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Abbreviated Outline

DFT = Density-Functional Theory
not to be confused with Discrete Fourier Transform

TDDFT = Time-Dependent Density-Functional Theory
sometimes just TDFT

TDCDFT = Time-Dependent Current-Density-Functional Theory



Density-Functional Theory

Consider a system of many interacting particles (e.g. electrons):
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Given N and V (r) we have therefore specified:

• the Hamiltonian Ĥ

• all the stationary states, including the ground-state Φ0(r1, r2, . . . , rN)

• expectation values for all observables 〈O〉 = 〈Φ|Ô|Φ〉

• i.e. everything there is to know!

But what’s new?



The Density

One observable is the density – for the ground-state it is:

n0(r) = N

∫ N∏

i=2

d3ri |Φ0(r, r2, . . . , rN)|2

Like all observables, it is unchanged by a shift in the zero of energy because this only
affects the phase of the wavefunctions (if Ĥ′ = Ĥ + ∆ then |Φ′〉 = |Φ〉 exp(−i∆t)).

Ignoring rigid shifts in the potential V (r) there is a one-to-one mapping

V (r) −→ n0(r)



The Hohenberg-Kohn Theorems

P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964).

First: proves that this one-to-one-mapping can be reversed:

V (r) ←→ n0(r)

i.e. give me a (reasonable) density and I can tell you which potential (to within an additive

constant) gives rise to it in the ground-state.

So given n0(r) I can also tell you:

• the number of electrons N =
∫

d3r n0(r)

• the Hamiltonian Ĥ

• the stationary states...

• everything!



Density-Functionals

An interesting subset of “everything” includes the expectation values of energy
operators e.g.

F [n0] = 〈Φ0|T̂ |Φ0〉+ 〈Φ0|Ŵ |Φ0〉
which can be therefore be expressed as a functional of the density.

Second: a variational principle: for a specified external potential Vext(r),

E0 = min
n(r)

{
F [n] +

∫
d3r Vext(r)n(r)

}

Solve:

δ

{
F [n] +

∫
d3r Vext(r)n(r)− µ

(∫
d3r n(r)−N

)}
= 0



But...
We have only established the existence of F [n] – we don’t (yet?) know what it is!

• Explicit density-functionals have not been very successful (except in some simple cases).

• The kinetic energy is the trickiest part.

From R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).



Kohn-Sham Mapping

W. Kohn and L. J. Sham, Phys. Rev. 140, 1133 (1965).

“Shuffle the pack” – F [n] = Ts[n] +
1
2

∫
d3r d3r′

n(r)n(r′)
|r− r′| + Exc[n]

⇒ δTs[n]
δn(r)

+
∫

d3r′
n(r′)
|r− r′| + Vxc(r) + Vext(r)

︸ ︷︷ ︸
= µ

Veff(r)

This is the equation we would get for a system of non-interacting particles moving in
potential Veff(r).

We have mapped the system of interacting particles onto a system of non-interacting
particles with

• the same ground-state density

• but a different (though related) external potential



Kohn-Sham Equations

The non-interacting problem is easy to solve:

[
−1

2
∇2 + Veff(r)

]
ψi(r) = εiψi(r)

where

n0(r) =
N∑

i=1

|ψi(r)|2

and

Ts[n] = −1
2

N∑

i=1

∫
d3r ψ∗i (r)∇2ψi(r)

• Since Veff(r) is density-dependent, we need to solve these equations self-consistently.

• The problem of evaluating the kinetic energy from the density is overcome...

• ...but the buck has just been passed to Exc[n]!



Local Density Approximation

Exc[n] =
∫

d3r εhom
xc (n(r)) n(r)

• Exc[n] for the homogeneous electron gas is known from Quantum Monte Carlo
D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980),

• and their results have been parametrised
J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).



Successes

The LDA has no right to succeed:
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Exact Conditions

• Exchange-correlation hole sum rule:

∫
d3r′ nxc(r, r′) = −1

• Exc[n] depends only weakly on the shape of the exchange-correlation hole

• Newton’s Third Law:

∫
d3r n(r)∇Vxc(r) = 0

∫
d3r n(r) r×∇Vxc(r) = 0



Failures

• Self-interaction (c.f. Hartree-Fock) – for the hydrogen atom:

◦ Veff(r) = −1
r◦ therefore Vxc(r) = −VH(r)

◦ ELDA
0 = -0.89 Ry

• The “band-gap” problem:

◦ ‘Kohn-Sham eigenvalues have no physical significance.’
◦ Sham-Schlüter equation relates Vxc(r) to thr self-energy of many-body theory

G. L. Zhao, D. Bagayoko and T. D. Williams (unpublished)



Time-Dependent Density-Functional Theory

Why the excitement?

• Study time-dependent phenomena e.g. response of atoms to intense laser pulses
(electromagnetic field strengths comparable to electron-nuclear field).

• Study excited states of a system e.g. He atom:

M. Petersilka (unpublished)



Response Functions
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When subject to an applied time-dependent voltage V (t) = V0 exp(iωt), the above
circuit responds with a current I(t) = I0 exp(iωt) where the response is characterised
by an impedance Z given by:

Z(ω) =
V0

I0
= R + i

(
ωL− 1

ωC

)



Resonance and Excitation

The undamped system (R = 0) can respond without applied voltage at the
frequency ω where:

|Z(ω)| =
√

R2 +
(

ωL− 1
ωC

)2
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For a system of electrons, TDDFT allows us to calculate the response of the density
to a time-dependent perturbing potential at frequency ω. The response function has
poles at all the excitation energies of the system.



