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Pyrrhic victories of Theories of Everything
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How can we describe complex physical systems?

. e.g. molecules in a liquid? electrons in solid? spins on a lattice?

Microscopic
↓

Microstates
{pi, qi}, {σi}

↓
Microscopic Hamiltonian

(Classical/Quantum)
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How can we describe complex physical systems?

. e.g. molecules in a liquid? electrons in solid? spins on a lattice?

Microscopic ←→ Macroscopic
↓ ↓

Microstates Macrostate fns.
{pi, qi}, {σi} P , V , T , S, E

↓ ↓
Microscopic Hamiltonian Laws of

(Classical/Quantum) Thermodynamics
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How can we describe complex physical systems?

. e.g. molecules in a liquid? electrons in solid? spins on a lattice?

Microscopic ←→ Macroscopic
↓ ↓

Microstates Macrostate fns.
{pi, qi}, {σi} P , V , T , S, E

↓ ↓
Microscopic Hamiltonian Laws of

(Classical/Quantum) Thermodynamics

Connection provided by Statistical Mechanics:

. Partition function Z =
∑
{µ}

e−βH[{µ}], P ({µ}) = e−H[{µ}]/kBT

Z
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“More is Different”

. Non-interacting system: Z = Z1Z2 · · · ZN→∞,→ Ideal Gas Laws

. Interactions: singularities in Z
→ Phase transitions to new phases of matter...

classical media solid-liquid-gas, etc.
‘soft’ matter liquid crystals, etc.
‘quantum’ matter superconductivity,

magnetism, etc.
high energy astrophysics baryogenesis, etc.

Transitions signalled by symmetry breaking

→ low-energy collective excitations (e.g. phonons, spin-waves, etc.)
and Universality
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Broken Symmetry

. Phonons are independent of the type of bonds!

. Effective theories are not sensitive to details of the microscopic laws.

. Conversely, inference of high energy atomic bonding and microscopics are
impossible using low energy sound waves.
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Phase Transitions
. Two important classes, cf. phase diagram of classical Ising Ferromagnet

H = −J
∑
〈ij〉

σiσj +HextM, M =
∑
i

σi

Tc

M

H

T

1

2

1. First order: Discontinuous change of ‘order parameter’ M

2. Second order: order parameter grows continuously
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Nature of Critical Point?
. In quantum/classical statistical mechanics

continuous phase transitions play very special role... why?

Consider the correlation length ξ?...

L ξ

...length scale over which fluctuations are correlated.

. At critical point Tc, correlation length ξ diverges...

ξ ∼ |t|−ν, t =
T − Tc
Tc

...and thermodynamic properties become singular.
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Example: Ising model

H = −J
∑
〈ij〉

σiσj

Tc

M

H

T

1

2

β = 1
kBT

= 0.2 β = 0.21 β = 0.219
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Consequences
. Universality: since ξ →∞, microscopic scales become redundant at Tc!

. Scaling and self-similarity: Since there is no characteristic length scale at
the critical point, correlation functions become scale invariant.

motivates “coarse-grained” theory based on only fundamental
symmetries (rotation, translation, etc.) — Ginzburg-Landau phenomenology
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Aim of course

to motivate, develop, & analyse critical phenomena
in framework of Ginzburg-Landau phenomenology

Approaches: mean-field theory
broken symmetry & fluctuations
scaling theory
field theory & renormalisation group

N.B. with connection to QFT
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Example: Classical Ising Ferromagnet

. Microscopic Hamiltonian

H = −J
∑
〈ij〉

σiσj

. Coarse-grained order parameter :

local magnetisation m(ri) =
1

Rd

∑
|rj−ri|<R

σj

. Ginzburg-Landau phenomenology:

βH =

∫
ddr

[
t

2
m2 +

K

2
(∇m)2 + um4 + · · ·

]
, Z =

∫
Dm(r)e−βH

...compatible with symmetries
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Phenomenology

. Phase transition (in dimensions d > 1) to ferromagnet at t = 0

. Spontaneous symmetry breaking:{
〈m〉T = 0 t > 0
〈m〉T ∼ |t|β t < 0

, i.e. t =
T − Tc
Tc

. Critical phenomena: ξ ∼ |t|−ν, ∂m∂h ∼ |t|
−γ, etc.;

at Tc, 〈m(r)m(0)〉T ∼ |r|−(d−2+η)

. Ising Universality class:

includes uniaxial ferro- and antiferromagnet, liquid-gas,
Mott-Hubbard metal-insulator transition, etc.
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. Liquid-gas transition

Tc

M

H

T

1

2
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Critical Opalescence

T > Tc T ' Tc

T < Tc T � Tc

. Hexane and Methanol mixture through critical point
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. Mott-Hubbard metal-insulator transition

Tc

M

H

T

1

2
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Critical exponents

. V2O3 Metal-Insulator transition
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Example: Classical XY-Ferromagnet

. Microscopic Hamiltonian

H = −J
∑
〈ij〉

Si · Sj, Si = (cos θi, sin θi)

. Order parameter: local magnetisation m(ri) =
1

Rd

∑
|rj−ri|<R

Sj

. Ginzburg-Landau phenomenology

βH =

∫
ddr

[
t

2
m2 +

K

2
(∇m)2 + u(m ·m)2 + · · ·

]
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Phenomenology

. Phase transition (in dimensions d > 2) to ferromagnet at t = 0

. Spontaneous symmetry breaking:{
〈m〉T = 0 t > 0
〈m〉T ∼ |t|β t < 0

, ξ ∼ |t|−ν

. Low-energy collective fluctuations — spin-waves

. Vortex configurations
→ topological phase transition in d = 2

. XY Universality Class

includes superconductors and superfluids,
melting in two-dimensions, etc.
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e.g. Vortices in atomic superfluid
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e.g. disclinations in a liquid crystal
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Phase Transitions and Collective Phenomena

. Synopsis

. What’s missing?

Non-equilibrium, experimental justification, applications outside
condensed matter (e.g. HEP, biology,. . . )

. Prerequistes?

Statistical Mechanics; Functional methods (useful, but not assumed)

. Lecture notes (www), problem sets and supervisions

. Books
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Synopsis
. Introduction to Critical Phenomena: Concept of Phase Transitions; Order

Parameters; Response Functions; Universality. [1]

. Ginzburg-Landau Theory: Mean-Field Theory; Critical Exponents; Symmetry

Breaking, Goldstone Modes, and the Lower Critical Dimension; Fluctuations and the

Upper Critical Dimension; Importance of Correlation Functions; Ginzburg Criterion. [3]

. Scaling: Self-Similarity; The Scaling Hypothesis; Kadanoff’s Heuristic

Renormalisation Group (RG); Gaussian Model; Fixed Points and Critical Exponent

Identities; Wilson’s Momentum Space RG; Relevant, Irrelevant and Marginal

Parameters; †ε-expansions. [4]

. Topological Phase Transitions: Continuous Spins and the Non-linear σ-model;

XY-model; Algebraic Order; Topological defects, Confinement, the Kosterlitz-Thouless

Transition and †Superfluidity in Thin Films. [2]

. Quantum Phase Transitions: Classical/Quantum Mapping; the Dynamical

Exponent; Quantum Rotors; †Haldane Gap; †Asymptotic Freedom; †Quantum

Criticality. [2]
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Phase Transitions and Collective Phenomena

. Synopsis

. Prerequistes?

Statistical Mechanics; Functional methods (useful, but not assumed)

. Lectures — Moodle

. Lecture notes (www) & problem sets

. Supervisions

. Books

Anson Cheung
Email: achc2@cam.ac.uk
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