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At first sight the claim made by the theory of weak
measurement, proposed in 1988 by Aharonov, Albert
and Vaidman (AAV), seems to contradict the basics of
quantum mechanics:

Quantum mechanical measurement of observables
can, under certain circumstances, yield values which
are not eigenvalues of the observables and can even
lie outside (and far away) from the spectrum of
eigenvalues.

However we will see that this is merely a (possibly
quite useful) extension of Quantum Mechanics rather
than a contradiction to it.
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(Almost) Conventional Quantum
Measurement

In conventional quantum-mechanical measurement
an instantaneous interaction is assumed. If we
introduce a variable ¢, corresponding to the “pointer
position” of our measuring device, and its conjugate
momentum p, then the time dependent interaction
Hamiltonian H; for a measurement at time {3 may be

written as: ) X
H;, =6(t —ty)pA

Now lets assume an initial Gaussian distribution of
width A of the pointer position and momentum states

so that the initial state of the pointer can be written
as:

) = [ explgxz)pdp = [ exp(-A%)ladg
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Measurement Evolution

Hence in the event of measurement the combined
state of quantum system and apparatus |¥)|¢) evolves
as follows:

T)|6) — exp(—i / Fdt)|0)[¢) = exp(—ipA)|T)| o)

Expanding [¥) in terms of the eigenbasis |ag) of
operator A, i.e. |¥) =), aglag), we get:

U)|¢) = > o exp(—ipa)|ax)| @)
k
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Measurement Evolution (cont.)

Using the p representation of ¢ we get:

2

Wl¢) 3 ax [ exp(-ipar) exp(X5)law) pdp
k

We can convert to g representation by inserting I =
J dalq)(ql and noting that (p|q) = exp(ipg):

o)) — Y o / exp(—A%(q — ag)?)|ax)|q)dg
k

which corresponds to a set of Gaussians of width
i, centred around the eigenvalues a;p. A weak
measurement simply means that we let A become

large compared to the spacing of the eigenvalues a;.
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Where does the pointer point?

The probability distribution of the pointer is given by
the squared modulus of the overlap between the total
wavefunction and (q|:

P(g) = (g 3 o / exp(—A%(g — a)?)ax)|)dg’
k

- 5 o expl—28%g o)
k
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Post-Selection

Post-selection means that after the weak
measurement we perform a strong measurement on
the quantum system and select one of the outcomes
Us) = > L ai|ak). (One example would be the
selection of one of the beams emerging from the
Stern-Gerlach apparatus.) Hence the final state of
the measurement apparatus would be:

6) = (Ty|exp(—i / H,dt)| )| ¢)

= Z oy /exp(—Az(q —ax)?)|q)dg
k

which is a sum of Gaussians with complex
coefficients.
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Where does a post-selected pointer
point?

Again the probability distribution of the pointer is
given by the squared modulus of the overlap between
the total wavefunction after post-selection and (q|:

P(q)post = {a] 3 aarf / exp(—A%(q — a)?)|q)dq
k

=) ooy exp(—A%(q — az)?)|?
k

At first this might look quite similar to the non-post-
selected pointer, but it is actually very different:

P(Q)non—post — Z |akz|2 eXp(_2A2(q — a'k)2)
k
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How do Gaussians add?

For simplicity assume two eigenvalues ap = 1 and

ao, = 2 with coefficients a; = 5 and ay = —@, SO:

¥ =2y -Yp

From above we can see that without post-selection our
probability distribution of q is:

Z\ak\ exp(—2A%(q — ax)?)

= Jexp(~2A%(g — 1)%) +  exp(~2A%(g ~ 2)°)
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How do Gaussians add...
...with postselection?

If we post-select, then we are effectively partially
collapsing the state. The probability distribution is
not normalized anymore, as we are only considering
events where the post-selection has been successful.
Consider the post-selected state (where € is small):

v)) = (Lol + (2 - Va9l

which is almost orthogonal to |¥). Then

P(q)post = | ) iy exp(—A%(g — a)?)|?
k

X2 4 S expl(~A%(q - 1))

(Y256 ep(—a(g - 2) P
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width:

sx = v/0.025
sx = V0.1
sx = V0.35
55 = V2.5
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Why is this relevant?

A very good question. After all, we have just
introduced errors into our measurement apparatus, so
what is special about measuring values outside the
eigenspectrum?

The answer is that weak values (i.e. the pointer
positions in the case of large A and appropriate
post-selection) are physically consistent.

This means that for instance, if we perform a weak
measurement of the kinetic energy of an electron
inside a potential well and post-select it to be inside
the barrier (which it could never be in a strong
measurement), then we retrieve the 'correct’ value of
negative kinetic energy.
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Experimental Evidence

In 1990 Ritchie et al. performed a weak measurement
using a Gaussian beam of light polarized at 45° and
then sent through a polarizing beamsplitter.

The two resulting beams were kept very close together
(— overlapping Gaussians) and then post-selected
with a polarization filter oriented very close to —45°.

The photons that hit the detection screen after
postselection were displaced by 120 times the beam
width, relative to the axes of the beams.
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Weak Values and Paradoxes

Weak values can also be used as a better language for
explaining counterfactual paradoxes in quantum
mechanics, although there is an ongoing philosophical
debate about this.

Fact is that the formalism can be used to resolve
Hardy's paradox, which is an elegant proof of the
non-locality of quantum mechanics.

The weak values in this case are negative numbers of
particles in the arms of overlapping interferometers.
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