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An ensemble approach to the analysis of weighted networks
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We present a new approach to the analysis of weighted networks, by providing a straightforward
generalization of any network measure defined on unweighted networks, such as the average degree of
the nearest neighbours, the clustering coefficient, the ‘betweenness’, the distance between two nodes
and the diameter of a network. All these measures are well established for unweighted networks
but have hitherto proven difficult to define for weighted networks. Our approach is based on the
translation of a weighted network into an ensemble of edges. Further to introducing this approach
we demonstrate its advantages by applying the clustering coefficient constructed in this way to two
real-world weighted networks.

Weighted complex networks appear in many different
contexts, for example when studying transport and traf-
fic [1, 2], in the form of trade or communication net-
works, financial networks [3], and collaboration networks
[4], to name a few. In addition, high-throughput technol-
ogy has generated large amounts of biological data which
can be interpreted in terms of weighted networks, such as
networks of genetic regulation and transcription [5] and
protein interaction [6]. While such networks can now be
generated relatively easy, the extraction of meaningful
physical or biological information from these networks
is a much more challenging task. For unweighted com-
plex networks – in which the entries of the adjacency
matrix are restricted to zero and one – a set of local
and global measures on the network has been defined
[7], including the degree of a node, its average nearest-
neighbour degree [8] and its clustering coefficient [9]. Fur-
ther measures include the distance between two nodes,
the related diameter of the network and the betweenness

[10] of an edge or node. While the definition of such mea-
sures for unweighted networks is relatively straightfor-
ward, defining these measures for weighted networks is
more difficult and has been the subject of recent research
[2, 5, 11, 12, 13].

Here we introduce a new approach to this problem
which allows for a straightforward generalization of any
measure defined on an unweighted network to weighted
networks. In addition we explicitly construct weighted
versions of the clustering coefficient, the average degree
of neighbours, the distance between two nodes and the
diameter of the network. We compare this newly con-
structed clustering coefficient to a weighted clustering
coefficient in the literature and to a version used in un-
weighted networks. The data sets we use for this compar-
ison are aviation passenger data within the EU, which
constitutes an almost fully connected network, and the
network formed by neighbouring letters in the English
language.

Ensemble networks—The basis of our approach is to
find a continuous bijective map M : R → [0, 1] from the
real numbers to the interval between 0 and 1, which maps
the weights wij ∈ R to a quantity pij ∈ [0, 1]. A simple

example of such a map is a linear normalization of the
weights:

pij =
wij − min(wij)

max(wij) − min(wij)
(1)

This simple normalization maps minwij to zero. This is
often acceptable in the case of a distance matrix, but
if there are many edges with weight minwij , one should
introduce a parameter ǫ ≪ 1, such that:

pij =
wij − min(wij) + ǫ

max(wij) − min(wij) + ǫ
(2)

Many other more sophisticated maps are imaginable and
the final choice of map depends on the properties of the
physical system underlying the network and the result-
ing distribution of weights. Appropriately chosen maps
can deal with all variants of weighted networks including
those with negative weights, and with differing interpre-
tations of wij = 0 as meaning ’no edge’ or as a physical
weight. We will return to the topic of map choice below.

The ideas we introduce in this paper are based on an
interpretation of the matrix P with entries {pij} as a
matrix of probabilities. These probabilities can be inter-
preted as an ensemble of edges, or more concisely, an en-

