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SUMMARY

Understanding the formulation and manufacturing parameters that
lead to higher energy density and longevity is critical to designing
energy-dense graphite electrodes for battery applications. A limited
dataset that includes 27 different formulation, manufacturing proto-
cols, andperformanceproperties is reported. Input parameters from
formulation and manufacturing are varied: slurry composition,
mixing protocol, electrode coating gap size, drying temperature,
coating speed, and calendering. Measurable outputs from the rheo-
logical characteristics, adhesion, and electrochemical testing are re-
corded. A database with the inputs and output parameters is popu-
lated and used to train an artificial intelligence model. Validation of
the model is performed upon test data and an optimized electrode
formulation and manufacturing process predicted. The electrode
manufactured using the model process shows excellent cycle life
and capacity agreement to prediction. The data model can be used
to predict and design the formulation and manufacturing process
to produce thick, high-coat-weight, graphite-based electrodes.
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INTRODUCTION

The Li-ion battery (LIB) has initiated a revolution in power electronics, and there has

been an exponential increase in demand,1 in part due to the new market in electric

vehicles.2,3 High-throughput methods are under development to accelerate the

optimization process of battery materials in terms of synthesis, manufacturing, and

electrochemical performance.4–7 Manufacturing governs battery properties,

including energy density, cycle life, and cost. The fabrication of Li-ion batteries is

divided into three basic categories: (1) ink preparation (slurry-based composite

that contains the active material, solvent, binder, conductive additive, and disper-

sant); (2) manufacturing (mixing, coating, drying, and mechanical compression-like

calendering); and (3) cell assembly.8

Graphite is widely used in Li-ion batteries due to its stability and long-cycle life.9

Various efforts have investigated adding additives to electrodes in order to increase

mechanical durability, adhesion properties with the current collector, electrical con-

ductivity, and longevity.10,11

The high electronic conductivity of graphite results in low impedance and electrode

polarization when dispersed within a 3D conductive network.12,13 Carbon black is
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often used; when processed correctly, it forms chains of conductive beads that form

electronic wires between graphite particles, enabling fast electron transfer through

the electrode.14 Other carbons, such as carbon nanotubes (CNTs),15,16 graphene,

and carbon fibers,17 can also improve electrical and thermal conductivities.9,11,17,18

To optimize electrode performance, formulation, active: binder: conductive carbon:

solvent ratio, is important.19 Polyvinylidene fluoride in N-methy-l-2-pyrrolidone

(PVDF-NMP) binder-solvent combinations give high mechanical and electrochemi-

cal stabilities; however, due to the toxicity of NMP and the difficulty in PVDF removal

at end of life, other binder systems, such as carboxy methyl cellulose and styrene

butadiene rubber (CMC-SBR) in water, are being investigated.20–23 To maximize en-

ergy density, minimumquantities of binders and conductive additives are used while

maintaining good electrical and mechanical properties.24

The manufacturing process includes four basic steps, mixing, coating, drying, and

calendering. The mixing parameters, including the composition, rotation speed,

mixing time, and temperature, directly affect the mixing shear rate and the resultant

slurry viscosity and thus the dispersion of each component.8,25 Electrode coating is

dependent upon gap size and coating speed, which also affects the porosity and

coat weight of the electrode coating.26 An optimum porosity is required such that

ions can be transported through the electrolyte in the electrode pores and electrons

can be transported from the site of electrochemical reaction to the current collector.

Previous work indicates the optimum porosity for graphite is 35% for high-energy

applications.27 Low porosities improve electronic conductivity but block the Li-ion

diffusion.28,29 Optimized drying of the electrode results in strong adhesive and

cohesive bonding, controlled via temperature and time.30–32 Finally, calendaring

is performed to optimize porosity level and improve the electronic wiring of the par-

ticles to the current collector.29,33

Often design of experiments (DOE) is used in industry to optimize themanufacturing

process. If a full factorial approach was used, a DOE containing 4 replicates of 5 fac-

tors (formulation, coating gap size, coating speed, drying temperature, and calen-

dering) with 3 levels each apart from calendering that has 2 levels would result

into 43 343 21 = 648 cells; this number can be reduced with different experimental

designs.34 However, factors outside of the experimental control matrix can occa-

sionally affect the electrode outputs, i.e., humidity and temperature. More recently,

machine learning or artificial intelligence (AI) methods have been used;35–40 exam-

ples include the optimization of a lithium nickel manganese cobalt oxide (NMC) elec-

trode,41 the utilization of more in-depth electrochemical diagnostic methods,42 and

the modeling of battery safety risks.43 In research, the electrode development pro-

cess is more intuitive, as electrochemical testing takes a very long time to complete

(several weeks or months), and often, the number of available test channels is the

biggest limitation. An approach to learn more from these smaller datasets, and to

fill in potential gaps in the data, is to usemachine learning and data-drivenmodeling

methods. Alchemite is a self-consistent, iterative machine-learning algorithm that

has been applied to a wide range of domains, including battery state prediction,44

superalloy design,45 and pharmaceuticals.46 Alchemite is an adaptation of a neural

network but with all inputs also being predicted so is surrounded by an iterative

imputation cycle to handlemissing data. The architecture of the Alchemite algorithm

is shown in Figure S5 and described elsewhere.46–48

In this work, we demonstrate the effectiveness of a data-driven model on a small

research dataset with an aim to obtain high-energy-density graphite electrodes. A
2 Cell Reports Physical Science 2, 100683, December 22, 2021



