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Abstract – A spin-imbalanced Fermi gas with an attractive contact interaction forms a su-
perconducting state whose underlying components are superpositions of Cooper pairs that share
minority-spin fermions. This superconducting state includes correlations between all available
fermions, making it energetically favorable to the Fulde-Ferrell-Larkin-Ovchinnikov superconduct-
ing state. The ratio of the number of up- and down-spin fermions in the instability is set by the
ratio of the up- and down-spin density of states in momentum at the Fermi surfaces, to fully utilize
the accessible fermions. We present analytical and complementary Diffusion Monte Carlo results
for the state.
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For over a century, the phenomenon of superconductivity
has captured the attention of theorists, who have provided
fundamental revelations about its underlying principles.
Bardeen, Cooper, and Schrieffer (BCS) [1,2] gave semi-
nal insights into the mechanism of superconductivity in
systems with spin-balanced Fermi surfaces, showing that
superconductivity may be understood as the collective
behavior of coherent Cooper pairs of fermions. Fulde,
Ferrell, Larkin, and Ovchinnikov (FFLO) [3,4] extended
this result, demonstrating that even in systems with spin-
imbalanced Fermi surfaces Cooper pairs may still form
the basis of a superconducting state. However, in spin-
imbalanced systems, the density of states in momentum at
the Fermi surface of the majority-spin fermions is greater
than that of the minority-spin fermions, so the number of
Cooper pairs that can exist is limited by the number of
minority-spin fermions at their Fermi surface. This leaves
many of the majority-spin fermions unpaired and so un-
correlated, wasting their potential for contributing corre-
lation energy to the system.

In a few-fermion context, an instability [5] containing
more majority- than minority-spin fermions maximizes
the binding energy captured in spin-imbalanced systems
by taking advantage of the correlations between all avail-
able momentum states. Such an instability involves non-
exclusive pairing between several majority-spin fermions
and one minority-spin fermion in an ensemble that we call
a communal state. An example state is shown in fig. 1,
with three majority- (up-)spin fermions each paired with

the same minority- (down-)spin fermion. This inspires us
to merge Cooper pairs that share a minority-spin fermion
to construct a communal superconducting state that corre-
lates all available momentum states on the Fermi surfaces.
We show that this superconducting state with fermions
shared between pairs is energetically favorable over the
exclusive Cooper pair-based FFLO superconductivity in
spin-imbalanced systems.

Current experimental developments enable the study
of exotic superconducting phases in solid-state spin-
imbalanced Fermi gases [6–10], and spin-orbit coupling
may give rise to inhomogeneous superconductivity [11,12];
but no single experiment has provided unambiguous evi-
dence for the existence of FFLO superconductivity, leaving
the true nature of the ground state an open question.
However, the recent development of uniform trapping
potentials for ultracold atomic gases [13] promises un-
paralleled experimental accuracy, presenting an ideal op-
portunity to revisit the structure of the superconducting
ground state of spin-imbalanced Fermi gases.

In this letter we examine the ratio of the number of
majority- to minority-spin fermions in communal states
underlying the superconducting state of a spin-imbalanced
Fermi gas, compare the energetics of communal super-
conductivity favorably to that of FFLO superconductiv-
ity, and present analytical and complementary Diffusion
Monte Carlo results for the state. We also discuss unique
experimental consequences of the proposed communal
superconductor.
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Fig. 1: Idealized representation of the spin-imbalanced sys-
tem showing Fermi surfaces for the down- (light-blue circle)
and up-spin (light-red arc) species, with occupiable momen-
tum states extending over a momentum scale set by the Debye
frequency, forming annuli. The intensity of color in the annuli
indicates the approximate extent of the superconducting corre-
lations. Also shown are the momenta of (N↑, N↓) = (3, 1) up-
and down-spin fermions with corresponding q-vectors qσi. The
angular spread of the up-spin fermion momenta is exaggerated
for clarity.

