Coulomb finite-size effects in quasi-2D systems

Ben Wood

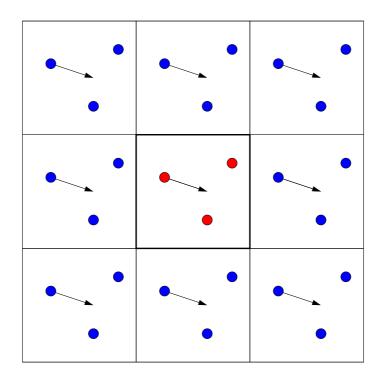
August 19, 2003

Outline

- Background Coulomb interactions and the simulation of extended systems
- Motivation for implementing an alternative quasi-2D interaction
- Results
- More theory and conclusions

Background: simulation of extended systems

- Quantum Monte Carlo simulations are limited to thousands of electrons not enough to simulate a bulk system
- The use of a supercell with periodic boundary conditions is required
- This leads to finite-size errors



Coulomb energy in supercell simulations

- Two categories of finite-size error have been identified in earlier work:
 - Independent-particle
 - Coulomb
- Independent-particle finite-size errors exist because the smooth density of states of a bulk material is replaced with a set of discrete points
- They may also be thought of as k-point sampling errors

Coulomb finite-size errors

- To evaluate the energy during a simulation, it is necessary to know the potential due to an infinite lattice of charges
- Direct summation of potentials does not work - the sum is only conditionally convergent
- This problem was traditionally solved by using the Ewald sum, which gives the periodic solution to Poisson's equation

The quasi-2D Ewald sum

 The aim is to evaluate the potential due to the charge distribution

$$\rho(\mathbf{r}) = \sum_{\mathbf{R}} \delta(\mathbf{r} - \mathbf{R})$$

where R is a 2D lattice vector

- The 3D Ewald method is to rewrite the charge distribution so that it consists of a smooth part (which will be evaluated in reciprocal space) and a strongly-localized part (which will be evaluated in real space)
- This becomes slightly more complicated for quasi-2D systems

• The density is split up into three parts:

$$\rho_{1} = \sum_{R} \left(\delta(\mathbf{r} - R) - \frac{1}{\pi \sqrt{\pi} \sigma^{3}} e^{-(\mathbf{r} - R)^{2} / \sigma^{2}} \right)$$

$$\rho_{2} = \sum_{R} \frac{1}{\pi \sqrt{\pi} \sigma^{3}} e^{-(\mathbf{r} - R)^{2} / \sigma^{2}} - \frac{1}{\sqrt{\pi} \sigma A} e^{-z^{2} / \sigma^{2}}$$

$$\rho_{3} = \frac{1}{\sqrt{\pi} \sigma^{2}} e^{-z^{2} / \sigma^{2}}$$

The resultant potential has the form

$$v_{\mathsf{E}}(\mathbf{r}) = \sum_{\mathbf{R}} f_1(\mathbf{r}, \mathbf{R}, \sigma) + \sum_{\mathbf{k}} f_2(\mathbf{r}, \mathbf{k}, \sigma) + f_3(z)$$

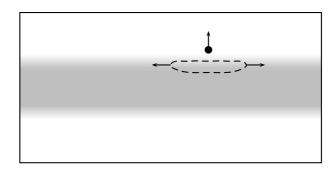
ullet The parameter σ determines the rate of convergence of the two sums

Motivation for an alternative quasi-2D interaction

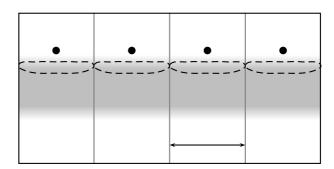
- In 3D, the Model Periodic Coulomb interaction was very successful - finite-size errors and calculation time were reduced significantly
- Recent studies (using non-QMC methods)
 of the quasi-2D electron gas gave results
 for the surface energy in disagreement with
 those obtained using QMC
- Possible sources of error in these QMC calculations should be investigated to establish the validity of QMC as a tool for studying extended quasi-2D systems

Where does the Ewald interaction go wrong?