Figure 1. Schematic overview

A schematic overview of the present study for graphite electrode formulation and manufacturing,

with the investigated parameters
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series of experiments, with a focus on low-cost and low-environmental-impact

manufacturing processes, were performed to maximize coulombic efficiency, capac-

ity, and cycle life. A full DOE was not performed; instead, a small research dataset

was produced from a series of different formulations and manufacturing optimiza-

tions. The data are further processed via a data-driven model (Alchemite) in order

to provide additional insight, and an optimized electrode was designed using a

Bayesian optimization process. 27 different graphite electrode formulation and

manufacturing protocols (cases) were developed to optimize the cycle life perfor-

mance of anode electrodes for high-energy applications. The effect of CMC:SBR ra-

tios and additives upon discharge capacity and cycle life was investigated. Subse-

quently, the effect of the manufacturing steps (coating blade gap size, coating

speed, drying temperature, and calendering) upon the electrode properties

(porosity and adhesion normal force) was investigated. A schematic overview of

this analysis is provided below in Figure 1.

A further aim is to establish relationships between manufacturing and cell perfor-

mance. Currently, empirical design of experiments concludes with the electrochem-

ical performance of a cell. Physical property � performance relationships will help to

accelerate this electrode optimization process.

In this work, graphite (BTR) and carbon black (C45) electrodes were developed as a test

case. Binding materials carboxymethyl cellulose (CMC) and styrene-butadiene rubber

(SBR) were mixed at various ratios (2:1, 1:3, and 2:3) at 3.00% by electrode mass. Ad-

ditives (0.5% w/w) to improve conductivity were investigated: long and short CNTs;

carbon fibers; and DSA (hydrophobic dispersant). After the slurry formulations (55%

w/w solid) weremixed, the rheological properties were recorded. The inks were coated

onto a copper current collector, at coating gap size (70–300 mm), coating speeds (0.1–

0.5 m/min), and drying temperature (60�C–120�C), before calendering or not. Adhe-

sion was measured using a 180-degree peel off test. Cell testing was performed

against Li metal in a coin cell configuration and formation (one C/20 discharge-charge

cycle and three C/10 cycles) and fast cycling (50 cycles discharged at C/2 and charged

at C rates) performed. C rate is 350 mAhg�1 at 0.1C. In total, 256 cells were made and

the outliers were discarded. Outliers were determined as cells that did not complete
Cell Reports Physical Science 2, 100683, December 22, 2021 3



Table 1. Graphite electrode characteristics. Graphite electrode manufacturing details electrode and cell characteristics, with corresponding

predicted and actual specific capacity after 30 cycles.

Case no.
Formulation no.
(Table S1)

Drying
temperature (�C)

Coating speed
(m/min)

Coating gap
size (mm) Calendering

Porosity
(%)

D30 experimental
(mA.h/g)

D30 predicted
(mA.h/g)

RMSE
(mA.h/g)

40 6 60 0.2 150 NO 52.3 197.3 277.8 G 34 42.5

41 60/80 54.3 205.1 255.5 G 37 29.7

47 80/100 0.4 53.7 241.1 268.7 G 45 46.1

48 YES 32.0 321.9 285.5 G 34 43.6

60 60 0.2 200 28.5 109.5 148.6 G 52 32.6

16 3 80 0.1 140 22.4 310.2 319.2 G 17 12.8

The root mean-squared error (RMSE) values are averages over the cycle life between the experimental and the predicted specific capacity values. All the cells

presented are characterized by a CMC/SBR ratio of 2:3.
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formation or the 50 cycles. The Ansys Granta MI software has been used to collect ma-

terials, cell manufacturing processes, and test data by means of a set of customized

data importers. A data model was trained on the data from 85 cells, a further 6 cells

from different manufacturing conditions to the training data (Table 1) provided a data-

set that the model was tested against. The 85 cells used for the training were chosen

because they completed the cycle life test. The 6 test cells were selected because they

had been produced and tested after the original 85 cells in similar but different

manufacturing conditions (Table 1). 3 cells were made based on the AI-designed elec-

trode process and formulation.

Standard operating procedures for all the manufacturing and testing processes have

been established, including storage.49 With small-batch processing of inks and

draw-down coatings, a slight variability in coat weight is observed as the weight of

the ink decreases as it is pulled down the coating. This variation affects the calen-

daring pressure across the electrode and hence the porosities. However, to limit

variation, only electrodes with similar coat weights, thicknesses, and porosities are

tested (maximum 10% difference). Three to five cells are tested from every

manufacturing case, and any outliers are removed. A summary of the physical and

electrochemical properties of electrodes in each cell is available (Mendeley dataset:

https://data.mendeley.com/datasets/4dh2h3tsf4/draft?a=301e2177-92bf-4929-

899f-ef53d9ae956f). More information about the formulation, manufacturing steps,

testing methods, and coin cell assembly can be found in the supplemental experi-

mental procedures and Tables S1 and S2.