To explore communal superconductivity we examine
a two-spin fermionic system with an attractive contact
interaction. The quantum partition function, Z =
∫

D(ψ, ψ̄)e−S[ψ,ψ̄], depends on the BCS action

S[ψ, ψ̄] =
∑

ω,k,σ

ψ̄k,σ(−iω + ξk,σ)ψk,σ

−g
∑

ω,k,k′,q

ψ̄k,↑ψ̄q−k,↓ψq−k′,↓ψk′,↑,

where ψk,σ and ψ̄k,σ are a fermion field and its Grassmann
conjugate, for momentum k and spin species σ ∈ {↑, ↓},
ξk,σ ≡ ϵk,σ − µσ, where ϵk,σ and µσ are the species-
dependent dispersion and chemical potential, respectively,
g > 0 is the strength of the attractive contact interaction,
and ω is a fermionic Matsubara frequency. In this expres-
sion the momenta q, referred to henceforth as q-vectors,
give the net momenta of coupled fermions. Our strategy is
to build on the original BCS and FFLO theories that are
directly applicable to the solid state, and so here adopt
a Debye frequency cutoff on the sums over k, however,
similar results are obtained in cold-atom gases provided
proper regularization is carried out.

We perform a Hubbard-Stratonovich decoupling in the
Cooper channel, using a concise matrix formalism to

express the action as

S[ψ,∆] =
∑

ω,k

(

ψ̄↑

ψ↓

)T
(

G−1
↑ −∆

−∆† G−1
↓

)

(

ψ↑

ψ̄↓

)

+
∑

ω

Tr(∆†∆)

g
,

(1)
where the vectors ψσ = (ψ(qσ1+ςσk),σ, ψ(qσ2+ςσk),σ, . . .)T,
with ς↑ = +1 and ς↓= −1, the Grassman con-
jugates ψ̄σ are similar, the matrices G−1

σ =
diag(G−1

(qσ1+ςσk),σ,G−1
(qσ2+ςσk),σ, . . .), for G−1

p,σ =
−iω + ςσξp,σ, and

∆ =

⎛

⎜

⎝

∆q↑ 1+q↓ 1
∆q↑ 1+q↓ 2

· · ·
∆q↑ 2+q↓ 1

∆q↑ 2+q↓ 2
· · ·

...
...

. . .

⎞

⎟

⎠
,

where the qσi run over all the q-vectors of species σ.
We label the number of fermions in the underlying in-
stability, and hence the number of q-vectors, per species
by Nσ: therefore, the G−1

σ are Nσ × Nσ matrices and
∆ is an N↓ × N↑ matrix. We shall find that in spin-
imbalanced systems N↑ ̸= N↓, so that ∆ is rectangular
rather than square, and different numbers of fermions from
each species are involved in the underlying instability. In
the system represented by fig. 1, where there are three up-
spin and one down-spin fermions involved in the underly-
ing instability, ∆ would be a 1 × 3 matrix. We focus our
analysis on the Cooper channel as recent work [14] shows
that in the BCS limit, screening [15] and pairing mech-
anisms decouple so the reduction in critical temperature
due to particle-hole interactions for both our communal
state and FFLO will be the same. We note for complete-
ness that decoupling through the magnetic channel was
also considered but had no consequence.

The elements of the ∆ matrix gap the dispersion. For
the Fulde-Ferrell (FF) state [3] (also referred to as single-
plane-wave superconductivity) ∆ has only a single entry,
and for crystalline FFLO superconductivity it is diagonal,
see [16–18] and references therein. The non-diagonal form
here allows communal superconductivity, as in common
with the few-fermion analysis [5] multiple majority-spin
fermions share a minority-spin fermion. We focus on su-
perconductivity where the sharing majority-spin fermions
have nearly aligned q-vectors, comparable to the FF state.
For simplicity of analysis we assume that none of the
q↑i +q↓j pairs of q-vectors in ∆ are degenerate. Following
ref. [5] the qσi vectors are taken to be not equal to each
other so that each ψp,σ appears only once in eq. (1). This
corresponds to assigning states on the Fermi surfaces into
non-overlapping communal states of equal angular width.

With this expression for the action, working in the
mean-field approximation, we can carry out a Ginzburg-
Landau expansion of the regularized thermodynamic po-
tential to obtain

Ω = T
∑

ω,k

∞
∑

n=1

1

n
Tr(G↑∆G↓∆

†)n +
Tr(∆†∆)

g
,
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where T is the temperature. To make progress with
this expression, we symmetrize the coupling amplitudes,
∆q = ∆. Near the second-order transition to the normal
state we may neglect high-order terms in ∆ and truncate
the expression for the thermodynamic potential to

Ω = α∆2+
1

2
β∆4+ . . . ,

where

α =
∑

q↑ ,q↓

⎛

⎝

1

g
+ T

∑

ω,k

Gq↑ +k,↑Gq↓ −k,↓

⎞

⎠ ,

β =
∑

q↑ 1,q↓ 1,
q↑ 2 q↓ 2

J(q↑1,q↓1,q↑2,q↓2), (2)

with

J(q1,q2,q3,q4)= T
∑

ω,k

Gq1+k,↑Gq2−k,↓Gq3+k,↑Gq4−k,↓.

