
March 5, 2021 8:54 IJAIT S0218213021500081 page 1

International Journal on Artificial Intelligence Tools

Vol. 30, No. 2 (2021) 2150008 (13 pages)
© World Scientific Publishing Company

DOI: 10.1142/S0218213021500081

Hyperparameter-free Regularization by Sampling from

an Infinite Space of Neural Networks

Thomas M. Whitehead

Intellegens Ltd., Eagle Labs, Chesterton Road, Cambridge, CB4 3AZ, United Kingdom

tom@intellegens.ai

Received 2 October 2020

Accepted 15 December 2020
Published 26 March 2021

Stochastic activation functions, where the output of an activation function is a hyper-

parameter-free random function of the inputs, generalize the concept of dropout to sam-
pling from an infinitely large space of related networks. Stochastic activation functions

provide intrinsic regularization and sparsification of artificial neural networks, along

with cheap and accurate estimates of the uncertainty in the predictions from a network.
Examples are presented against standard benchmarking datasets.

Keywords: Artificial neural networks; activation functions; regularization; dropout; un-

certainty quantification.

1. Introduction

In recent years deep neural networks have revolutionized the field of machine learn-

ing, enabling computers to compete with, and in many cases exceed, humans at

tasks as diverse as speech recognition,1 semantic image recognition,2 and the play-

ing of complex strategy games.3 The depth, and success, of these artificial neural

networks comes from the layering of multiple steps of data abstraction and process-

ing together into one adaptable model. When even one (sufficiently large) layer is

capable of representing any functional form,4 these multi-layer networks have the

potential to flexibly extract and process compound structures from their training

data.

However, this very flexibility can prove a hindrance in the pursuit of a general-

izable model that is capable of extrapolating beyond its training data. The problem

of a neural network “overfitting” to its training data, capturing the random noise

as well as signal, has had many proposed solutions over the years, ranging from

the penalizing of overly complex models,5 through efficiently sampling from a large

class of possible models,6 to the augmentation of the training data itself.7 In this

paper we discuss a generalization of the “dropout” method of Ref. 6 that involves

2150008-1

https://dx.doi.org/10.1142/S0218213021500081

March 3, 2021 12:20 IJAIT S0218213021500081 page 2

T. M. Whitehead

sampling from an infinitely, rather than exponentially, large space of connected

neural network architectures.

Non-linear activation functions are at the core of the flexibility of neural net-

works. These functions combine features of the input data, or earlier layers of ab-

straction, to create representations of the data that can be efficiently extracted

and classified. Activation functions in a hidden layer generally take the form

f(Wijxj + bi) with inputs xj , where summation is implicit over the repeated in-

dex j and the activation function f is applied elementwise to the resulting vector.

Wij and bi, the weights and biases of the hidden layer’s nodes, are optimizable

parameters, which if f is differentiable are generally optimized by same variant of

backpropagation.8

Common classes of activation functions include sigmoid functions, such as the

hyperbolic tangent or softsign, and rectifiers, such as the rectified linear unit (ReLU)

and scaled exponential linear unit.9 The ReLU is a particularly popular activation

function10 due to its simplicity, with functional form f(z) = max(0, z), simple

derivative f ′(z) = Θ(z), where the Heaviside function Θ(z) = 1 for z > 0 and

Θ(z) = 0 for z ≤ 0, and lack of saturation: for sigmoid activation functions f ′(z)

becomes small far from the origin, decelerating optimization using gradient-based

methods, whilst the ReLU has constant gradient almost everywhere.

In this paper we describe a stochastic activation function that implements a

sampling from an infinitely large space of neural network architectures. The moti-

vation for this activation function is discussed in Sec. 2, with experimental results

on a variety of standard benchmarking datasets in Sec. 3,a and conclusions in Sec. 4.