RESULTS

Formulation variations

To weigh the importance of the various constituents present in a graphite-based

anode coating toward higher discharge capacities and longer cycle lives, different

CMC:SBR formulation (open symbols) and additive (closed symbols) variations

were examined, as presented in Figure 2. A Gaussian process regression (GPR)

was applied to all the data using an RBF kernel with length scale set to the standard

deviation of the independent variable for each plot. In Figure 2A, the discharge-spe-

cific capacity at the 5th cycle is plotted against the 30th cycle (D5 versus D30) to show

both the cell performance and the cycle life of the cells, which have been manufac-

tured at the same conditions (coating speed, temperature, and gap size). During the

cycling step, the cells were discharged at C/2 and charged at C. In this case, none of

the electrodes were calendered; therefore, the corresponding porosity values all lie

in the range of 50%. According to Table S1 presented in supplemental information,

the three compared ratios have graphite (BTR) and carbon black (C45) concentra-

tions at 94.5% w/w and 2.5% w/w, respectively, and also constant binding agents’
4 Cell Reports Physical Science 2, 100683, December 22, 2021
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Figure 2. Discharge-specific capacity performance of the formulations under study at the same

manufacturing conditions

(A) Discharge-specific capacity at cycle number 30 against cycle number 5 examining the different

CMC:SBR ratios and various additives, with an inset for the cycle number at 50% maximum

capacity.
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sum at 3.0% w/w. Given that the polymeric binders are resistive materials, at higher

mass fractions, their presence increases the internal resistance of the cell, hindering

thus the Li-ion diffusion, resulting in shorter cycle life.50 Therefore, it is crucial to

include as little binder as possible, without compromising the mechanical stability

of the electrode.51 Within the same graph, a comparison of different materials as ad-

ditives with a CMC 2:3 SBR ratio and a total conductive additive of 2.5% w/w is also

given (DSA is a non-conductive dispersant for hydrophobic materials, used here to

limit the aggregation of carbon black particles).

At first, the various CMC:SBR ratios (Ashland and Zeon) cells are presented with

open symbols, with the best performing sample (CMC 2:1 SBR) to contain the high-

est weight percentage of CMC (2% w/w), which, according to the literature, is the

critical low concentration for CMC to form a network to support the stability of the

anode.52 The specific capacity of the electrode containing the 2CMC:1SBR ratio

reached on average 320 mA.h/g right (D5) and achieved 50% of the initial capacity

at 44 cycles, according to Figure 2A. The 1CMC:3SBR ratio exhibited a lower D5

discharge capacity, at approximately 310 mA.h/g, and a faster decline over cycle

number, 50% of capacity lost at 24 cycles. The shortest cycle life was observed for

the 2:3 ratio, which exhibited a 50% drop after 12 cycles and a 90% drop from the

maximum capacity at 25 cycles. Moving forward to the effect of additives (closed

symbols) on the worst performing 2CMC:3SBR ratio, it is evident that all have a bene-

ficial effect in both D5 andD30 values. At first, it is visible that the DSA dispersant has

a beneficial effect in cycle life when comparing it with the no additive sample (both

contain approximately 2.5% w/w C45 conductive additive), leading to twice the D30

values than that of the no additive formulation, indicating more effective dispersion

of C45 in the slurry. Considering the performance of electrodes containing addi-

tional conductive additives, the formulation with the highest cycle life retention is

the 0.5% w/w long CNTs electrode, which achieves half its initial capacity at the

32nd cycle. In addition, at its 5th cycle, it reaches a discharge-specific capacity of

almost 350 mA.h/g against 300 mA.h/g of the electrode without the CNTs. CNTs

and carbon fibers have a high tensile strength and high aspect ratio for electronic

conductivity, which facilitates the electron transport.53 The addition of carbon fiber

to the formulation improves the capacity retention with respect to the 2:3 CMC:SBR

no additive electrode but to a lesser degree than those produced containing CNTs.

Having discussed the cycling performance of the various CMC:SBR ratios and

different additive containing cells in Figure 2A, the 10th discharge capacity after for-

mation (D10) as a function of the slurry’s viscosity is presented at Figure 2B in order

to determine the relationship between the cycle life and the slurry properties (prior

to electrode coating and cell preparation). The rheological experiments were con-

ducted at room temperature and at a shear rate of _g = 0.1 s�1. For this analysis,

different formulations were investigated, no calendering was applied to the coated

anodes, and the manufacturing conditions were identical (gap size, coating speed,

and coating temperature). The highest D10 values are observed in the presence of

CNTs, which are expected to facilitate charge transport by inducing a conductive

network and increase the slurry viscosity due to their mechanical durability. Ink vis-

cosity could be an important early indicator for electrode mechanical stability and

ultimate cell life. Figure 2B illustrates a correlation between high viscosity at low
(B and C) The discharge-specific capacity at cycle number 10 (D10) is presented as a function of

anode slurry viscosity as obtained by shear rate rheology experiments at shear rates of (B) 0.1 s�1

and (C) 100 s�1. The R2 values of the GPR fittings are included in (B) and (C).

The error bars are calculated based on the standard deviation.