(3)
To evaluate these expressions, we specialize to the case
of small Debye frequency, found for many conventional
superconductors [19–21]. In this limit, the vectors qσi

are expected to be approximately parallel to maximise
the number of contributing occupiable momentum states.
Approximately parallel but unequal qσi vectors provide a
natural tiling of the Fermi surfaces into non-overlapping
communal states. This enables us to factorize out
combinatorial factors, giving

α = N↑N↓

(

1

g
+ T

∑

ω,k

Gq+k,↑Gq−k,↓

)

,

β = N↑N↓

[

J0+ (N↑ − 1)J↑ + (N↓− 1)J↓

+(N↑ − 1)(N↓− 1)J↑↓

]

, (4)

where J0= J(q,q,q,q), J↑ = J(q + δq↑,q,q − δq↑,q),
J↓= J(q,q + δq↓,q,q − δq↓), and J↑↓= J(q + δq↑,q +
δq↓,q − δq↑,q − δq↓). Here q is taken to represent
the average q-vector for the fermions, symmetrized
between species, and δqσ is half the average separation
between q-vectors for species σ, which in the small Debye
frequency limit is orthogonal to the vector q. We follow
the prescription of ref. [5] that the angular widths of
the regions of Fermi surface involved in the communal
superconducting state are the same between species,
so the arc lengths δqσ are proportional to the Fermi
momenta and |δq↑|/|δq↓| = k↑F/k↓F, where kσF is the
Fermi momentum of species σ. For a free dispersion J↑↓

may be evaluated at zero temperature as

J↑↓=
NdQ2

(Q4−k2
⊥(δq↑+δq↓)2)(Q4−k2

⊥(δq↑−δq↓)2)
, (5)

where Nd is a dimension d ∈ {2, 3} dependent normaliza-
tion factor, Q2 ≡ 2kFkD + 1

2|δq↑|2+ 1
2|δq↓|2+ k2

D + k2
⊥,

kF = (k↑F + k↓F)/2 is the average Fermi momentum, kD

is the Debye frequency and k⊥ is the average extent of k

in the direction perpendicular to q such that the fermions
are within the Debye frequency of the Fermi energy. Sim-
ilar expressions for J↑, J↓ and J0 can be found by taking
δq↓ = 0, δq↑ = 0, or both. For kD ≪ kF, k⊥ ∼

√
kFkD

and eq. (5) confirms that for a single instability β ≥ 0
for realistic values of qi [17], justifying the truncation
in eq. (2).

To identify the optimal ratio of number of fermions in-
volved in the communal superconductor, we express eq. (2)
as a function of N↑/N↓and N↑N↓, and then perform a sad-
dle point analysis to optimize Ω with respect to N↑/N↓,
N↑N↓, and ∆ simultaneously. We note from ref. [5] that
singly excited state fluctuations in N↑/N↓have a linear en-
ergy dependence, so we focus on this saddle point analysis.
This gives the expected ratio of the number of fermions
involved in the underlying instability as

N↑

N↓
=

J↑↓− J↓

J↑↓− J↑
=

(

|δq↑|
|δq↓|

)2

=

(

ν↑
ν↓

)2/(d−1)

, (6)

where the second equality was obtained from eq. (5) and
νσ is the density of states in momentum at the Fermi sur-
face of species σ.

In the case of cold atoms in the absence of a Debye fre-
quency, regularization of the divergent momentum sum-
mation in α can be done by using the scattering theory
to replace the weak interaction coupling parameter g with
a formal expression involving the scattering length and
another summation with the same UV divergence char-
acteristics, resulting in a convergent expression [22]. The
momentum summation in β, and indeed in all higher terms
of the expansion of Ω, do not exhibit UV divergences, as
can be seen in how the expression for J↑↓ in eq. (5) is
finite for any value of kD, indicating that the high-k con-
tributions to the summation are not dominant. Indeed,
provided the interaction is weak, the optimal placement
of the q are unchanged and since the dominant contribu-
tions to J come from around the Fermi surface, the result
of eq. (6) remains unchanged, that is making the shift from
solid-state to ultracold atoms does not change any of the
significant physics.