semble network. Thus, just as any binary square matrix
can be understood as an unweighted network and any
real square matrix corresponds to a weighted network,
any square matrix with entries between 0 and 1 corre-
sponds to an ensemble network. If we sample each edge
of the ensemble network exactly once, we obtain an un-
weighted network which we term a realization of the en-
semble network. In particular, pij is the probability that
the edge between nodes i and j exists. These concepts are
valid both for directed networks, with any pij ∈ [0, 1],
and undirected networks, for which pij = pji, so that
the matrix is symmetric. Note that, while some specific
weighted networks discussed in the literature have prob-
abilities as their weights [5, 14], a general framework for
the analysis of weighted networks, based on the transfor-
mation of weights to probabilities, has to our knowledge
not been proposed. In a real-world weighted network, the
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original weights can represent almost any physical quan-
tity, such as the strength of a collaboration between two
scientists, or the number of passengers traveling between
two countries. This is why we use a map M to trans-
late the original weights into probabilities. Doing so does
not destroy any of the topological information contained
in the weights and connections, but allows us to ana-
lyze this information in the unifying framework which the
probabilities provide. Furthermore, in many cases of real-
world weighted networks, the transformation of weights
to probabilities has a physical meaning. Examples include
flow networks of traffic and transport, communications
networks as well as collaboration networks. In all these,
the interactions between nodes involve the transfer of a
discrete unit (e.g. passengers, currency or data packets)
over a given period of time. Thus the weight, represent-
ing the number of units transferred, is directly related to
the probability of observing the transfer of a unit at a
given point in time.

In the framework of ensemble networks any existing
measure on unweighted networks can be turned into an
equivalent measure on weighted networks. A suitable
choice of map M depends on the distribution of weights.
For example, in both real-world networks which we an-
alyze in this paper the original weights wij take val-
ues across several orders of magnitude, so that we chose
the pij to be the normalized logarithms of the original
weights, rather than the normalized weights themselves.

Polynomials of adjacency matrix entries—All mea-
sures on unweighted networks can be written as functions
of the entries aij of an adjacency matrix A. In fact, gener-
ally they can be written as a polynomial of these entries,
or a simple ratio of such polynomials. Note that, for an
unweighted network, aij = am

ij for all positive integers
m > 0, so that these polynomials are of first order only.
Consider a general first-order polynomial, which can be
written fully expanded as:

f(A) =
2N2

∑

q=0

Cq

N
∏

j,k=0

a
b(q)jk

jk

where N is the number of nodes, the Cq are real co-
efficients and the b(q)jk are a set of boolean matri-
ces specifying which adjacency matrix entries appear in
each term of the polynomial. The probability Pq that
∏N

j,k=0 a
b(q)jk

jk = 1 in a given realization A is simply

Pq =
∏N

j,k=0 p
b(q)jk

jk . Thus, due to the linearity of the

polynomial, the average f̄(P) of f over the ensemble net-
work realizations is:

f̄(P) =

2N2

∑

q=0

Cq

N
∏

j,k=0

p
b(q)jk

jk = f(P) (3)

This means that the value of a polynomial function f of
the entries of an unweighted network A, averaged over
the realizations of a given ensemble network P is equal

to the value of the polynomial of the ensemble network
adjacency matrix itself. We will illustrate the power of
this result in the following sections.

Constructing the measures—Our approach allows for
the construction of weighted network measures from
their unweighted counterparts. As almost all existing un-
weighted measures are for undirected networks, the mea-
sures we construct in the remainder of this Letter are
also undirected. In general however our method is equally
well suited to the transformation of any measure for di-
rected, unweighted networks into one for directed and
weighted networks. The degree ki of a given node i in
an unweighted network with adjacency matrix elements
aij is the number of its neighbours, and is written as
ki =

∑

j aij . In a weighted network with elements wij

the corresponding quantity has been termed the strength

of the node i, denoted as si, which consists of the sum
of the weights: si =

∑

j wij . In an ensemble network,
the corresponding sum over the edges attached to a par-
ticular node gives the average degree of node i across

realizations, denoted as k̄i and given by k̄i =
∑

j pij .
It is important to note that while the strength of a node

in a weighted network may have meaning in the context
of the network, k̄i has a universal meaning, regardless of
the original meaning of the weights. Now consider the
total number of edges n in a network – also referred to as
its size – given by n =