6 Cell Reports Physical Science 2, 100683, December 22, 2021



ll
OPEN ACCESSArticle
shear (0.1 s�1) and higher capacity and longer cycle life. The 0.1 s�1 shear rate is

representative of the zero-shear viscosity of the slurries and thus indicates how the

ink structure behaves prior and after coating. The higher viscosities, at this particular

solid content, could indicate the optimum carbon black dispersion. If over-

dispersed, the carbon doesn’t provide the 3D internal network and the inks are often

less viscous, whereas under-dispersed, the carbon black is aggregated. Better

dispersion within the slurry during mixing leads to enhanced stability of the particle

suspension and improved slurry quality. When comparing the cell performance in

the presence of dispersive and conductive additives for the CMC 2:3 SBR formula-

tions (open and closed triangles), it is clear that these additives increase the viscosity

of the slurry and indicate good dispersion. As expected, with increasing CMC con-

tent, the viscosity of the slurry increases, which is in agreement with a similar trend

observed at 1 s�1 shear rate (Figure S4A). The viscosity values of the slurries, as ob-

tained from the rheological measurements, decrease with increasing shear rates. At

10 s�1 (Figure S4B), the viscosities showed no trend with capacity, but at 100 s�1,

presented in Figure 2C, it appears that capacity is decreasing at higher viscosities,

indicating that, at coating shear rates, lower viscosities are preferable as the slurries

are more easily coated. In addition to the viscosity increase, the electrodes pro-

duced from the CNT and carbon fiber additives show higher capacities with the

CNTs containing cell exhibiting a reduced resistance according to Table S2.

Manufacturing conditions

In this section of the paper, the electrode-preparation steps, namely coating, drying,

and calendaring, were examined to determine the optimal manufacturing conditions

that will result into the highest capacity retention. At first, the physical properties of

the examined electrodes as a function of coating gap size and drying temperature

are presented (Figures 3A–3C), with the electrochemical cell performance following

(Figure 3D). A relationship between the manufacturing inputs, physical properties,

and the cell performance is elucidated. Finally, the effect of calendering is examined

(Figure 4) upon the cycle life performance varying theCMC:SBR ratios (1:3, 2:1, and2:3).

In Figure 3, the effect of the coating (doctor blade) gap size and drying temperature

manufacturing conditions during the electrode-coating process were examined, and

the relationship of these variables in process related to changes in the physical (elec-

trode thickness, porosity, and adhesion) and electrochemical characteristics (cycle life

and resistance) of the electrodes. The formulation of the cells examined in this section

was kept constant at a CMC:SBR ratio at 2:3 with only C45 conductive additive at 2.5%

w/w, and none of the anode electrodes underwent any calendering in order to isolate

the contribution of the coatweight and drying temperature on the cell performance.

As is expected, as the blade gap increases, the thickness and coat weight of the

coating also increases, as more slurry is deposited onto the current collector (Fig-

ure 3A). Drying temperature, however, also affects the thickness of the electrode,

and by the drying temperatures to 120�C, the porosity (and thickness) decreases

(Figure 3B). This increase in electrode density results in improved electrochemical

properties, with greater capacities at D30 being observed (Figure 3D). Interestingly,

even without calendering, porosity values as low as 25% can be achieved, although

this effect is limited with higher coatweights, and for gap sizes over 200 mm, the

porosity values are almost independent of temperature and exceed 50%. The 35%

porosity aim27 was observed in the gap size range of around 100 mm. Figure 3C

shows the dependence of drying temperature and coating gap size upon the adhe-

sion normal force as defined by the delamination force between the coated anode

and the copper current collector. For gap sizes above 200 mm, the adhesion normal
Cell Reports Physical Science 2, 100683, December 22, 2021 7



Figure 3. Electrode manufacturing conditions as opposed to physical and electrochemical properties

Contour plots for uncalendared electrodes evaluating the changes in drying temperature and coating gap size with the physical and electrochemical

properties (A) electrode thickness, (B) porosity, (C) adhesion normal force, and (D) discharge-specific capacity at the 30th cycle (D30).
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force values are low (below 10 N/m), indicating poor physical connection between

the graphite particles and the current collector. The low adhesion normal forces

are directly related to high porosity values, indicating that this is due to the smaller

contact area between the graphite particles and copper.30 This observation also

suggests that the adhesion can be directly related to the contact resistance of the

coating and hence polarization of the electrodes relating to the ohmic resistance

(IR drop), which will be discussed later (Figure 8F). Below 200 mm, the highest adhe-

sion normal forces were observed at 80�C and 140 mm, for which the highest cycle

life was also observed, constituting the optimum manufacturing conditions.

In Figure 3D, a contour plot that combines the drying temperature and coating gap

size with the discharge specific capacity at the 30th cycle (D30) is presented. It is

notable to mention that the D30 values range from 15 up to 340 mA.h/g, and

thus, manufacturing plays a vital role on the resulting performance. The most impor-

tant factor, similar to what was discussed previously, is the coating gap size, which

above 200 mm gives D30 values below 100 mA.h/g. Below 150 mm, high D30 values

were achieved that mostly exceeded 300mA.h/g and are jointly attributed to the low

porosity and high adhesion normal forces discussed in Figures 3B and 3C,
8 Cell Reports Physical Science 2, 100683, December 22, 2021



Figure 4. The effect of calendering

Cycle life of (A) CMC 1:3 SBR, (B) CMC 2:1 SBR, and (C) CMC 2:3 SBR, exploring the effect of

calendering (solid symbols and open symbols correspond to calendered and non-calendered

anode electrodes, respectively). The average porosity values are included within the legends for all

the samples under study. A solid line at 372 mA.h/g is given within each graph to highlight the

theoretical specific capacity value for graphite. The error bars are calculated from standard

deviation.
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respectively. Additionally, the vastly different performances observed by varying the

gap size are also due to the very fast lithiation and delithiation cycles (C and C/2,

respectively) that are not ideal for the thicker samples, because Li ions need to cover

greater distances during lithiation and delithiation due to diffusion limitations that

affect the electrochemical reaction within the cell.26,54,55 The same charge and

discharge protocol was employed in all cases, so the data-drivenmodel has less vari-

ables to work with. Also, cells with higher thicknesses have a higher internal resis-

tance that decreases the power output and increases polarization, resulting in ohmic

losses (heat) that can contribute to deterioration in the observed capacity over

time.26 Although drying temperature does not appear to contribute much in the bat-

tery performance at lower gap sizes, at high thicknesses, it is observable that the D30

values are 4 times higher at 120�C than at 80�C, which is attributed to more efficient

solvent evaporation at higher temperatures.