2. Stochastic Activation Function

The activation function of interest is a generalization of a standard activation func-

tion, taking the form

sf (z) ≡ f(z)× S, (1)

where f(z) is any standard activation function and S is a random variable with

expected value of unity. The output of the stochastic activation function sf (z)

is then a random variable with the same expected activation as the underlying

function f(z), but with a range dependent on the form of S. In all examples in this

paper f(z) takes a linear or rectified linear form (explicitly, f(z) = z or f(z) =

max(0, z)). Treating this as the cumulative distribution function for the output

value of the activation function, a natural choice is the corresponding probability

density function, S ∼ U(0, 2), where U(0, 2) is the uniform random distribution

between 0 and 2 (which has expected value of unity, as required; the lower limit

of 0 corresponds to maintaining the sign of the underlying activation function).

This choice corresponds to the maximum entropy choice for a multiplicative term

aCode freely available at https://github.com/tangoed2whiskey/StochasticActivationFunction.

2150008-2

https://github.com/tangoed2whiskey/StochasticActivationFunction

March 3, 2021 12:20 IJAIT S0218213021500081 page 3

Regularization by Sampling from an Infinite Space of Neural Networks

that retains the expected value and sign of the underlying activation function. The

explicit form of the stochastic activation function used in this work is then

sf (z) ≡ f(z)× U(0, 2). (2)

When making new predictions the random variable S is generally replaced by its

mean of unity, although retaining it provides access to a measure of uncertainty

quantification (see Sec. 3.3).

The motivation for this activation function is three-fold. First, the injection of

noise into neural networks has long been known to act as a regularizer that mitigates

overfitting.11 However, the noise scale is generally set as an external hyperparame-

ter, independently of the value of the activation function or its argument, with no

a priori understanding of the noise scale. This increases the cost of the training

procedure, as the noise scale needs to be empirically determined along with the

other hyperparameters of the system. With the stochastic activation function, on

the other hand, the scale of the random variation is set by the scale of the inputs

to the activation function. As the underlying activation function has no intrinsic

length scale for linear or ReLU activations, this parameter-free noise scale fits well

with the underlying activation function.

Secondly, the random rescaling of the activation function is equivalent to a

random sampling of the infinitely large set of neural networks that share a common

architecture with weights and biases connected by multiplicative transformations.

This provides an implicit averaging over an infinite ensemble of models, which can

reduce the variance of predictions without impacting the bias.13 In contrast to

standard ensemble-averaging techniques, however, stochastic activation functions

require the training of only one model, rather than training each element of the

ensemble separately.

This is a generalization of the well-established concept of dropout, where the

output of an activation function is multiplied by a normalized Bernoulli random

variable S ∼ B(p), giving

sdropoutf (z) = f(z)× B(p), (3)

where B(p) takes the value 0 with probability 1− p and value 1/p with probability

p, such that the mean activation is preserved.6 The hyperparameter p, the expected

fraction of activities that are retained through dropout, must again be set empir-

ically, and does not depend on the scale of the input or output of the activation

function itself. Dropout efficiently approximates sampling from the exponentially

large set of network architectures that share subsets of nodes, with weights shared

between the networks. This can be viewed as an approximation to a full Bayesian

neural network,6,12 with much reduced computational expense.

The chief differentiators in using a uniform random variable instead of a

Bernoulli random variable (or Gaussian random variable, as also seen in Ref. 6)

are the lack of hyperparameters in the uniform random variable, which removes a

degree of freedom from hyperparameter optimization for increased efficiency, and

2150008-3

March 3, 2021 12:20 IJAIT S0218213021500081 page 4

T. M. Whitehead

the direct interpretability in terms of sampling from an infinite space of network

architectures. Gaussian dropout also samples from an infinite space of connected

network architectures, but using a less intuitive biased sampling, which hinders

interpretability.

The third motivation builds upon the idea of model averaging, as the network

sampling implicit in the stochastic activation functions provides immediate access

to a measure of the uncertainty in the predictions of the artificial neural network

through the variance between the results of the networks in the ensemble. The quan-

tification of uncertainty and confidence in predictions is vital for the application of

artificial neural networks in many areas of science and technology.14–16 Stochastic

activation functions provide access to estimates of the confidence in predictions

without any extra computational expense in training.

Experimental support is given to each of these motivations in the following

Section.

