical dimension du for validity
of the Gaussian exponents.
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