 Consider what happens when an electron wanders far from the surface:



Result of using the Ewald interaction:



 The electron interacts with an unphysical capacitor-like array of charge

The Coulomb energy

- Definitions:
 - The Ewald interaction is v_{E}
 - The self-interaction energy is

$$\xi = \lim_{\mathbf{r} \to \mathbf{0}} \left(v_{\mathsf{E}}(\mathbf{r}) - \frac{1}{r} \right)$$

- There are N electrons (charge 1) positioned at r_i
- The background charges q_{α} (nuclei?) are positioned at d_{α}
- The Coulomb energy operator is then

$$U_{C} = \sum_{i>j} v_{E}(\mathbf{r}_{ij}) + \frac{1}{2}N\xi + \sum_{i,\alpha} q_{\alpha}v_{E}(\mathbf{r}_{i} - \mathbf{d}_{\alpha}) + \sum_{\alpha>\beta} q_{\alpha}q_{\beta}v_{E}(\mathbf{d}_{\alpha\beta}) + \frac{1}{2}\left(\sum_{\alpha} q_{\alpha}^{2}\right)\xi$$

 The electron-electron part of the Coulomb energy is

$$U_{e-e}^{\text{EW}} = \langle \sum_{i>j} v_{\text{E}}(\mathbf{r}_{ij}) \rangle + \frac{1}{2} N \xi$$

• In terms of the one-electron density matrix $n(\mathbf{r})$ and the exchange-correlation functional $n_{\mathsf{XC}}(\mathbf{r},\mathbf{r}')$, this becomes

$$U_{\rm e-e}^{\rm EW} = U_{\rm Ha} + U_{\rm XC}^{\rm EW}$$

with

$$U_{\mathsf{Ha}} = \frac{1}{2} \int \! \mathrm{d}\mathbf{r} \, \mathrm{d}\mathbf{r}' \, n(\mathbf{r}) n(\mathbf{r}') v_{\mathsf{E}}(\mathbf{r} - \mathbf{r}')$$

$$U_{XC}^{EW} = \frac{1}{2} \int d\mathbf{r} d\mathbf{r}' \, n(\mathbf{r}) n_{XC}(\mathbf{r}, \mathbf{r}') [v_{E}(\mathbf{r} - \mathbf{r}') - \xi]$$

The problem with the Ewald sum

- ullet $v_{\rm E}$ is the right interaction in $U_{\rm Ha}$ but the interaction between electron and XC hole should be exactly 1/r
- This is because the XC hole is always contained entirely within the simulation cell and should not be duplicated outside
- The solution is to replace the original electronelectron interaction energy with

$$U_{e-e}^{MPC} = \langle \sum_{i>j} f(\mathbf{r}_{ij}) \rangle$$

$$+ \langle \sum_{i} \frac{1}{2} \int d\mathbf{r} \, n(\mathbf{r}) \left[v_{E}(\mathbf{r} - \mathbf{r}_{i}) - f(\mathbf{r} - \mathbf{r}_{i}) \right] \rangle$$

 $f(\mathbf{r})$ is the minimum-image 1/r interaction

The MPC interaction

- Some algebra shows that the new interaction has
 - $-v_{\mathsf{E}}$ in the Hartree energy \checkmark
 - -1/r in the XC energy \checkmark
- In addition, it should be considerably faster: the old interaction required $\mathcal{O}[N^2]$ calculations of the costly function v_{E}
- ullet In contrast, the only $\mathcal{O}[N^2]$ term in the MPC is the simple 1/r
- The rest of the interaction is effectively a one-body potential

Evaluating the one-body part

• The one-body term

$$\sum_{i} \frac{1}{2} \int d\mathbf{r} \, n(\mathbf{r}) \left[v_{\mathsf{E}}(\mathbf{r} - \mathbf{r}_{i}) - f(\mathbf{r} - \mathbf{r}_{i}) \right]$$

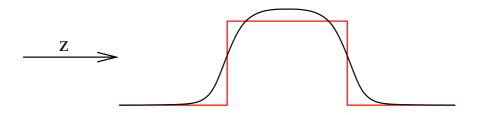
is evaluated as

$$\Omega \sum_{i} \sum_{\mathbf{k}} n_{\mathbf{k}}^{*} g_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{r}_{i}}$$

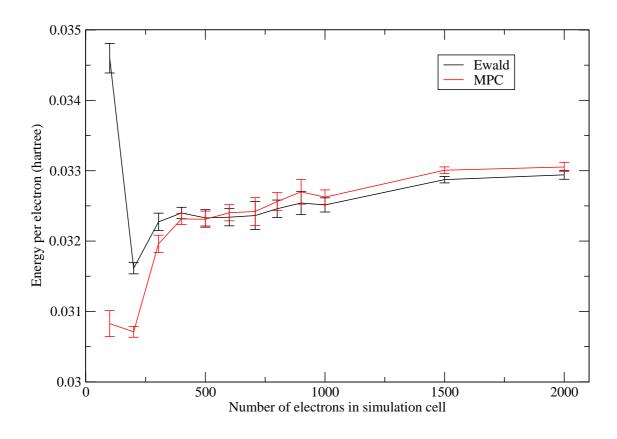
- $n_{\mathbf{k}}$ and $g_{\mathbf{k}}$ are the 3D Fourier transforms of $n(\mathbf{r})$ and $[v_{\mathbf{F}}(\mathbf{r}) f(\mathbf{r})]$
- This brings a big speed advantage most of the work is now in the pre-calculation
- There is a small subtlety overlapping must be avoided

The test system

- An electron gas moves in the potential of a positive background
- ullet The background charge has uniform density over a finite range in the z-direction
- The number of electrons in the simulation determines the (2D) size of the simulation cell, which is charge neutral
- Density is given by $r_s=2.07$, slab width 18.63 a.u.