3. Experimental Results

In this Section we provide experimental evidence to support the effectiveness of

the stochastic activation function, in comparisons with standard methods against

publically-available data sets. In Sec. 3.1 we examine how the stochastic activa-

tion function self-regularizes without the need for hyperparameter optimization;

in Sec. 3.2 we identify how the stochastic activation function provides many of

the same benefits as dropout, in terms of regularization but also sparsification of

weights; and in Sec. 3.3 we apply the stochastic activation function to a standard

regression dataset to demonstrate uncertainty quantification.

To aid reproducibility, none of the individual models in this Section took

longer than an hour to train on a quad-core laptop. Code to reproduce the re-

sults of this Section is available online at https://github.com/tangoed2whiskey/

StochasticActivationFunction.

3.1. Hyperparameter-free self-regularization with MNIST

MNIST is a standard optical character recognition dataset, consisting of a training

set of 60 000 greyscale images of handwritten digits between 0 and 9, with associated

labels, and 10 000 test images.17 The aim is to correctly classify the test set images

as one of each of the 10 digits.

We aim to demonstrate the utility of stochastic activation functions by showing

how they reduce the complexity of hyperparameter optimization, whilst still en-

abling accurate model construction. We start with a simple dense neural network

architecture, of 784-800-800-10 nodes, as used in the original dropout manuscript.18

ReLUs were used for the hidden nodes, with linear input and softmax output nodes.

This network has many more degrees of freedom than the number of training images,

and so is susceptible to overfitting. We train the neural network using stochastic

gradient descent, with a fixed learning rate of 0.1, no momentum term, no weight

2150008-4

https://github.com/tangoed2whiskey/StochasticActivationFunction
https://github.com/tangoed2whiskey/StochasticActivationFunction

March 3, 2021 12:20 IJAIT S0218213021500081 page 5

Regularization by Sampling from an Infinite Space of Neural Networks

100

110

120

130

140

150

160

170

180

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
er

 o
f
in

co
rr

ec
tl
y
-c

la
ss

if
ie

d
 i
m

a
ge

s

Dropout retention probability p

No regularization

Dropout on hidden nodes only

Dropout on input nodes,

hidden nodes dropout

p=0.5

Stochastic activation function, no dropout

Fig. 1. Number of incorrectly classified images from the MNIST test set, when using no reg-

ularization (green line), dropout on the hidden nodes only (blue), dropout on both hidden and

input nodes (grey), and the stochastic activation function (orange line). Error bars represent the
standard error in the mean, and where not visible are smaller than the size of the points.

regularization, and a cross-entropy loss: this very simple configuration prevents

confusion between different sources of regularization.

The state-of-the-art for dense neural networks without any form of regulariza-

tion or data augmentation achieves around 160 errors out the 10 000 test images.

Our very simple network, trained for just 250 epochs, achieves an error rate of

169.5(1), averaged over the last 50 epochs of training, which is shown in green in

Fig. 1.

Adding dropout to the hidden nodes of this neural network reduces the number

of incorrectly-classified images, if the dropout rate p is set correctly. For p ≥ 0.2

the dropout network is more accurate than the un-regularized network, with peak

accuracy achieved around p = 0.5. This is shown in blue in Fig. 1. Adding dropout

to the input nodes as well improves the accuracy further: however, p must be set

higher for the input nodes, around p = 0.8: lower values reduce the accuracy relative

to not using dropout at all. In Fig. 1, the grey line shows the effect of including

dropout on the input nodes, with a fixed rate of p = 0.5 for the hidden nodes. We

note that these values of p need to be set empirically, through a hyperparameter

optimization stage, and the resulting accuracy is highly dependent on the value of

p so selected: näıvely setting the dropout rate for the input nodes to the same as

the hidden nodes, p = 0.5, results in worse accuracy than not using dropout for the

input nodes at all.