∑

ij aij in the directed case and
half this value in the undirected case where aij = aji.
Replacing aij by pij again gives us the average size n̄ of
the realizations of the ensemble network, which is simply
n̄ =

∑

ij pij (or half this value for the undirected case).
A more complex measure in unweighted networks is

the average degree of the nearest neighbours knn
i , which

is the number of neighbours of i’s neighbours, divided by
the number of neighbours of i [8]:

knn
i =

∑

j kj

ki

=

∑

j,k aijajk
∑

j aij

where j 6= i in the sums. By rewriting knn
i solely in terms

of the aij , this generalizes to ensemble networks in a very
straightforward manner:

knn,e
i =

∑

j,k pijpjk
∑

j pij

This measure knn,e is simply a ratio of averages: the av-
erage number of neighbours of i’s neighbours over the
average number of i’s neighbours.

For unweighted networks the clustering coefficient of a
node i has been defined [9] as:

ci =

∑

j,k aijajkaik

k(k − 1)/2
=

∑

j,k aijajkaik
∑

j,k aijaik

(4)

where k 6= j 6= i 6= k in the sums. This corresponds
to the number of triangles in the network which include
node i, divided by the number of pairs of bonds including
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i, which represent potential triangles. Using the ensem-
ble approach with its normalized weights this generalizes
straightforwardly to:

ce
i =

∑

j,k pijpjkpik
∑

j,k pijpik

(5)

which can be read as the average number of triangles di-
vided by the average number of bond pairs. In modified
form, this clustering coefficient has appeared in the very
recent literature [5] but without connection to a general
approach to the construction of weighted network mea-
sures based on a general mapping from weights to proba-
bilities. Note that knn,e and ce

i are not the averages of knn
i

and ci over the ensemble. We will address this subtlety
below.

As an example of the power of eq. (3), consider the
distance dij (i.e. the shortest path) between two nodes
i and j in an unweighted N -node network, represented
entirely as a function of adjacency matrix entries:

dij(A) = aij + (1 − aij)
N
∑

m=1

(m + 1)α
(m)
ij (A)β

(m)
ij (A)

where α
(m)
ij (A) =

∏m−1
q=1 [1 − β

(q)
ij ], with:

β
(m)
ij (A) = 1 −

∏

k1,...,km

(

1 − aik1
akmj

m−1
∏

l=1

aklkl+1

)

where all
∏

without a range are equal to one. As dij

is a first-order polynomial in aij – the elements of the
adjacency matrix A – we know immediately from eq. (3)
that the average distance in the ensemble network will
be d̄ij(P) = dij(P). Thus we have defined a distance
measure on weighted networks without having to define
a pairwise distance function of the edge weights (such as,
for example, dij = (wij)

−1 [4]).
Similarly, the diameter of an unweighted network, de-

fined as the maximum distance D(A) = max dij(A) be-
tween two nodes out of all pairs of nodes i, j can be writ-
ten as a first-order polynomial:

D(A) =
∏

p,q

apq +
N
∑

m=1

(m + 1) ζ(m)(A) ξ(m)(A)

where ζ(m)(A) =
∏m−1

q=1 [1 − ξ(q)(A)] and ξ(m)(A) =
∏

i,j β
(m)
ij (A). This expression allows us to straightfor-

wardly calculate the average diameter D̄(P) = D(P) of
the ensemble network.

Another measure, the betweenness [10] of a node i or
an edge (i, j), is the number of different shortest paths in
the network which run through i or (i, j)s in the network.
Like measures such as the distance and diameter, the
betweenness can also be generalized to the weighted case
by simply replacing the aij by pij . As the expressions in
terms of adjacency matrix entries are rather involved, we
do not give them here explicitly.
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FIG. 1: Analysis of the network of air travel passengers within
the 25 member states of the EU. This network is almost fully
connected. TOP: Unweighted clustering coefficient versus de-
gree.All 25 data points are projected onto 7 locations, as a
result of the information loss due to discarding the weights,
and because the network is almost fully connected. MIDDLE:
Clustering coefficient as proposed in the literature [2] versus
strength. This “mixed” clustering coefficient is a function of
unweighted and weighted quantities. No clear relationship is
evident, again because the network is almost fully connected.
BOTTOM: Ensemble clustering coefficient versus ensemble
degree. Unlike the other two approaches, those derived using
the ensemble quantities exhibit a clear negative linear rela-
tionship. The lines are lines of best fit. Note that the absolute
scale of the ensemble clustering coefficient c