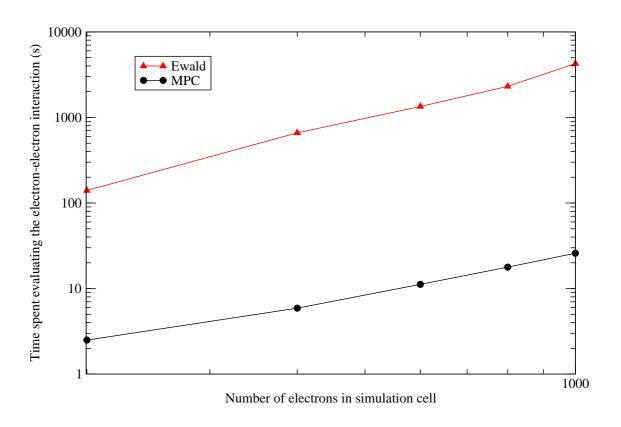


Results from VMC



- The VMC calculations were carried out using CASINO with wave functions generated by density-functional methods in the LDA
- Independent-particle finite-size error corrections have been applied

Timing results



- The timings were based on an 8000-move VMC simulation
- The time for the MPC pre-calculation is not included - for any serious simulation this is negligible

Why does the MPC appear not to reduce finite-size errors?

 The error expected to be incurred by the use of the Ewald sum is

$$\frac{1}{2} \int d\mathbf{r} d\mathbf{r}' \, n(\mathbf{r}) n_{\mathsf{XC}}(\mathbf{r}, \mathbf{r}') [v_{\mathsf{E}}(\mathbf{r} - \mathbf{r}') - \xi - f(\mathbf{r} - \mathbf{r}')]$$

- An estimate of this error may be obtained by expanding $(v_{\mathsf{E}}(\mathbf{r}) \xi)$ for small r, since $n_{\mathsf{XC}}(\mathbf{r},\mathbf{r}')$ is expected to be short-ranged
- The expansion gives

$$v_{\mathsf{E}}(\mathbf{r}) - \xi = \frac{1}{r} - \frac{C}{L^3} \left(z^2 - \frac{r_{\parallel}^2}{2} \right)$$

to order r^4 , where $C=4\beta(3/2)\zeta(3/2)$ and L is the lattice parameter; terms involving e^{-L^2/σ^2} have also been neglected

• It is interesting to compare this with the situation in 3D, where the expansion is

$$[v_{\mathsf{E}}(\mathbf{r}) - \xi]_{\mathsf{3D}} = \frac{1}{r} - \frac{2\pi r^2}{3L^3}$$

- ullet In 3D the correction to 1/r is spherically-symmetric
- The resulting error estimate for the 3D interaction is

$$-\frac{\pi}{3L^3}\int\!\!\mathrm{d}\mathbf{r}\,\mathrm{d}\mathbf{r}'\,n(\mathbf{r})n_{\mathsf{XC}}(\mathbf{r},\mathbf{r}')[(\mathbf{r}-\mathbf{r}')^2]$$

• For the quasi-2D interaction, this becomes

$$-\frac{C}{2L^3} \int d\mathbf{r} d\mathbf{r}' \, n(\mathbf{r}) n_{\mathsf{XC}}(\mathbf{r}, \mathbf{r}') \left[(z - z')^2 - \frac{(\mathbf{r}_{\parallel} - \mathbf{r}'_{\parallel})^2}{2} \right]$$

- In the quasi-2D version, the expansion indicates that a large cancellation of errors is expected, as long as $n_{\rm XC}({\bf r},{\bf r}')$ does not depend on the direction of $({\bf r}-{\bf r}')$
- For the test system studied here, this is true in the bulk, but not near the surfaces
- ullet However, near the surfaces the XC hole expands and the simple $\mathcal{O}[r^2]$ expansion may no longer be appropriate further cancellation of errors is possible

Conclusions

- The quasi-2D MPC does not significantly reduce Coulomb finite-size errors
- However, it offers a very large speed improvement over the Ewald sum, which makes it worthwhile to implement
- Do DMC results show the same pattern as VMC? In other words, does the quality of the trial wave function matter here?