In contrast, neglecting dropout and simply replacing all the input and hidden

node activation functions in the network with stochastic activation functions gen-

erates just 109.0(6) errors out of the 10 000 test set images, shown in orange in

2150008-5

March 3, 2021 12:20 IJAIT S0218213021500081 page 6

T. M. Whitehead

Fig. 1. The stochastic activation functions were applied in exactly the same way to

the input and hidden nodes, simply multiplying each node output by random num-

bers drawn from identical uniform distributions, and required no hyperparameter

optimization, achieving accuracy with this neural network architecture of better

than a fully-optimized dropout network. This ease of application and competitive

accuracy are key benefits of the proposed stochastic activation function.

Stochastic activation functions may of course be combined with other forms

of regularization, including standard L1/L2 regularization, weight decay, weight

norm clipping, and data augmentation. As both stochastic activation functions and

dropout implement sampling from larger spaces of models, it is not recommended

to combine both methods on the same node.

3.2. Feature simplification with CIFAR-10

CIFAR-10 is a set of 32× 32 color images representing ten classes: airplane, auto-

mobile, bird, cat, deer, dog, frog, horse, ship, and truck. There are 50 000 training

images, with the aim being to correctly classify each of 10 000 test images.19 As

there are obvious similarities and even subjective overlap between classes, this is

a more difficult machine vision task than classifying the MNIST images. To make

progress, we start from a version of the VGG19 convolutional neural network20 with

the convolutional weights pre-trained on ImageNet,21 available through Keras.22 We

freeze these pre-trained layers, remove the top dense, classification layers, and re-

place them with three hidden layers of 256 ReLUs and a final softmax classification

layer which we train on the CIFAR-10 data.

Again this network architecture is susceptible to overfitting. To emphasize the

regularization effects of stochastic activation functions we push the network further

into the overfitting regime with a high initial learning rate of 5 × 10−3 using the

Adam optimizer23 and do not initially use any forms of regularization.

Figure 2 shows the test-set accuracy over the training epochs using the un-

regularized neural network in green. It is apparent that there is significant overfit-

ting occurring, as after initially rising the accuracy drops over the training epochs

before the weights settle into a local optimum with 56.7(4)% of the images cor-

rectly classified. This overfitting behavior may be mitigated by using regularization

techniques: using L1 regularization, adding a penalty term to the magnitude of the

weights, stops the overfitting behavior, shown in blue in Fig. 2, achieving higher ac-

curacy with 58.6(6)% of the images correctly classified, but at the cost of increased

variance in the accuracy of predictions. Here the L1 term coefficient was optimized

over the range 1× 10−5 to 1× 10−3, with final value 5× 10−4.

Dropout also provides regularization; here with p = 0.5 on the unfrozen hidden

nodes and p = 0.8 on the “input” nodes from the convolutional layers, which results

in an accuracy curve that does not overfit, shown in grey in Fig. 2, with an accuracy

of 57.9(3)%. Similarly, replacing all the unfrozen hidden layer nodes with stochastic

activation functions, based on underlying linear units for the “input” nodes and

2150008-6

March 3, 2021 12:20 IJAIT S0218213021500081 page 7

Regularization by Sampling from an Infinite Space of Neural Networks

0.55

0.56

0.57

0.58

0.59

0.60

0.61

0.62

0 50 100 150 200 250

P
er

ce
n
ta

ge
 t

es
t

im
a
ge

s
co

rr
ec

tl
y
 c

la
ss

if
ie

d

Training epoch

No regularization

Stochastic activation function

Dropout

L1 regularization

Fig. 2. Accuracy of predictions on the CIFAR-10 test set as a function of training epoch, showing
the unregularized neural network result in green, a network regularized using dropout in grey, a

network using L1 regularization in blue, and a network that uses stochastic activation functions

in orange.

ReLUs for the hidden nodes, strongly reduces the overfitting of the network, as

shown in orange in Fig. 2, and achieves an accuracy of 58.2(3)%. The reduced

variance in accuracy of predictions from the stochastic activation function relative

to the unregularized network and, especially, the network using L1 regularization

is an important benefit in situations where consistency of results is important,

including for example medical applications.

Importantly, the stochastic activation functions allow the network to train

quicker than dropout, with a steeper initial curve of accuracy in Fig. 2 than either

of the other methods of regularization. With the computational expense of modern

deep learning approaches,24 methods that mitigate against training time, as well

as providing regularization and reduced hyperparameter optimization complexity,

could make a valuable addition to the machine learning toolbox.