Three CMC:SBR ratio variants were chosen to examine the effect of calendaring, and

the comparison with the non-calendered sample is presented in Figure 4. It is
Cell Reports Physical Science 2, 100683, December 22, 2021 9



Figure 5. The cycle life performance of all the cells under study and its relation to electrode

manufacturing, adhesion properties, and internal resistance

Discharge-specific capacity at cycle number 30 against cycle number 5 plotting all examined cases.

As an inset, a contour plot is presented, combining information for the anode thickness, the

adhesion normal force, and the IR drop. The circles’ colors correspond to the heating map of the

contour plot (also noted as areas A, B, and C, corresponding to increasing values of IR drop,

respectively). The error bars are calculated based on the standard deviation.
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evident from all the samples that calendering decreases significantly the porosity

values and increases the cycle life of the cells, attributed to the changes in the porous

structure that diminishes the ohmic contact resistance of the coating.28 Figures 4A

and 4B show that calendering significantly affects the cycle life of the cells to the

point that, at the 50th cycle, over double values of discharge-specific capacity are

observed. Interestingly, the porosity values after calendering vary a lot (from 25%

to 42%), affecting thus in a different way the calendered cells, with themore effective

calendering (greater porosity drop) to increase the capacity retention of the cells.

The variation in the porosities is a result of different degrees of calendering in order

to provide a greater range of values during the data-driven modeling analysis.

A summary of all 27 cases investigated in this paper is presented in Figure 5 in a D30

versus D5 representation of the data. It is clearly visible that, although most cells

exhibit values of D5R 300mA.h/g, there is a great variation in D30 values that range

from 350 down to 10 mA.h/g and strongly depend on the formulation and

manufacturing characteristics and conditions as discussed in the previous sections

of the paper. The data were grouped into three categories (A, B, and C) based on

their D30 values: D30A > 250 mA.h/g; 100 mA.h/g < D30B < 250 mA.h/g; and

D30C < 100 mA.h/g, respectively. As an inset to Figure 5, there is a contour plot

that summarizes information gathered from three different aspects of cell perfor-

mance: the electrode thickness; the adhesion normal force; and the IR drop (the IR

drop being indicative of the series resistance of the cell). The electrode thickness

is a property that can be controlled in the initial stages of coating through the gap

size, and the adhesion normal force can be tested right after drying. Evidently, these

two easily controlled and measured parameters have an important effect on the IR

drop and the internal resistance of the cell and immensely affect the resulting battery

performance and the cycle life, as the colored circles indicate, chosen to match the

heatmap for the IR drop variation in the contour plot. Therefore, an optimization pro-

cess can be achieved faster by controlling the aforementioned properties, without

having to invest a lot of resource into the process.
10 Cell Reports Physical Science 2, 100683, December 22, 2021



Figure 6. Testing the Alchemite model predictions against experimental data

Examples of the cycle life of the experimental (symbols) against the predicted values, including the

uncertainties (colored areas). All the test cells had a CMC:SBR ratio of 2:3. The coating gap size and

the drying temperature for each are given within each graph. A solid line at 372 mA.h/g is given

within each graph to indicate the theoretical specific capacity of graphite. In addition to the

presented 3 validation cells, another 3 are given in Table 1.

ll
OPEN ACCESSArticle
Data-driven model development

The data from 85 cells (27 cases), with 15 experimental variables (listed in Table 1),

were used to train a single Alchemite machine-learning model. The model was

tested against the outputs from 6 cells generated after the training data, providing

a test of the realistic, prospective application of the machine-learning model, inde-

pendent of the training data.

The effectiveness of the model is shown in Figure 6, where the predicted discharge-

specific capacities are compared to the experimental for 3 cases, although the re-

maining cases are given in the supplemental information in Table 1, including sum-

mary statistics on the predictive accuracy. In Figure 6, the shaded areas represent

the standard deviation prediction intervals and the experimental results are shown

as colored points. The chosen cells as depicted in Figure 6 had a CMC 2:3 SBR ratio

and underwent calendering although they were characterized by different coating

gap sizes, coating speeds, and drying temperatures. The full formulation and

manufacturing characteristics of the 6 test cells are provided in Tables S1 and S3.

In all cases, high agreement between the predicted and experimentally observed
Cell Reports Physical Science 2, 100683, December 22, 2021 11
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discharge curves is obtained. In particular, the first test cell, case 16 (140 mm blade

gap size; 80�C drying temperature) shown in Figure 6A is exhibiting discharge-spe-

cific capacity values in the range of 300 and 350mA.h/g, where no signs of significant

capacity deterioration are visible at the observable cycle life window. The Alchemite

model was able to re-create successfully the experimental behavior as with the other

two test cells, case 48 (150 mm blade gap size; two-step 80/100�C drying tempera-

ture) and case 60 (200 mm blade gap size; 60�C drying temperature) presented in

Figures 6B and 6C, respectively. In those cases, the early falloff in capacity is

correctly identified by the Alchemite model, and the high-cycle-number behavior

is also accurately predicted. Comparisons with standard machine-learning ap-

proaches (lasso and random forests) are provided in Figure S6 and Table S4.

