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Molecular Dynamics

In order to do Molecular Dynamics, we need to (at
least approximately) calculate the force on each atom
due to all other atoms. This is the gradient of the total
energy of the system with respect to the coordinates
of the atom in question.

Empirical Potentials
Pro: O(N), parallelizable
Con: inaccurate, non-transferable, hard to build

Tight-Binding Methods
Pro:accurate, much faster than DFT
Con:O(N3), not parallelizable, non-transferable

DFT
Pro:very accurate, transferable
Con:O(N3) and very slow
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Our aim

Our aim is to develop a universal method for
constructing Empirical Potentials by fitting a nearest
neighbour energy potential to QM data.

Pro:
O(N)
parallelizable
transferable
easy to build
maximum accuracy*

Con:
Nearest neighbour
Size of phase space

*within nearest neighbour approximation
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Empirial Potentials

Task: fit parametrized energy potential function
empirically.

This is an “art” (Brenner), which involves

some level of intuitive chemical insight, considerable
trial-and-error, and significant tenacity

E.g. Stillinger-Weber potential:

ΦSW (r1, . . . , rN) =
N∑

i, j
j > i

f2(
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σ
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∑
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Tight-Binding Methods

In the Tight-Binding scheme the total energy is
given by:

Etot = Ecoh + Erep

where the cohesive part is calculated using an
approximate Hamiltonian matrix H:

Ecoh = tr(ρH)

The elements of H only depend on a parametrized
function of the internuclear distance.
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Local Tight-Binding energies (Csányi)

Recall and rewrite Ecoh:

Ecoh = tr(ρH) =
Norb∑

i=1

(ρH)ii

where Norb is the number of orbitals. Now we
introduce εj such that:

εj =
∑

kj

(ρH)kjkj

where kj runs over the orbitals of atom j. Thus we
can write:

E =
Natoms∑

j=1

εj

so that εj is a form of local energy.
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How local are these energies?

These local energies satisfy the strong locality
assumption [Csányi]:

∇n
xj
∇xi

E → 0 as |xi − xj| → 0 ∀n, i 6= j

But this depends on TB model:
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Nearest Neighbour Localization Errors

How dependent are these local energies on the
neighbourhood?

Keep given neighbourhood fixed, allow the rest to
evolve freely:

Results: Keeping nearest four neighbours fixed the
local energy varies less than 2% (≈ 0.2eV).

8



Distribution of Local Energies

Histogram of local TB energies collected from
configurations sampled during a 5000K Stillinger-
Weber run in Silicon.
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Gaussian Processes

Gaussian Processes allow us to estimate the value
of a function y(x) at a given point xN+1, based on a
set of values {yi} of the function at other points {xi},
i = 1..N .

This is done by first expanding the function y(x) in
terms of a set of basis functions φh(x) with parameters
{wh}:

y(x;w) =
H∑

h=1

whφh(x)

These basis functions can but do not have to be
Gaussian. The reason why the Gaussian process is
called Gaussian is because we place assume a Gaussian
prior on the distribution of {wh}.
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Gaussian Processes (II)

We can then use Bayesian estimation to obtain an
estimate

ŷN+1 = kTC−1
N yN

of the value of the function at position xN+1, where k
is a vector of basis function dot products given by

kj ∝
∫

H

dhφh(xN+1)φh(xj)

with j = 1..N , and CN is a covariance matrix given
by

(CN)ij ∝
∫

H

dhφh(xi)φh(xj)

with i, j = 1..N and the vector yN is given by

yk = y(xk)

with k = 1..N .
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Gaussian Processes (III)

Gaussian Processes are particularly useful as they
also produce a variance for every estimate:

σ2
ŷN+1

= κ− kTC−1
N k

where κ is given by:

κ ∝
∫

H

dhφh(xN+1)φh(xN+1)

Note that the variance does not depend on y(x) at all,
but only on {xi} for i = 1..N .
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Basis Functions: Width

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0  1  2  3  4  5  6  7  8  9
-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0  1  2  3  4  5  6  7  8  9

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0  1  2  3  4  5  6  7  8  9
-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0  1  2  3  4  5  6  7  8  9

Gaussian Basis functions with varying widths:

top left: underlying function
top right: σ = 0.5
bottom left: σ = 1.5
bottom right: σ = 0.1

Basis function has to be narrow enough to capture
features of underlying function and wide enough to
cover space between ’teaching’ points.
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Inferring (From) Derivatives

By using the derivatives of the original basis
functions φh(x), we can:

(a) infer a derivative of a function y(x) from a set
of values of this function {yk}.

(b) infer a function from values of its derivative,
albeit with a constant shift.

The constant shift in (b) can be removed by adding
a single value of the function to be inferred to the
teaching set.
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Inferring (From) Derivatives (II)

-6

-4

-2

 0

 2

 4

 6

 0  1  2  3  4  5  6  7  8  9

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0  1  2  3  4  5  6  7  8  9

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0  1  2  3  4  5  6  7  8  9

A function inferred from a derivative

15



Teaching Point Distributions

An example of how to choose teaching point
distributions efficiently, for a model 2D double-well
potential:
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Teaching Point Distributions (II)

The results:
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GP in MD: Coordinate System

We want to fit the potential in the configuration
space of the four nearest neighbours.

As we expect radial and angular contributions, we
use radii and direction cosines of the bonds between
the central atom and the four nearest neighbours.