One key result of including regularization in a neural network is the sparsifica-

tion of the node activations. This reduces the complexity of the model being learnt,

and enables increases in the efficiency of training and predictions by leveraging

the power of sparse matrix algebra. We demonstrate this sparsification in Fig. 3,

where the mean activations across the test set for each of the 3× 256 = 768 hidden

nodes are plotted. The unregularized network has an average activation of 0.85(3),

compared to 0.163(6) when using dropout and 0.191(7) when using stochastic ac-

tivation functions. This indicates that the stochastic activation functions have had

the effect of reducing the size of the node activations, encouraging the learning of

2150008-7

March 3, 2021 12:20 IJAIT S0218213021500081 page 8

T. M. Whitehead

0

50

100

150

200

250

0 0.5 1 1.5 2 2.5 3

N
u
m

b
er

 o
f
n
od

es

Mean activation

No regularization

>3
0

50

100

150

200

250

0 0.5 1 1.5 2 2.5 3

N
u
m

b
er

 o
f
n
od

es

Mean activation

Dropout

0

50

100

150

200

250

0 0.5 1 1.5 2 2.5 3

N
u
m

b
er

 o
f
n
od

es

Mean activation

L1 regularization681

0

50

100

150

200

250

0 0.5 1 1.5 2 2.5 3

N
u
m

b
er

 o
f
n
od

es

Mean activation

Stochastic activation function

Fig. 3. Histograms of the mean activation over the 768 hidden nodes of the neural networks, with
the result for the unregularized network on the top left, the network using dropout on the top

right, the network using L1 regularization on the bottom left, and the network using stochastic

activation functions on the bottom right.

simpler representations. The sparsification is not as extreme as that imposed by

L1 regularization, where 681 of the 768 hidden nodes have average activation be-

low 0.1, with average activation of only 0.023(3). This level of sparsification may

limit the complexity of the representations that can be learnt by the network, as

indicated by the higher uncertainty in the accuracy on the test set in Fig. 2.

3.3. Uncertainty quantification with Boston housing data

For applicability to domains where confidence in results is vital, including health-

care, pharmaceutical, and financial applications, some measure of the uncertainty

in predictions generated by deep learning methods is vital. Here we examine the

ability of stochastic activation functions to generate accurate estimates of the un-

certainty in the predictions of a neural network, using a public dataset on house

prices in Boston in the late 1970s.25 This widely-used dataset provides 13 feature

variables for each of 506 towns, with the aim being to predict the median value of

the house prices in each town. The average of the median house prices across all

506 towns is around $22 500.

We generated a random holdout test set of 20% of the towns, and trained a

dense neural network with two hidden layers of 800 hidden nodes each on the

remaining 80% of the towns. Using no regularization, and training for 100 epochs,

2150008-8

March 3, 2021 12:20 IJAIT S0218213021500081 page 9

Regularization by Sampling from an Infinite Space of Neural Networks

this network achieved a root mean square deviation in predicted median house

price of around $2600 across the 102 test set towns. We also trained networks using

the same architecture and training method, but including dropout and, separately,

stochastic activation functions on the hidden layers. As the input features are very

information-dense we did not include dropout or stochastic activation functions on

the input nodes.

Both dropout and the stochastic activation functions provided comparable ac-

curacy on the test set to not using any regularization. However, these methods both

provide access to estimates of the confidence in each prediction. This is achieved

by recalling that both methods effectively provide a sampling from a large space of

neural networks, which either share weights (dropout) or architecture (stochastic

activation functions). We generate estimates of the uncertainty in predictions for

each town’s median house price by making 100 predictions for each price, in two

different ways:

Explicitly. We generate 100 random samples of networks, by applying either

dropout or stochastic activation functions at test time as well as train time. The

predicted value is then taken as the mean of these predictions, and the uncertainty

as the standard deviation in them.

Implicitly. We generate one prediction using the networks without dropout or

stochastic activation functions activated at test time (replacing S with 1 in Eq. (1)),

which we use as the predicted value, and then separately take the standard deviation

of 99 other networks with dropout or the stochastic activation functions activated

to provide an uncertainty estimate.