As well as the expected value of the predictions from the machine-learning

approach, it is important that the uncertainty in the predictions is well understood.

This uncertainty can come both from variability in the experimental measurement

procedures used to generate the model training data as well as extrapolation in

the formulation space when making predictions. To analyze the uncertainties in

the predictions, in Figure 7, we plot histograms of the distribution of predictions

from Alchemite for the specific capacity after 30 cycles of the three test cells also

examined in Figure 6. We observe a tightly peaked distribution for case 16, where

the specific capacity is not varying rapidly as a function of cycle number and the ma-

chine learning is confident of its prediction. In contrast, for case 60, the distribution

has wide-ranging tails that indicate disagreement among the different neural net-

works that form the Alchemite architecture and hence reduced confidence in the

predictions. The distribution for case 60 also has positive skew (third standardized

moment 1.08), providing more detail about the model’s understanding of the data-

set (for instance, that it expects the lower limit on capacity at this number of cycles for

this cell to be harder than the upper limit, as some constituent neural networks can

model quite high capacity for this cell). The standard deviation across these distribu-

tions of predictions generates the prediction intervals shown in Figure 6.

Physical properties and Alchemite as predictive tools

The fundamental scope of the present paper is to establish tools to predict the cy-

cle life performance after changes in the manufacturing procedures avoiding the

time-consuming and costly full electrochemical characterization. The effort showed

here is to relate non-electrochemical testing (slurry rheology and adhesion experi-

ments) to the cell performance and how this in-depth understanding of the

manufacturing-performance relationship can develop data-driven modeling using

the Alchemite software. From the accumulated data for the high-coat-weight

graphite electrodes manufacturing, the aim was to provide evidence relating

measured properties and outputs to the electrochemical performance. If the perfor-

mance can be predicted from the input data, i.e., specific measured attributes dur-

ing the manufacturing processes, the time for any new electrode and cell develop-

ment would be reduced, and the lengthy electrochemical cycling tests are not

required. The trained data model above shows that, with a limited dataset, this is

indeed possible, and accurate predictions of cycle life can be achieved. To under-

stand the effect of the formulation and process upon the final cell performance, the

chemical and physical relationships of the changes in the manufacturing processes

need to be understood. Here, the relationship of the physical changes that are

observed in the inks and electrodes, through metrology measurements, are linked

with the final performance properties, capacity, cycle life, and resistance. Figure 8

shows that the empirical analysis can elucidate relationships between the

physical and electrochemical properties. Having built confidence in the predictive
12 Cell Reports Physical Science 2, 100683, December 22, 2021



Figure 7. Uncertainties in the predictions

Examples of the uncertainty in the predictions of the discharge-specific capacity after 30 cycles

(D30) showing histograms of the distribution of model predictions and, as dark green vertical lines,

the measured experimental values
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performance of Alchemite, a graphite electrode formulation and manufacturing

process that achieves a high specific capacity after 30 cycles (D30) of over 150

mA.h/g using an active mass of greater than 25 mg was designed by the ma-

chine-learning model. Following the AI-proposed design, electrodes were manu-

factured and developed into coin half-cells to test experimentally the predictive

ability of the Alchemite. The target aims to produce electrodes with increased

aerial capacities for high-energy-density applications. We used a data-driven

Bayesian method of formulation optimization to take advantage of the machine-

learning model’s learned relationships between input and measured properties:

traditional experimental design techniques, being purely focused on an exploration

of the formulation space, are not able to leverage complex nonlinear relationships

between variables. Alchemite, by contrast, prioritizes experimental effort based on

probable performance and so is able to respond to existing experimental data to

target only those formulations most likely to succeed against a project’s goals.

Again, a GPR was applied to all the data using an RBF kernel with length scale

set to the standard deviation of the independent variable for each plot. Figure 8A

shows that current cells with active mass greater than 20 mg are unable to achieve
Cell Reports Physical Science 2, 100683, December 22, 2021 13



Figure 8. Physical properties and Alchemite predictive tools toward cycle life performance

(A–E) Discharge-specific capacity at the 30th cycle (D30) as a function of (A) active mass, (B) electrode thickness, (C) porosity, (D) IR drop (obtained from

the first cycle after formation), and (E) adhesion normal force.

(F) The dependence of adhesion normal force from the IR drop. With black symbols are the experimental data (closed symbols correspond to data that

were used for the GPR red area fittings and open symbols were considered outliers). The blue and orange symbols are the predicted data of the

optimized cell computed by the Alchemite model and the experimentally manufactured cell based on the Alchemite design, respectively. The

characteristics of the Alchemite-designed electrodes (both prediction and experimental) are given at Table S5. The R2 values of the GPR fittings are

included in each graph.

The error bars are calculated based on the standard deviation.
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D30 of over 150 mA.h/g, and so a cell with these properties will be a valuable

contribution to the state of the art. The model also generates predictions for the

other physical properties of the designed cell beyond the D30, based on the pro-

posed formulation and manufacturing processes. The key model predictions are

shown by blue triangles in Figure 8, with error bars indicating the single standard

deviation prediction intervals from the model. Based on the Alchemite design, elec-

trodes were manufactured to verify the prediction experimentally. The prediction

was design based on the cycle life performance, with slurry rheology information

to be implemented in the Alchemite model in the future.