This result confirms that the superconducting state
is indeed communal, with pairs sharing minority-spin
fermions to take advantage of all available correlations in
spin-imbalanced systems. Equation (6) also aligns with
our heuristic expectation that the instability involves more
fermions of the species with the larger density of states in
momentum at its Fermi surface, as was also found in the
few-fermion case [5]. For spin-balanced systems, ν↑ = ν↓
and so N↑/N↓ = 1, recovering the BCS theory result,
whilst in the polaron limit of a single minority-spin impu-
rity in a full Fermi sea of majority-spin fermions, the single
minority-spin fermion couples with all the majority-spin
fermions at their Fermi surface, in agreement with results
from the literature [23–25].
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Our conclusions do not contradict the well-known result
that FFLO superconductivity is the ground state in one
dimension, obtained separately by density matrix renor-
malization group [26] and time-evolving block decimation
methods [27]. In a one-dimensional system ν↑ = ν↓ re-
gardless of the spin-imbalance, removing our initial phys-
ical motivation for communal pairing. Furthermore, in
one dimension δqσ cannot be orthogonal to q, and so if
one attempts to form a communal state, it necessarily in-
volves fermions of a particular spin species with different
energies, invalidating the symmetrization of the gap am-
plitudes ∆q so there is no evidence that communal pairing
can be energetically favourable to the FFLO state found
in previous studies of one-dimensional systems.

The same optimization procedure that gave eq. (6) for
N↑/N↓ also provides an expression for N↑N↓, as

N↑N↓=
(J0− J↑ − J↓+ J↑↓)

2

(J↑↓− J↑) (J↑↓− J↓)
. (7)

For reasonable values of the |δqσ| and |q| in spin-
imbalanced systems this expression gives values of
N↑N↓ > 1, confirming that the communal superconduc-
tor is indeed made up of multiple fermions of at least one
spin species. Excessively high N↑N↓ is energetically pe-
nalized by the highest term in the expansion of the ther-
modynamic potential, which goes as (N↑N↓∆2)n, and so
we expect communal superconductivity to have both Nσ

being reasonably small integers. In the spin-balanced limit
eq. (7) collapses to the BCS result N↑N↓= 1.

The analysis may be adapted to the number conserv-
ing canonical ensemble by constructing the Helmholtz free
energy F = Ω + µ↑n↑ + µ↓n↓, where nσ = −∂Ω/∂µσ

is the total particle number of spin species σ, so F =
(1 − µ↑∂/∂µ↑ − µ↓∂/∂µ↓)Ω. As the chemical potential
only appears in the propagator, it suffices to note that
∂Gk,σ/∂µν = ςσG2

k,σδσ,ν and so the net result on N↑N↓

and N↑/N↓ of moving from the grand canonical ensemble
to the canonical ensemble is to shift the functions J as

J → J − T
∑

ω,k

Gq1+k,↑Gq2−k,↓Gq3+k,↑Gq4−k,↓

× (µ↑(Gq1+k,↑ + Gq3+k,↑) − µ↓(Gq2−k,↓+ Gq4−k,↓)),

leading to the same conclusions as in the grand canonical
ensemble, namely that in the canonical ensemble the su-
perconducting state is indeed communal with N↑N↓ > 1
and N↑/N↓= (ν↑/ν↓)(2/(d−1)).

Now that we have shown that the communal supercon-
ductor is energetically favourable over single-plane-wave
FFLO superconductivity in a spin-imbalanced Fermi gas,
we need to confirm that we have not compromised the sta-
bility of the superconducting state. We validate this by
examining the phase boundaries between the communal
superconductor and three competitor phases.

With increasing spin-imbalance, BCS superconductiv-
ity becomes unstable against FFLO superconductivity at

the Chandrasekhar-Clogston limit [28,29]. Although com-
munal superconductivity is energetically favourable over
FFLO superconductivity, BCS superconductivity still has
a large density-of-states advantage over communal su-
perconductivity, and to a first approximation the phase
boundary between BCS superconductivity and communal
superconductivity will remain at the same Chandrasekhar-
Clogston value.

