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troni
 Stru
ture Dis
ussion GroupAugust 27, 2003Sebastian AhnertAt �rst sight the 
laim made by the theory of weakmeasurement, proposed in 1988 by Aharonov, Albertand Vaidman (AAV), seems to 
ontradi
t the basi
s ofquantum me
hani
s:Quantum me
hani
al measurement of observables
an, under 
ertain 
ir
umstan
es, yield values whi
hare not eigenvalues of the observables and 
an evenlie outside (and far away) from the spe
trum ofeigenvalues.However we will see that this is merely a (possiblyquite useful) extension of Quantum Me
hani
s ratherthan a 
ontradi
tion to it.{ Typeset by FoilTEX { 1



(Almost) Conventional QuantumMeasurement
In 
onventional quantum-me
hani
al measurementan instantaneous intera
tion is assumed. If weintrodu
e a variable q̂, 
orresponding to the \pointerposition" of our measuring devi
e, and its 
onjugatemomentum p̂, then the time dependent intera
tionHamiltonian Hi for a measurement at time t0 may bewritten as: Ĥi = Æ(t� t0)p̂ÂNow lets assume an initial Gaussian distribution ofwidth � of the pointer position and momentum statesso that the initial state of the pointer 
an be writtenas:
j�i = Z exp(�p24�2)jpidp = Z exp(��2q2)jqidq
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Measurement Evolution
Hen
e in the event of measurement the 
ombinedstate of quantum system and apparatus j	ij�i evolvesas follows:

j	ij�i ! exp(�i Z Ĥidt)j	ij�i = exp(�ip̂Â)j	ij�i
Expanding j	i in terms of the eigenbasis jaki ofoperator Â, i.e. j	i =Pk �kjaki, we get:

j	ij�i !Xk �k exp(�ip̂ak)jakij�i
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Measurement Evolution (
ont.)
Using the p representation of � we get:
j	ij�i !Xk �k Z exp(�ipak) exp(�p24�2)jakijpidp
We 
an 
onvert to q representation by inserting I =R dqjqihqj and noting that hpjqi = exp(ipq):
j	ij�i !Xk �k Z exp(��2(q � ak)2)jakijqidq
whi
h 
orresponds to a set of Gaussians of width12�, 
entred around the eigenvalues ak. A weakmeasurement simply means that we let � be
omelarge 
ompared to the spa
ing of the eigenvalues ak.{ Typeset by FoilTEX { 4



Where does the pointer point?
The probability distribution of the pointer is given bythe squared modulus of the overlap between the totalwavefun
tion and hqj:
P (q) = jhqjXk �k Z exp(��2(q � ak)2)jakijqidqj2

=Xk j�kj2 exp(�2�2(q � ak)2)
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Post-Sele
tion
Post-sele
tion means that after the weakmeasurement we perform a strong measurement onthe quantum system and sele
t one of the out
omesj	fi = Pk �0kjaki. (One example would be thesele
tion of one of the beams emerging from theStern-Gerla
h apparatus.) Hen
e the �nal state ofthe measurement apparatus would be:

j�fi = h	f j exp(�i Z Ĥidt)j	ij�i
=Xk �k�0�k Z exp(��2(q � ak)2)jqidq

whi
h is a sum of Gaussians with 
omplex
oeÆ
ients.
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Where does a post-sele
ted pointerpoint?
Again the probability distribution of the pointer isgiven by the squared modulus of the overlap betweenthe total wavefun
tion after post-sele
tion and hqj:

P (q)post = jhqjXk �k�0�k Z exp(��2(q � ak)2)jqidqj2
= jXk �k�0�k exp(��2(q � ak)2)j2At �rst this might look quite similar to the non-post-sele
ted pointer, but it is a
tually very di�erent:

P (q)non�post =Xk j�kj2 exp(�2�2(q � ak)2)
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How do Gaussians add?
For simpli
ity assume two eigenvalues a1 = 1 anda2 = 2 with 
oeÆ
ients �1 = 12 and �2 = �p32 , so:

j	i = 12j1i � p32 j2i
From above we 
an see that without post-sele
tion ourprobability distribution of q is:

P (q) =Xk j�kj2 exp(�2�2(q � ak)2)
= 14 exp(�2�2(q � 1)2) + 34 exp(�2�2(q � 2)2)
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How do Gaussians add......with postsele
tion?
If we post-sele
t, then we are e�e
tively partially
ollapsing the state. The probability distribution isnot normalized anymore, as we are only 
onsideringevents where the post-sele
tion has been su

essful.Consider the post-sele
ted state (where � is small):

j	fi = (p32 + �)j1i+ (12 �p3�)j2iwhi
h is almost orthogonal to j	i. ThenP (q)post = jXk �k�0�k exp(��2(q � ak)2)j2
= j(p34 + �2) exp(��2(q � 1)2)�(p34 � 3�2 ) exp(��2(q � 2)2)j2{ Typeset by FoilTEX { 10
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Why is this relevant?
A very good question. After all, we have justintrodu
ed errors into our measurement apparatus, sowhat is spe
ial about measuring values outside theeigenspe
trum?The answer is that weak values (i.e. the pointerpositions in the 
ase of large � and appropriatepost-sele
tion) are physi
ally 
onsistent.This means that for instan
e, if we perform a weakmeasurement of the kineti
 energy of an ele
troninside a potential well and post-sele
t it to be insidethe barrier (whi
h it 
ould never be in a strongmeasurement), then we retrieve the '
orre
t' value ofnegative kineti
 energy.
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Experimental Eviden
e
In 1990 Rit
hie et al. performed a weak measurementusing a Gaussian beam of light polarized at 45o andthen sent through a polarizing beamsplitter.The two resulting beams were kept very 
lose together(! overlapping Gaussians) and then post-sele
tedwith a polarization �lter oriented very 
lose to �45o.The photons that hit the dete
tion s
reen afterpostsele
tion were displa
ed by 120 times the beamwidth, relative to the axes of the beams.
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Weak Values and Paradoxes
Weak values 
an also be used as a better language forexplaining 
ounterfa
tual paradoxes in quantumme
hani
s, although there is an ongoing philosophi
aldebate about this.Fa
t is that the formalism 
an be used to resolveHardy's paradox, whi
h is an elegant proof of thenon-lo
ality of quantum me
hani
s.The weak values in this 
ase are negative numbers ofparti
les in the arms of overlapping interferometers.
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