e

i depends on the
choice of the map M from weights to probabilities, which
makes the relative values of c

e

i more important than the ab-
solute ones.
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FIG. 2: Analysis of the weighted network formed between
the 26 letters of the alphabet and the space between words
[15]. TOP: Unweighted clustering coefficient versus degree.
MIDDLE: Clustering coefficient as proposed in the literature
[2] versus strength. This “mixed” clustering coefficient is a
function of unweighted and weighted quantities. BOTTOM:
Ensemble clustering coefficient versus ensemble degree. The
ensemble approach makes use of all information contained in
the weights, while the two others lose some of the information,
as is shown by the plateau which both exhibit on the left side
of the plots. The diagonal lines are lines of best fit for data
points below the plateau. Note that the absolute scale of the
ensemble clustering coefficient c

e

i depends on the choice of
the map M from weights to probabilities, which makes the
relative values of c

e

i more important than the absolute ones.

Some measures on unweighted networks, such as the
average neighbour degree knn and the clustering coef-
ficient ci are ratios of two adjacency matrix polyno-
mials f and g, which in general can be written as
h(A) = f(A)/g(A). Now we can define the quantity
he(P) ≡ f̄(P)/ḡ(P) = h(P). But, as was pointed out
above, this quantity is no longer an average of h(A) it-
self (which would be denoted h̄(P)). This gives us two
distinct classes of measures: The first contains measures
which can be written in polynomial form, and for which
the ensemble version gives the average across realizations.
These measures represent countable, integer quantities of
the network, such as the number of neighbours, the num-
ber of triangles, the length of the shortest path between
i and j, and so on. The second class are measures which
are ratios of polynomials, such as the average nearest-
neighbour degree or the clustering coefficient. The en-
semble network version of these measures gives the ratio
of the averages.

All measures constructed with the ensemble approach
are only functions of the normalized weights pij , not of
the elements of an unweighted adjacency matrix aij or of
the degree k. This distinguishes the ensemble measures
from measures proposed for weighted networks in the lit-
erature, such as the weighted clustering coefficient cw

i :

cw
i =

1

si(ki − 1)

∑

j,k

(wij + wik)

2
aijaikajk (6)

and the weighted average nearest-neighbour degree kw
nn,i:

kw
nn,i =

1

si

N
∑

j=1

aijwijkj (7)

Both are defined in [2]. Due to their construction, these
measures cannot be used for the analysis of fully con-
nected weighted networks, as kw

nn,i = 1 and cw
i = 1 for

all nodes i in such networks. Fully connected weighted
networks form an important class of complex networks,
for example in the form of the (virtually fully-connected)
EU air travel network which we analyze in this letter.
Furthermore any matrix of similarities or distances be-
tween a number of objects - such as for instance microar-
ray data series in biological experiments - can be treated
as a fully connected weighted network, and thus can be
analyzed using the ensemble approach, but not with ap-
proaches such as eq. (6) and (7), which are “mixed” in
the sense that they make use of both the unweighted and
weighted adjacency matrix entries.