Figure 8 provides evidence between the associations of several parameters that

govern the electrochemical performance of a Li-ion anode half-cell to obtain a better

insight into the fabrication-performance relationship. The discharge-specific capac-

ity (D30) is employed throughout Figure 8 because it ‘‘carries’’ information about

both the cycle life and the initial capacity. The solid symbols are data that were taken

into account for the GPR fittings, including errors (red areas), and the open symbols

correspond to cells that exhibited very low D30 values and thus deviated signifi-

cantly from the trends, so they were not part of the fittings.
14 Cell Reports Physical Science 2, 100683, December 22, 2021
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In Figures 8A and 8B, D30 appears to have a sigmoidal relationship with the active

mass and the electrode thickness, indicating that, for better-performing cells, low

active mass and thickness are preferable, an effect that is attributed to faster lith-

iation and delithiation.26 A different formulation and manufacturing protocol than

the experimentally examined dataset, presented in Table S5, is expected to lead

to a much-improved D30 performance at high active mass, as it is apparent

from the data-driven cell (blue triangular symbol). At this active mass, it is observ-

able that the experimentally produced dataset cells exhibit less than half D30

values. According to Table S5, considerably lower amount of C45 is required for

the predicted cell, which also diminishes the necessity for higher binders’ amount,

an observation that is in agreement with the literature.56 Thus, the graphite con-

tent is higher (in total increased by 3.5% w/w comparing to most cases), resulting

in reduced electrical resistances, from which thicker electrodes usually suffer.

Indeed, the IR drop values extracted from the cells based on the AI-designed elec-

trodes were found to be 12.7 G 2.6 mV, significantly less than other cells of similar

active mass. The experimentally developed electrodes based on the AI-designed

predictions (orange triangular symbol) yield cells with D30 values very close to

the predictions and above 150 mA.h/g for over 25 mg, leading thus to a successful

verification of the Alchemite predictions. In addition, the AI-designed cells ex-

hibited at least 2.5 times higher D30 values than the other experimentally tested

cells of similar active mass, as seen in Figure 8A. A comparison between the

Alchemite prediction cell and the experimentally developed one based on the

AI design is given in Table S6. Figure 8C shows the effect of porosity, which signif-

icantly deteriorates the performance after the critical point of 50%, due to the

increase of resistance that comes with porosity.28 Below 37% porosity, a slight

decrease is also observable in the performance, indicating that the size of the

pores is significant for lithiation and delithiation.

Figure 8D presents the dependence of D30 from the IR drop, as this is calculated

from the first cycle after the formation step. A sigmoidal trend is also observed,

showing that the lower the IR drop, the better the performance is (higher D30

values), as a result of the lower resistance of the coated electrode.57 To designate

the predictive part of the present work, a connection between electrochemical prop-

erties and adhesion tests (independent mechanical measurement) is drawn and pre-

sented in Figure 8E. The relationship between D30 and logF is close to linear and

confirms that adhesion is an important property for the prediction of the electro-

chemical performance and that, with adhesion testing, the cell optimization can

be done more efficiently without doing the time-consuming formation and cycling

tests.30 Finally, a relationship between the IR drop and adhesion normal force is

also visible, indicating a strong dependence between adhesion properties and the

internal resistance of the cell according to Figure 8F, with the data-driven predicted

cell to also exhibit this dependence.
DISCUSSION

The aim of this work was to establish connections between the early physical prop-

erties observed during the manufacturing processes of thick graphite electrodes for

Li-ion batteries and their corresponding cycle life performance. Knowledge of these

connections will facilitate the optimization of the manufacturing process in electrode

development in a time-efficient way and thus use them as predictive tools to avoid

the time-consuming and costly electrochemical testing. To achieve this aim, 27

different formulation and manufacturing protocols designed for high-energy appli-

cations were prepared and tested, aiming to optimize their cycle life performance.
Cell Reports Physical Science 2, 100683, December 22, 2021 15
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The examined cases included variations in the CMC:SBR ratio, different additives,

changes in the coating and drying conditions (blade gap size, speed, and tempera-

ture), and the effect of calendering. The cell information and testing performance

were employed to train a data-driven model (Alchemite) that was later validated suc-

cessfully against experimental data that were not part of the training dataset. The

Alchemite model was then used to predict new formulation and manufacturing con-

ditions to predict electrodes with better capacity retention at higher thicknesses

than those experimentally developed. The electrode formulation calculated by the

data-driven model was characterized by low binder and carbon black concentra-

tions, resulting in higher graphite content that was found to be beneficial to cycle

life performance.

The research presented here establishes that there are indeed connections between

the electrode’s physical properties and the electrochemical cycling response. In

particular, the two parameters that were observed to affect the capacity retention

the most were the adhesion normal force and the IR drop and were found to have

an inverse correlation with each other, with high adhesion forces to yield low internal

cell resistances and vice versa. Both properties can be measured at an early stage of

cell development, after drying (or calendering if applied) for the adhesion testing

and after electrochemical formation for the IR drop calculation. Finally, the Alchem-

ite-predicted electrode yielded an improved cycle life performance characterized by

a formulation outside the experimental dataset used for training, indicating the pre-

dictive capabilities of data-driven models. We have shown that, with the data pro-

vided, the model provides robust agreement and can also predict results. However,

with limited datasets, often not all the required input factors are included in the

model, as they have limited effect upon the end result. For example, processability

relies heavily upon rheological properties but may have little effect upon the final

performance parameters. A DOE would provide more accurate data into the model.