The implicit sampling method might be expected to generate slightly better

mean predictions than the explicit method, because it implicitly samples from a

much larger space of possible networks than the explicit sampling can provide,

although when many explicit samples are taken the results would be expected to

coincide.

We test the accuracy of the uncertainties in the predictions by sorting the pre-

dictions in descending order of their uncertainties, and comparing only those with

the lowest uncertainties against the test set. This procedure focusses on only the

predictions that the neural network expects to be most accurate: the results are

shown in Fig. 4 for a range of different percentages of predictions included. We

note that this procedure does not use any knowledge of the test set to choose which

predictions to include, and hence is perfectly statistically valid.

As we move left in Fig. 4 the number of towns that predictions are made for

decreases: but Fig. 4 also shows that, when using either dropout or stochastic

activation functions, the deviation between true and predicted values reduces as

the least confident predictions are discarded. This indicates that the confidence

estimates are accurate, in the sense of being able to identify the most and least

confident predictions. By the point only a single town’s median house price is being

2150008-9

March 3, 2021 12:20 IJAIT S0218213021500081 page 10

T. M. Whitehead

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100 120

R
oo

t
m

ea
n
 s

q
u
a
re

d
 d

ev
ia

ti
on

 (
$1

00
0)

Percentage of values predicted

Dropout

No

regularization

Stochastic

activation

function

Random forest

Fig. 4. Root mean square deviation in predicted median house price for the towns in the holdout

test set, showing the increase in accuracy as only the most confident predictions are retained. An

unregularized network is shown as a green point, as it does not provide a criterion to choose the
most confident predictions; networks regularized using dropout and stochastic activation units are

shown in grey and orange respectively, with the solid (dashed) lines indicating implicit (explicit)
samples from the space of networks. The blue dashed line shows predictions made using a random

forest algorithm.

predicted, the root mean squared deviation has dropped to a fifth of the deviation

across all towns. The method used for generating the predictions and uncertainties,

implicit or explicit sampling (shown as solid and dashed lines respectively) makes

little difference to the accuracy achieved in this small dataset.

In Fig. 4 we also show predictions made using an ensemble method, a regression

random forest, which explicitly trains a sample of (here 100) decision trees from the

space of possible decision trees on the training data.26,27 This method is designed

for exactly the type of regression problem presented by this dataset and provides

comparable accuracy to the neural networks, including in its selection of the most

confident predictions. However, random forests are not generalizable to problems

such as image or speech recognition, where deep neural networks using dropout or

stochastic activation functions may still provide accurate confidence estimates.

The scale of the standard deviation uncertainties generated by the uncertainty

quantification measures examined here are all approximately consistent with the

predictions being normally distributed around the true values (which would sug-

gest 68% of the predictions should be within one standard deviation of the true

values, for example). These relationships could be made exact by applying confor-

mal prediction to the generated uncertainty estimates,28 but this will not modify

the relative ordering of the predictions when sorted by uncertainty, and hence will

not affect the results of Fig. 4.

2150008-10

March 3, 2021 12:20 IJAIT S0218213021500081 page 11

Regularization by Sampling from an Infinite Space of Neural Networks

4. Conclusions

Stochastic activation functions provide the same benefits as dropout, in terms

of regularization arising from the sampling of a large space of networks, but

are hyperparameter-free and hence provide easier training and interpretation.

Stochastic activation functions have been shown to provide efficient regularization,

sparsification, and uncertainty quantification on a variety of publically-available

benchmark sets.

Stochastic activation functions are applicable to all standard nodes in artificial

neural networks, except where the amplitude of the response is required to be a fixed

number (e.g. skip connections in ResNet, as in Ref. 29). It would also be possible

to extend the application of stochastic activation functions to convolutional and

recurrent layers.

The application of stochastic activation functions beyond linear and ReLU func-

tions is also an avenue for future research: the uniform random sampling defined

in Eq. (2) for stochastic activation functions is well-suited to these linear and

piecewise-linear functions, but other distributions might be more appropriate for

other activation functions. The concept of the activation function as a cumulative

probability distribution might inform the selection of the sampling distribution.