Analyzing real-world weighted networks—In the follow-
ing we demonstrate some of the advantages which the
ensemble approach has over unweighted network mea-
sures, as well as over mixed weighted network measures.
We do this by applying the ensemble clustering coeffi-
cient of eq. (5) to two real-world networks. The first is
the network of passengers travelling by air within the EU
during 2004 [16]. The second is a network of letters in the
English language, where the weight of the edge between
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two letters is determined by the freqency at which they
appear next to each other in the English language [15].
Both networks include edges which lead from a node to
itself. The network of letters has 485 edges between 27
nodes (the alphabet and space), and therefore is 62.8%
connected, while the EU network with 607 connections
between the 25 member states of the EU is almost fully
(97.1%) connected.

In Fig. 1 we show the analysis of the EU air travel net-
work using three different clustering coefficients: the un-
weighted clustering coefficient ci of eq. (4) [9], the mixed
weighted clustering coefficient cw

i of eq. (6) with weighted
and unweighted components from the literature [2] and
the clustering coefficient ce

i of eq. (5) derived from the
ensemble approach. These quantities are plotted against
the degree k (in the unweighted case), the strength si for
the mixed approach, and the ensemble degree k̄i in for
the ensemble approach. As this network is almost fully
(97.1%) connected, the difficulty of the unweighted and
mixed approaches becomes apparent: For the unweighted
case, the 25 nodes of the network are mapped to just 7
points, representing the information lost by dropping the
weights. In the mixed case, little can be deduced about
the relationship between the clustering coefficient cw

i and
the strength si. The ensemble approach on the other hand
reveals a clear negative linear relationship between the
ensemble clustering coefficient ce

i of eq. (5) and the en-
semble degree k̄i. Note that the absolute values of the
ensemble clustering coefficient do not mean very much,
as they are dependent on the map M . It is their relative
values which carry the information, and these are largely
independent of the choice of map M , as long as it is bi-
jective. Countries with a large number of air passengers
travelling in and out have a high ensemble degree k̄i but
also a low ensemble clustering coefficient ce

i , as the many
countries they are connected to strongly are mostly not
well-connected themselves. Thus these nodes with low ce

i

are surrounded by few triangles in any given ensemble
realization, but many potential triangles in the form of
pairs of edges. The inverse argument is true for nodes
with a low ensemble degree k̄i, as any two neighbours of
such a node are more likely to be strongly connected. For

example, the two countries at the bottom right of the plot
(high k̄i, low ce

i ) are the UK and Germany, while the top
left corner (low k̄i, high ce

i ) contains Lithuania, Estonia
and Slovakia.

In Fig. 2 we show the analysis of the letter network
using the same three clustering coefficients. As the let-
ter network is less than two-thirds (62.8%) connected,
the unweighted and mixed approaches do not encounter
the difficulties associated with fully connected networks.
However, if there are clusters in the network which are
fully connected on a local scale – such that all neigh-
bours of a given node are fully connected – these ap-
proaches again cannot differentiate any further between
such nodes. In both the unweighted and mixed cases the
letters Q, Z, J and V are affected, as these letters only
have few neighbours, which are fully connected among
themselves, making the unweighted and mixed cluster-
ing coefficients equal to one. In Fig. 2 these four letters
are represented by the four data points on the plateau
which appears in the plots for the unweighted and mixed
measures. No information however is lost with the ensem-
ble approach, which again shows a clear negative linear
relationship between ensemble clustering coefficient and
ensemble degree. As before, the implication of this is that
nodes with many strong connections – in this case the
vowels A, E, I, O and U, which are located at the bot-
tom right of the plots in Fig. 2 – have neighbours which
are weakly connected among each other. These are the
consonants, which are mostly located in the top left cor-
ner (low k̄i, high ce

i ).
Conclusion—We have introduced a general approach

for the construction of measures on weighted networks,
by introducing the concept of an ensemble network, in
which every edge has a probability pij of existing. By
transforming a weighted network into an ensemble net-
work, any of the numerous measures which have been de-
fined for unweighted networks can be straightforwardly
generalized to weighted networks. Using the clustering
coefficient constructed in this way as an example we
demonstrate that these measures on weighted networks
can reveal the additional topological information given in
the weights, in particular for fully connected networks.
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