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Background: simulation of
extended systems

e Quantum Monte Carlo simulations are lim-
ited to thousands of electrons - not enough
to simulate a bulk system

e [ he use of a supercell with periodic bound-
ary conditions is required

e [ his leads to finite-size errors
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Coulomb energy in supercell simulations

e T wo categories of finite-size error have been
identified in earlier work:

— Independent-particle
— Coulomb

e Independent-particle finite-size errors exist
because the smooth density of states of

a bulk material is replaced with a set of
discrete points

e They may also be thought of as k-point
sampling errors



Coulomb finite-size errors

e T0 evaluate the energy during a simulation,
It is necessary to know the potential due to
an infinite lattice of charges

e Direct summation of potentials does not
work - the sum is only conditionally con-
vergent

e [ his problem was traditionally solved by
using the Ewald sum, which gives the pe-
riodic solution to Poisson’s equation



The quasi-2D Ewald sum

e The aim is to evaluate the potential due
to the charge distribution

p(r) = Y 6(r —R)
R

where R is a 2D lattice vector

e The 3D Ewald method is to rewrite the
charge distribution so that it consists of
a smooth part (which will be evaluated in
reciprocal space) and a strongly-localized
part (which will be evaluated in real space)

e T his becomes slightly more complicated for
quasi-2D systems




e [ he density is split up into three parts:
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e [ he resultant potential has the form

UE(r) — Z fl(raRa 0)+Z f2(r7 k7 O')—I—f3(Z)
R k

e The parameter o determines the rate of
convergence of the two sums



Motivation for an alternative
quasi-2D interaction

e In 3D, the Model Periodic Coulomb inter-
action was very successful - finite-size er-
rors and calculation time were reduced sig-
nificantly

e Recent studies (using non-QMC methods)
of the quasi-2D electron gas gave results
for the surface energy in disagreement with
those obtained using QMC

e Possible sources of error in these QMC cal-
culations should be investigated to estab-
lish the validity of QMC as a tool for study-
ing extended quasi-2D systems



Where does the Ewald interaction
go wrong?

e Consider what happens when an electron
wanders far from the surface:
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e Result of using the Ewald interaction:
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e [ he electron interacts with an unphysical
capacitor-like array of charge



The Coulomb energy

e Definitions:
— The Ewald interaction is vg

— The self-interaction energy is

£ = lim (vE(r) _ %)

r—0

— There are N electrons (charge 1) posi-
tioned at r;

— The background charges g, (nuclei?) are
positioned at dg

e T he Coulomb energy operator is then
1
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e T he electron-electron part of the Coulomb
energy is

1
Us'e = <ZUE(rij)>+§N§
i>j

e In terms of the one-electron density matrix
n(r) and the exchange-correlation functional
nxc(r,r’"), this becomes

UE—Vg = Una + U)%gv
with

Ups = % /dr dr’ n(r)n(rve(r — ')

1
UEW — > /dr dr’ n(r)nxc (r, ) [ve(r — ') — €]
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The problem with the Ewald sum

e vg IS the right interaction in Uy, but the
interaction between electron and XC hole
should be exactly 1/r

e This is because the XC hole is always con-
tained entirely within the simulation cell
and should not be duplicated outside

e [ hesolution is to replace the original electron-
electron interaction energy with

UMRE = (3 f(rij))
i>7

+ (32 Jarn() o — 1) — 7 —x)])

f(r) is the minimum-image 1/r interaction
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The MPC interaction

Some algebra shows that the new interac-
tion has

— vg In the Hartree energy \/
— 1/r in the XC energy V4
In addition, it should be considerably faster:

the old interaction required O[N?] calcula-
tions of the costly function vg

In contrast, the only O[N?] term in the
MPC is the simple 1/r

The rest of the interaction is effectively a
one-body potential

12



Evaluating the one-body part

e The one-body term
> % Jdrn(@) el - ) — £ 1)

is evaluated as

QY > nfggetTi
1k

e 1 and gy are the 3D Fourier transforms of

n(r) and [vg(r) — f(r)]

e T his brings a big speed advantage - most
of the work is now in the pre-calculation

e T hereis a small subtlety - overlapping must
be avoided
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The test system

An electron gas moves in the potential of
a positive background

The background charge has uniform den-
Sity over a finite range in the z-direction

The number of electrons in the simulation
determines the (2D) size of the simulation
cell, which is charge neutral

Density is given by r¢ = 2.07, slab width
18.63 a.u.

)N
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Results from VMC

0.035

— Ewald
— MPC

0.034 - —

0.033— —

0.032 - —

Energy per electron (hartree)

0.031 —

0.03 . | . | . | . |
0 500 1000 1500 2000

Number of electronsin simulation cell

e T he VMC calculations were carried out us-
ing CASINO with wave functions generated
by density-functional methods in the LDA

e Independent-particle finite-size error correc-
tions have been applied
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Timing results
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e T he timings were based on an 8000-move
VMC simulation

e The time for the MPC pre-calculation is
not included - for any serious simulation
this is negligible
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Why does the MPC appear not
to reduce finite-size errors?

e [ he error expected to be incurred by the
use of the Ewald sum is

. [dr de' n(o)mxc (e, ) ol — ') — € — f(r — 1]

e An estimate of this error may be obtained
by expanding (vg(r) — &) for small r, since
nxc(r,r’) is expected to be short-ranged

e [ he expansion gives
2
_ 1 C (> 7
ve(r) —§ = ; L3<Z BY

to order r4, where C = 45(3/2)¢(3/2) and
L is the lattice parameter; terms involving
e~L?/7% have also been neglected
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It is interesting to compare this with the
situation in 3D, where the expansion is

1 27r2
[ve(r) —¢lsp = —— 37;3

In 3D the correction to 1/r is spherically-
symmetric

The resulting error estimate for the 3D in-
teraction is

—=73 /dr dr’ n(t)nxe(r, r)[(r — 1')?]

For the quasi-2D interaction, this becomes

-3 /drdr n(r)nxc(r, ') [(z — 2

- 1“102]

2
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e In the quasi-2D version, the expansion in-
dicates that a large cancellation of errors
is expected, as long as nxc(r,r’) does not
depend on the direction of (r —r’)

e For the test system studied here, this is
true in the bulk, but not near the surfaces

e However, near the surfaces the XC hole ex-
pands and the simple O[r?] expansion may
no longer be appropriate - further cancel-
lation of errors is possible
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Conclusions

e The quasi-2D MPC does not significantly
reduce Coulomb finite-size errors

e However, it offers a very large speed im-
provement over the Ewald sum, which makes
it worthwhile to implement

e Do DMC results show the same pattern as
VMC? In other words, does the quality of
the trial wave function matter here?
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