Code implementing the stochastic activation function is freely available online

at https://github.com/tangoed2whiskey/StochasticActivationFunction.

Acknowledgments

I acknowledge the support of my colleagues at Intellegens, particularly Ben Pelle-

grini and Gareth Conduit.

References

1. G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Van-
houcke, P. Nguyen, T. N. Sainath, and B. Kingsbury, Deep neural networks for acous-
tic modeling in speech recognition: The shared views of four research groups, IEEE
Signal Processing Magazine 29(6) (2012a) 82–97, doi:10.1109/MSP.2012.2205597.

2. Y. Guo, Y. Liu, T. Georgiou and M. S. Lew, A review of semantic segmentation using
deep neural networks, International Journal of Multimedia Information Retrieval 7(2)
(2018) 87–93, doi:10.1007/s13735-017-0141-z.

3. D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan and D. Hassabis, A
general reinforcement learning algorithm that masters chess, shogi, and go through
self-play, Science 362(6419) (2018) 1140–1144, doi:10.1126/science.aar6404.

4. G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics
of Control, Signals and Systems 2(4) (1989) 303–314, doi:10.1007/BF02551274.

5. A. Y. Ng, Feature selection, L1 vs. L2 regularization, and rotational invariance, in
Proc. of the Twenty-first Int. Conf. on Machine Learning (ICML ’04) (ACM, New
York, NY, USA, 2004), pp. 78–87, doi:10.1145/1015330.1015435.

6. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, Dropout:
A simple way to prevent neural networks from overfitting, Journal of Machine Learn-
ing Research 15 (2014) 1929–1958, http://jmlr.org/papers/v15/srivastava14a.html.

2150008-11

https://github.com/tangoed2whiskey/StochasticActivationFunction
https://dx.doi.org/10.1109/MSP.2012.2205597
https://dx.doi.org/10.1007/s13735-017-0141-z
https://dx.doi.org/10.1126/science.aar6404
https://dx.doi.org/10.1007/BF02551274
https://dx.doi.org/10.1145/1015330.1015435
http://jmlr.org/papers/v15/srivastava14a.html

March 3, 2021 12:20 IJAIT S0218213021500081 page 12

T. M. Whitehead

7. L. Perez and J. Wang, The effectiveness of data augmentation in image classification
using deep learning, CoRR, abs/1712.04621 (2017), http://arxiv.org/abs/1712.04621.

8. D. E. Rumelhart, G. E. Hinton and R. J. Williams, Learning representations by back-
propagating errors, Nature 323(6088) (1986) 533–536, doi:10.1038/323533a0.

9. G. Klambauer, T. Unterthiner, A. Mayr and S. Hochreiter, Self-normalizing neu-
ral networks, in Advances in Neural Information Processing Systems 30, eds.
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan
and R. Garnett (Curran Associates, Inc., 2017), pp. 971–980, http://papers.nips.cc/
paper/6698-self-normalizing-neural-networks.pdf.

10. V. Nair and G. E. Hinton, Rectified linear units improve restricted Boltzmann ma-
chines, in Proc. of the 27th Int. Conf. on Int. Conf. on Machine Learning (ICML’10)
(Omnipress, USA, 2010), pp. 807–814, http://dl.acm.org/citation.cfm?id=3104322.
3104425.

11. R. M. Zur, Y. Jiang, L. L. Pesce and K. Drukker, Noise injection for training artificial
neural networks: A comparison with weight decay and early stopping, Medical Physics
36(10) (2009) 4810–4818, doi:10.1118/1.3213517.

12. J. Lampinen and A. Vehtari, Bayesian approach for neural networks — Review
and case studies, Neural Networks 14(3) (2001) 257–274, doi:10.1016/S0893-6080(00)
00098-8.

13. U. Naftaly, N. Intrator and D. Horn, Optimal ensemble averaging of neural net-
works, Network: Computation in Neural Systems 8(3) (1997) 283–296, doi:10.1088/
0954-898X 8 3 004.