The phase boundary between communal superconduc-
tivity and the normal state will also remain the same as
between single-plane-wave FFLO superconductivity and
the normal state. In both cases the second-order phase
transition occurs when α = 0, and this condition is iden-
tical between FFLO and communal superconductivity, up
to an irrelevant multiplicative factor of N↑N↓ in eq. (4),
and so the phase boundary is also identical.

Stability against phase separation can be expressed as
the positive-definiteness of the total particle number sus-
ceptibility matrix [30,31]. This condition includes the
possibility of separation into two superconducting phases,
with ratios of the number of fermions differing from that
predicted in eq. (6), and may be expanded following
eq. (2), to leading order in ∆ giving

α
∂2α

∂q2
> 2

(

∂α

∂q

)2

.

This is the same as the equivalent expression for FFLO
superconductivity, up to a factor of (N↑N↓)2 that cancels
between the two sides of the inequality. This indicates
that the line of stability against phase separation is the
same for communal superconductivity as for FFLO super-
conductivity to leading order.

Although the discussion above focuses on nearly aligned
q-vectors, comparable to the FF state, it is known that the
Larkin-Ovchinnikov (LO) state [4] built from two plane
waves can be energetically favorable to single-plane-wave
superconductivity. Therefore, we now follow the prescrip-
tion of Larkin and Ovchinnikov and consider a communal
superconducting state out of two instabilities on opposite
sides of the Fermi surfaces. The only differences in the
theory of communal superconductivity for one and two
instabilities are a multiplicative factor of 2 in eq. (2) and
additional terms in the expression for β in eq. (4). Sim-
ilarly to the single instability case the optimal instability
contains more up- than down-spin fermions, and so the
communal superconducting state is also energetically fa-
vorable over the LO state.

We supplement the preceding analysis with numerical
evidence obtained from a quantum Monte Carlo study of
a finite spin-imbalanced 2D homogeneous fermion gas with
attractive interactions using the casino program [32]. To
minimize finite-size effects [33,34], we place the fermions
in a rhomboidal box with vertex angle 60◦ so that the dis-
cretized momentum points form a triangular lattice. This
allows for the densest tiling of discrete momentum points
in 2D giving the closest to circular Fermi surfaces. We set

67003-p4



Communal pairing in spin-imbalanced Fermi gases

up a system of 61 spin-up and 19 spin-down fermions and
work in atomic units with the average inter-fermion sepa-
ration rs = 1. Such particle numbers are consistent with
those used in other DMC studies [35,36], giving us confi-
dence that the results obtained should be at least qualita-
tively related to the analytics done in the thermodynamic
limit. We note for completeness that qualitatively simi-
lar results were obtained for systems with both a smaller
and larger number of fermions, and in systems on a square
simulation cell.

As the Fermi surfaces form hexagons and have a 2:1 ra-
tio of fermions, we expect a (N↑, N↓) = (2, 1) instability.
An ultratransferable pseudopotential [37] with scattering
length a = 6.5991 and zero effective range was introduced
so that the BCS coherence length of an equivalent spin-
balanced system was approximately equal to the simula-
tion cell size. We note here for completeness that while
such a pseudopotential is indeed meant to emulate the
scattering properties of a contact interaction, it neverthe-
less has a finite extent in space that introduces a natural
momentum cutoff. The UTP therefore does not have infi-
nite range in momentum space and so the assumption of
small Debye frequency used in the analytical derivation is
applicable to the simulation.

Following previous work [38], we employ a Slater-
Jastrow trial wave function of the form ΨT =
e−J(r↑ ,r↓ ) det[φ(si,j)]. The pairing orbital is

φ(si,j) =
4

∑

l=1

al cos(kl · si,j)

+Θ(N↓− i)(1 − s
rs

)3Θ(1 − s
rs

)
2

∑

m=0

bmrm,

where si,j ≡ r↑,i − Θ(N↓− i)r↓,j , s ≡ |si,j |, rσ,i is the po-
sition vector of the i-th fermion of spin species σ, kl is the
l-th shortest reciprocal-space vector, Θ is the Heaviside
step function, and the {al}, {bm} are optimisable param-
eters. The Jastrow factor is given by

J(r↑, r↓) =
∑

i,j

[

∑

k

ukrk−1
i,j (1 − ri,j/rs)

3Θ(1 − ri,j/rs)

+
∑

m

pm cos(Gm · ri,j) + ν terms
]