In the space of radii we use Gaussian basis
functions, in the space of direction cosines we use
Spherical Harmonics as basis functions.

Using Spherical Harmonics means that the angular
part of the basis function dot product is only dependent
on the angle between the direction cosines.
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Symmetries

Permutation Symmetry

In our configuration space of radii and direction
cosines, 24 points are equivalent to one another, as we
can relabel the four neighbours and should still get the
same energies and forces.

Rotational Symmetry

Our potential function should be invariant under
rotation of the entire configuration. Hence pre-rotate
all configurations such that the first neighbour lies
along the x-axis and the second neighbour lies in the
positive x-y plane.

Mirror Symmetry

We can mirror the system in the x-y plane so that
the third neighbour always lies in the positive z space.
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Implementing Symmetries

The symmetries are implemented inside the
basis functions by generating all 24 permutations
of neighbour labels, pre-rotating & mirroring the
configurations, calculating the dot product and then
summing the 24 contributions:

φ(z1)φT (z2) =
1

(n!)2
∑

ξ1,ξ2∈Ξ

√
π

n
σn

z

× exp
(−(|z1

r,ξ1 − z2
r,ξ2|2)

4σ2
z

)

×
n∏

k=1

∞∑

l=0

2l + 1
4π

Pl(cos γξ1,ξ2
k,R )

cos γξ1,ξ2
k,R = (R1z1

a
k)

ξ1.(R2z2
a
k)

ξ2
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How To Fit A Potential

We can fit a potential by doing the following:

• Run a Stillinger-Weber MD run at high temperature

• At intervals, calculate local Tight-Binding energies
as well as Gaussian Process estimates of
configurations in the simulation cell

• Compare the two for each configuration: If the
difference is greater than a given threshold, teach
the configuration
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Modelling the Fitting Process for an
Exact Potential

If we assume that the physically accessible part of
configuration space is filled by randomly distributed
smaller ’taught’ volumes, we can derive a model in
which the number of teaching points obeys:

NTP = −ln
(
1− xc ln(1− v

V )
)

ln(1− v
V )

where x is the number of teaching iterations and v
V is

the fraction of the configuration space volume filled by
every teaching point.

From this model we can also derive a distribution
of the errors for an exact potential with its width as a
function of teaching iterations given by:

σ =

[√
2

t
erfc−1

(
c

Na[1− xc ln(1− v
V )]

)]−1
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Results (I)
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Results (II)
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Results (III)
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Results (IV)

t/eV T ρ
ρbulk

v
V c

0.25 2000K 1 0.161706 4.83070
0.25 3000K 1 0.0336771 4.41856
0.25 4000K 1 0.0236521 44.7633
0.25 5000K 1 0.00881727 24.9542
0.25 5000K 0.75 0.00586319 29.8565
0.5 5000K 1 0.0341717 32.3293
0.5 5000K 0.75 0.0143356 27.6467

Table of the exact potential model parameters for
various thresholds, temperatures and densities

t/eV ρ
ρbulk

σdata/eV σtheory/eV

0.25 1 0.0856813 0.09059
0.25 0.75 0.0979888 0.09905
0.5 1 0.135018 0.1574
0.5 0.75 0.148017 0.1772

Table of the error distribution widths of the bare
local energy data for 5000K, and the theoretical
predictions derived from the exact potential model
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Modelling a Non-Exact Potential

A potential function with a finite error, such
as the nearest neighbour localization error in Tight-
Binding local energies obeys a different equation for
the teaching point number, namely:

NTP = −ln[(k + c)(1− v
V )−kx − c] + ln k

ln(1− v
V )

the gradient of which tends towards k (instead of zero
as in the exact case) as x → ∞. The width of the
error distribution is given by:

σ =

[√
2

t
erfc−1

(
k

Na[1− c
k+c(1− v

V )kx]

)]−1

which tends towards t[
√

2erfc−1(k/Na)]−1 (instead of
zero as in the exact case) for x →∞.
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Results (V)
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Results (VI)
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Results (VII)

t/eV T ρ
ρbulk

k c v
V

0.25 5000K 1 12.3267 21.9239 0.004070
0.25 5000K 0.75 10.7345 17.1938 0.002184
0.5 5000K 1 1.19629 9.17308 0.007719
0.5 5000K 0.75 1.66906 15.4847 0.005479

Table of the non-exact potential model parameters
for various thresholds, temperatures and densities

t/eV ρ
ρbulk

σdata/eV σtheory/eV

0.25 1 0.193061 0.1918
0.25 0.75 0.188321 0.2054
0.5 1 0.215667 0.2145
0.5 0.75 0.235656 0.2396

Table of the error distribution widths of the non-
bare local energy data for 5000K, and the theoretical
predictions derived from the non-exact potential model
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Conclusion

• The task of fitting a potential to an exact potential
derived from QM calculations is clearly feasible

• < 103 points are sufficient to cover the phase space
of (near-)bulk Silicon at high temperatures

• This method gives an interesting tool for measuring
phase space volumes explored by dynamical systems

Much remains to be done...
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Further Work

• Use averaged instead of bare local energies to obtain
exact potential

• Use forces (already implemented) to run full GP
MD and see how well it does qualitatively and
quantitatively for a wide range of systems

• If universal GP potential proves impossible, can still
use this fitting approach in the context of LOTF
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