14. H. M. D. Kabir, A. Khosravi, M. A. Hosen and S. Nahavandi, Neural network-based
uncertainty quantification: A survey of methodologies and applications, IEEE Access
6 (2018) 36218–36234.

15. B. D. Conduit, N. G. Jones, H. J. Stone and G. J. Conduit, Design of a nickel-
base superalloy using a neural network, Materials & Design 131 (2017) 358–365,
doi:10.1016/j.matdes.2017.06.007.

16. T. M. Whitehead, B. W. J. Irwin, P. Hunt, M. D. Segall and G. J. Conduit, Imputation
of assay bioactivity data using deep learning, Journal of Chemical Information and
Modeling 59(3) (2019) 1197–1204, doi:10.1021/acs.jcim.8b00768.

17. Y. LeCun, C. Cortes and C. J. C. Burges, The MNIST database, http://yann.lecun.
com/exdb/mnist/.

18. G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and R. R. Salakhutdinov,
Improving neural networks by preventing co-adaptation of feature detectors, arXiv
e-prints, art. arXiv:1207.0580 (2012b).

19. A. Krizhevsky, Learning multiple layers of features from tiny images, Technical Re-
port, University of Toronto (2009).

20. K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale
image recognition, arXiv e-prints, art. arXiv:1409.1556 (2014).

21. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and F.-F. Li, ImageNet: A large-scale
hierarchical image database, in CVPR09 (2009).

22. F. Chollet et al., Keras, https://keras.io (2015).
23. D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv e-prints,

art. arXiv:1412.6980 (2014).
24. E. Strubell, A. Ganesh and A. McCallum, Energy and policy considerations for deep

learning in NLP, arXiv e-prints, art. arXiv:1906.02243 (2019).
25. D. Harrison and D. L. Rubinfeld, Hedonic housing prices and the demand for

clean air, Journal of Environmental Economics and Management 5(1) (1978) 81–102,
doi:10.1016/0095-0696(78)90006-2.

2150008-12

http://arxiv.org/abs/1712.04621
https://dx.doi.org/10.1038/323533a0
http://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf
http://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf
http://dl.acm.org/citation.cfm?id=3104322.3104425
http://dl.acm.org/citation.cfm?id=3104322.3104425
https://dx.doi.org/10.1118/1.3213517
https://dx.doi.org/10.1016/S0893-6080(00)00098-8
https://dx.doi.org/10.1016/S0893-6080(00)00098-8
https://dx.doi.org/10.1088/0954-898X_8_3_004
https://dx.doi.org/10.1088/0954-898X_8_3_004
https://dx.doi.org/10.1016/j.matdes.2017.06.007
https://dx.doi.org/10.1021/acs.jcim.8b00768
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://keras.io
https://dx.doi.org/10.1016/0095-0696(78)90006-2

March 3, 2021 12:20 IJAIT S0218213021500081 page 13

Regularization by Sampling from an Infinite Space of Neural Networks

26. L. Breiman, Random forests, Machine Learning 45(1) (2001) 5–32, doi:10.1023/A:
1010933404324.

27. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot and E. Duchesnay, Scikit-learn: Machine learning in Python,
Journal of Machine Learning Research 12 (2011) 2825–2830.

28. I. Cortés-Ciriano and A. Bender, Reliable prediction errors for deep neural networks
using test-time dropout, Journal of Chemical Information and Modeling 59 (7) (2019)
3330–3339, doi:10.1021/acs.jcim.9b00297.

29. K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognition,
in 2016 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2016),
pp. 770–778, doi:10.1109/CVPR.2016.90.

2150008-13

https://dx.doi.org/10.1023/A:1010933404324
https://dx.doi.org/10.1023/A:1010933404324
https://dx.doi.org/10.1021/acs.jcim.9b00297
https://dx.doi.org/10.1109/CVPR.2016.90

	Introduction
	Stochastic Activation Function
	Experimental Results
	Hyperparameter-free self-regularization with MNIST
	Feature simplification with CIFAR-10
	Uncertainty quantification with Boston housing data

	Conclusions