,

where rσ denotes the set of position vectors for all fermions
of spin species σ, ri,j ≡ r↑,i − r↓,j , r ≡ |ri,j |, Gm are
reciprocal-space vectors through which anisotropy may be
introduced, and {uk}, {pm} are optimisable parameters.
J(r↑, r↓) is thus a function of all opposite-spin fermion
separations containing a short-range isotropic u term,
anisotropic p terms [39] and a ν term [40] that reflects
the simulation cell symmetry and whose form is omitted
for brevity. While the trial wave function was originally
used to capture pairing between electrons and holes in a
bilayer, it nevertheless has three attractive properties that
warrant usage in this context; namely that it is a pairing

BCS b) FFLO

a) Communal 

Communal FFLO

c
o

n
d

e
n

s
a

te
 f
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c
ti
o

n
 x

1
0

4

Fig. 2: Left: plot of condensate fraction in pair momentum
space in units of 1/2

√

3πrs. The positions of the expected
peaks corresponding to a communal state (rsq = 1/

√

3π),
FFLO pairing (rsq = 1/2π), and BCS pairing (rsq = 0) are
shown with green stars, black triangles and a magenta circle,
respectively. Communal-type peaks are prominent with no ob-
vious FFLO peaks and a mild BCS peak. The k-space grid
is drawn in black. Right: diagrams of pairing orbitals in the
communal and FFLO phases. The colored points indicate the
filled Fermi areas of the down-spin (blue) and up-spin (red)
species in the non-interacting limit. The colored clouds indi-
cate which states contribute to the instabilities with intensity
indicating the strength of contribution. Black lines indicate a
possible pairing arrangement.

wave function and that it deforms continuously into the
accepted form for a balanced superconductor and the non-
interacting state. Furthermore, the nodal surface can vary
and be optimized through the bm parameters.

The trial wave function was optimised using Varia-
tional Monte Carlo [41] then equilibrated using Diffusion
Monte Carlo before the condensate fraction in momentum
space [42] was accumulated. In casino, the condensate
fraction is defined as fq ≡

∑

k(⟨c†k,↑c
†
q−k,↓cq−k,↓ck,↑⟩ −

nk,↑nq−k,↓), where c†k,σ (ck,σ) is the creation (annihila-
tion) operator for a fermion of momentum k and spin σ
and nk,σ ≡ ⟨c†,σkc,σk⟩ is the momentum density. The re-
sults display strong anisotropy of the condensate fraction
at rsq = 1/

√
3π, regardless of whether in the Jastrow fac-

tor the pm are selected to permit anisotropy, constrained
to ensure isotropy, or set to zero. The state observed is
therefore not an artefact of (an)isotropy of the trial wave
function, consistent with the communal state being the
robust ground state. Furthermore, we confirm the sharing
of minority-spin fermions between pairs by noting that the
anisotropy is consistent with the pairing scheme shown in
the upper right panel of fig. 2; the black lines indicate the
up-down pairs present in a single (N↑, N↓) = (2, 1) insta-
bility which, when combined with its time-reversed part-
ner, gives 4 pairing momenta, corresponding to 4 peaks in
the condensate fraction. We only indicate the peak posi-
tions for plane-wave FFLO; crystalline FFLO would have
peaks at all q-vectors of equal magnitude to plane-wave
FFLO, none of which coincide with the 4 observed peaks
of the communal pairing state.
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The lack of a strong condensate fraction at rsq = 1/2π
indicates that the FFLO phase is not the major contrib-
utor to the ground state. Finally we note for complete-
ness that while there appears to be a BCS contribution to
the condensate fraction, the uncertainty in the condensate
fraction at rsq = 0 was twice as large as at other points
and so that peak is half as significant as the others. Simi-
lar results were seen in systems with a 3:1 and 4:1 ratio at
the Fermi surface, affirming the pairing result for N↑/N↓,
and for systems with the same 2:1 ratio at the Fermi sur-
faces but different total numbers of fermions, namely 19
spin-up and 7 spin-down fermions, and 127 spin-up and
37 spin-down fermions. The results obtained for systems
with different numbers of fermions give us confidence that
the observed state is not an artefact of finite-size effects.

We note for completeness that the condensate fraction
was also gathered for pairs of the same spin species in an
attempt to simultaneously search for induced p-wave su-
perfluidity [43], however the values of the intra-spin con-
densate fraction were more than 10 orders of magnitude
smaller than those for the inter-spin condensate fraction
and were indistinguishable from zero at all pair momenta.