With new materials and chemistries, the parameter boundaries for processing are

often not known. These boundaries can be very abrupt, with an instantaneous

‘‘fail’’ past certain limits; this is difficult to predict. Still, significant trial and error or

empirical design is required to test these boundaries to obtain sensible process

windows.

This work shows that small datasets can be used for optimization of manufacturing

processes, although further work is required to expand the dataset further, particu-

larly for different formulations, in order to achieve improved optimization of high-

coat-weight graphite electrodes.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources andmaterials should be directed and

will be fulfilled by the lead contact, Emma Kendrick (e.kendrick@bham.ac.uk).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Raw data and the Alchemite configuration files are supplied and can be found

at https://doi.org/10.17632/4dh2h3tsf4.1 (https://data.mendeley.com/datasets/

4dh2h3tsf4/draft?a=301e2177-92bf-4929-899f-ef53d9ae956f).
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Artificial intelligence

The first step is for Alchemite to input the 31 formulation descriptors of each cell and

any available experimental endpoints. The Alchemite machine-learning algorithm

will exploit available endpoint values to predict other missing endpoints, so Alchem-

ite requires estimates for any absent endpoints for the internal neural network. To

accomplish this, the second step of the Alchemite algorithm is to impute estimates

for thosemissing values, using the a priori simplest possible estimate: the average of

all values in the training set for that endpoint.

The input data are now prepared, and so the third stage is to use these values as an

input for a neural network. The parameters of the neural network are optimized as

model hyperparameters. This neural network will identify the descriptor-endpoint

as well as the endpoint-endpoint correlations to improve the quality of predictions,

especially when extrapolating. The neural network makes predictions for all end-

points and is explicitly orthogonal to the identity so never uses a given endpoint

to predict its own value. 200 neural networks are trained within a standard bootstrap

phenomenology with different weights on each row of the training data.48 Each neu-

ral network makes a separate prediction, and the average is used as the output value

of the endpoint, with the standard deviation between them acting as an estimate of

the uncertainty in the prediction of the endpoint.

The predictions from the neural network impute the gaps in the originally sparse

endpoint data. These predictions replace the original mean value estimates for

the missing endpoints. The cycle is repeated with the endpoint predictions at

each pass softened by merging them with the previous estimate, zn+ 1 = gzn +

ð1 � gÞyn+1, where zn denotes the prediction from the n th iteration, yn+ 1 the predic-

tion from the (n+ 1)th iteration, and the softening parameter g is a hyperparameter.

The iterative cycles are repeated until the predictions converge within an accuracy

specified by a model hyperparameter. Uncertainty is propagated within the model

so that the more confident model predictions are assigned more credence when us-

ing them as input in subsequent iterative cycles.

Alchemite handles functional relationships (for example, capacity as a function of cy-

cle number) as a single entity by storing their entries as a vector. Alchemite stores the

functional relationship across two columns in its database, corresponding to the ab-

scissa and ordinate. Each entry in the database comprises a list of points, corre-

sponding to all data for the functional relationship. Then, when making predictions

for the functional relationship, Alchemite cycles through all abscissa values to make

predictions for the ordinate endpoints individually.

Alchemite has several hyperparameters that can be set when training the model that

will affect its performance. The training hyperparameters were tuned automatically

by a Bayesian Tree Parzen Estimator algorithm to optimize for the median coefficient

of determination, computed using 5-fold cross-validation of the training dataset,

across the cell target properties that the model will be asked to predict.58 In

cross-validation, the model achieved a median coefficient of determination of

0.81, with a range from 0.87 (for the ‘‘test: capacity (max)’’ property) through 0.83

(for the ‘‘test: capacity vs cycle (gravimetric)’’ property) to �0.03 (for the ‘‘test: effi-

ciency vs cycle’’ property). This approach tests the real-world prospective applica-

tion of the model to predicting the performance of potential future cells based on

past cell data. For testing, the model was asked to predict the target properties

for each cell in the hold-out dataset given only the descriptor properties (input

only properties and process parameters, such as active mass, anode and cathode
Cell Reports Physical Science 2, 100683, December 22, 2021 17
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thickness, gap size, coating temperature, additives, binders, solvents, etc.). Then,

the coefficient of determination for each target property was calculated by

comparing the predicted values with the given ones.

The optimized cell shown in Figure 8 was determined by searching over the space of

possible design parameters using a Bayesian Tree Parzen Estimator algorithm.58 At

each iteration of the search, Alchemite predicts the target properties for the given

set of proposed design parameters and then, taking into account the uncertainty

of the prediction, computes the probability that the proposed cell will meet the

required targets. It is this probability that the cell is optimized for.

The formulation and processing parameter space that Alchemite explores is con-

strained to ensure that the resulting cells are manufacturable and realistic. The inde-

pendent variables of the design space (a subset is listed in Table S5) were con-

strained to lie within the range of values seen in the training data, and the

dependent variables were either calculated analytically on the fly (where an analyt-

ical relationship is known—e.g., the anode density as a ratio of its mass and volume)

or predicted using the multi-output machine-learning model. The active mass of the

cell was additionally constrained to be above 25 mg, which, as shown in Figure 8A, is

higher than used in typical high-capacity cells of this type, providing a challenging

constraint for the machine learning but a valuable direction for future cell

development.
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xcrp.

2021.100683.
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