Having seen that communal superconductivity is ener-
getically favorable over FFLO superconductivity, we now
consider its possible experimental consequences. We focus
on two effects where the communal nature of the underly-
ing instability should be directly observable.

Multiple phase transitions: With increasing spin-
imbalance, that is increasing ν↑/ν↓, eq. (6) predicts that
the ratio N↑/N↓ should increase. Starting from the BCS
state with ν↑/ν↓= 1 the system should progress through
several communal superconducting phases with increas-
ing values of N↑/N↓, where both Nσ are integers, giving
a series of different superconducting states. The product
N↑N↓governed by eq. (7) restricts N↑ and N↓ to small in-
tegers and so restricts the number of transitions observed.
Each transition is expected to be of second order, and so
the communal superconducting phase would be character-
ized by a series of discontinuities in the heat capacity and
the compressibility, which is directly observable in ultra-
cold atomic gases [44], as the spin-imbalance is changed.
No such phase transitions are expected within the FFLO
phase. Plots of the specific heat CV against ν↑/ν↓ at low
temperature are shown in fig. 3 for the communal and
FFLO phases. The plot used the same parameters as our
DMC study. A finite discontinuity in the specific heat
is present in both curves at the Chandrasekhar-Clogston
limit at ν↑/ν↓≈ 1.2, with further discontinuities manifest-
ing in the communal phase as N↑ and N↓change. With in-
creasing imbalance the heat capacity jumps upward as an
additional up-spin fermion enters the strongly correlated
state, increasing its binding energy. The behavior of the
communal state is in marked contrast to the FFLO phase
that has near constant specific heat, giving a significant
observable difference between the two phases.

Superconducting order parameter : In real space the
order parameter will exhibit a beat pattern due to the
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Fig. 3: Plot of specific heat CV against ν↑/ν↓ for the energet-
ically favourable communal (solid line) and not energetically
favourable FFLO (dotted line) phases. Communal phases are
labelled by the pair (N↑, N↓). The BCS phase denotes where
the Chandrasekhar-Clogston limit is breached, indicated by the
vertical dashed line. The two curves coincide in the BCS and
(1, 1) phases.

interference between similar q-vectors, which could allow
the identification of the particular q-vectors in the super-
conductor. The order parameter and its spread in mo-
mentum could be determined in an ultracold atomic gas
experiment through density-density correlations measured
from time-of-flight experiments [45]. While the width of
the narrow peaks of either the BCS or FFLO phase can
be resolved in absorption imaging experiments to better
than 0.1kF [46], the spread of q-vectors from communal
pairing seen in fig. 2 and indicated by exact diagonalisa-
tion studies [5] is on the order of kF and should be readily
distinguished. This can be seen in fig. 2 where alongside
the clear peaks, the condensate fraction is generally non-
zero for momenta rsq ≤ 1/

√
3π and only falls to zero on

the border of the region shown. In contrast, FFLO and
crystalline FFLO theories predict sharp peaks in the con-
densate fraction, as in spin-balanced BCS theory, at fixed
magnitude of the pairing momenta.

Andreev reflection: The elementary excitations above
the proposed ground state are predicted to be well
described by the few-fermion analysis [5]. This should
have novel consequences especially concerning Andreev re-
flection experiments as the strong correlations between a
group of fermions held in a communal state should re-
sult in multiple retroreflected holes for a single incident
fermion, in sharp contrast to the single hole per fermion
expected in normal FFLO theory.

Beyond these experimental signatures, communal su-
perconductivity also introduces the notion that the build-
ing block of a superconductor may involve the sharing
of fermions between Cooper pairs. In particular, there
can be fluctuations in the number of fermions in the
underlying instability, which could lead to the renormal-
ization of the properties of a spin-balanced superconduc-
tor. The analysis is also generalizable to systems with
multiple underlying instabilities, more akin to crystalline
FFLO superconductivity [16], and we use that system
as a guide for the likely modifications when communal
superconductivity is built from several instabilities.
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We have introduced the idea of a communal supercon-
ductor, whose underlying instability is composed of mul-
tiple pairs with shared fermions, to enable the use of
all available inter-fermion correlations. We have shown
that communal superconductivity is energetically favor-
able over FFLO superconductivity in spin-imbalanced
Fermi gases, both analytically and with complementary
DMC results, and that a communal superconductor has
clear experimental signatures.
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