Time-Dependent Density-Functional Theory

The Runge-Gross theorem E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984)

establishes the one-to-one mapping between time-dependent densities and potentials
(analogous to the Hohenberg-Kohn theorem).

The density-density response function χ(r, r′, ω) gives the density response of the
system to a time-dependent perturbation δVext(r, ω) exp(−iωt):

δn(r, ω) =
∫

d3r′ χ(r, r′, ω)δVext(r′, ω)

The Runge-Gross theorem means we can make the mapping across to an equivalent
non-interacting system which will be perturbed by:

δVeff(r, ω) = δVext(r, ω) +
∫

d3r′
δn(r′, ω)
|r− r′| +

∫
d3r′ fxc(r, r′, ω)δn(r′, ω)



Exchange-Correlation Kernel

The exchange-correlation kernel fxc(r, r′, ω) is defined in the linear response regime
by:

fxc(r, r′, t− t′) =
δVxc(r, t)
δn(r′, t′)

∣∣∣∣
n0(r)

which can be Fourier transformed to get fxc(r, r′, ω).

Note that the exchange-correlation potential can respond to all past density-
fluctuations over all space: the kernel is nonlocal in both space and time.

The analogy to a local density approximation in the time domain is an adiabatic
approximation which makes the exchange-correlation kernel frequency-independent.



Calculating the Response Function

Denote the density-density response function for the non-interacting system by
χ0(r, r′, ω) we can put everything together:

χ−1
0 (r, r′, ω) =

δVeff(r, ω)
δn(r′, ω)

=
δVext(r, ω)
δn(r′, ω)

+
δVH(r, ω)
δn(r′, ω)

+ fxc(r, r′, ω)

= χ−1(r, r′, ω) +
1

|r− r′| + fxc(r, r′, ω)

The same quantity can also be calculated from the Kohn-Sham orbitals {ψi(r)}:

χ−1
0 (r, r′, ω) =

∑

jk

(fk − fj)
ψj(r)ψ∗k(r)ψ

∗
j (r

′)ψk(r′)
ω − (εj − εk) + iη

A static calculation gives us the information we need.



Exact Conditions

• fxc(r, r′, t− t′) = 0 for t < t′

• As ω →∞, fxc(r, r′, ω) approaches a real function

• fxc(r, r′, ω)− fxc(r, r′,∞) satisfies Kramers-Kronig relations

• fxc(r, r′, ω) = f∗xc(r, r
′,−ω)

• fxc(r, r′, ω) = fxc(r′, r, ω)



Newton’s Third Law again

• Recall ∫
d3r n(r)∇Vxc(r) = 0

• Take functional derivative with respect to n(r’):

∇′Vxc(r′) +
∫

d3r n(r)∇fxc(r, r′, ω) = 0

• Multiply by n(r′) and integrate over r′:
∫

d3r

∫
d3r′ n(r)n(r′)∇fxc(r, r′, ω) = 0

• Similarly ∫
d3r

∫
d3r′ n(r)n(r′) r×∇fxc(r, r′, ω) = 0



Translational invariance

• Consider a rigid boost R(t) of a static density n(r):

n′(r, t) = n(r−R(t)), R(0) = 0

• The exchange-correlation potential must satisfy:

Vxc[n′](r, t) = Vxc[n](r−R(t))

• Universally valid, though first discovered for the special case of a harmonic external
potential driven by force F(t) where R(t) is the classical motion: harmonic potential
theorem.



Adiabatic LDA

The simplest approximation for the exchange-correlation kernel:

fxc(r, r′, ω) = δ(r− r′)
d

dn2

[
nεhom

xc (n)
]∣∣∣∣

n=n0(r)

• Local in space

• Frequency independent

• i.e. local in time

Again, what right has such a simple approximation to succeed?



Successes and Failures

Good results for isolated systems (atoms and small molecules) e.g. excitation energies
of atoms.

• Satisfies all exact conditions (crudely)...

• ... except the frequency-dependent response of the homogeneous electron gas

Bad for extended systems e.g. long molecular chains – overestimates polarisabilities
along the chain.



Frequency-dependent LDA

Response of the homogeneous electron gas fhom
xc (n, |r− r′|, ω) is:

• Non-local in space

• Frequency dependent

Ambiguity in making a local approximation: do we evaluate the density n at r or r′?

In the limit that the wavelength of the density perturbation exceeds the range of
fxc(n, |r− r′|, ω) it doesn’t matter!

fGK
xc [n](r, r′, ω) = δ(r− r′)fhom

xc (n(r), q = 0, ω)

Compare
fALDA
xc [n](r, r′, ω) = δ(r− r′)fhom

xc (n(r), q = 0, ω = 0)



Fluid Dynamics

• Frequency-dependent response of the homogeneous electron gas is recovered...

• ...but several other exact conditions (e.g. translational invariance) are violated!

• Make an analogy with fluid dynamics:

u(r, t) =
j(r, t)
n(r, t)

• Substitute in the (linearised) continuity equation
∂n(r, t)

∂t
= −∇ · j(r, t) to get:

∂δn(r, t)
∂t

= −n0(r)∇ · u(r, t)− u(r, t) · ∇n0(r)

◦ First term is compressive – frequency-dependent
◦ Second term is rigid – frequency-independent



Time-Dependent Current-Density-Functional Theory

One of the most promising recent developments.
(See also the local-with-memory density approximation, 1D only so far).

• Recall: ∫
d3r n(r)∇fxc(r, r′, ω) = −∇′Vxc(r′)

• For a sufficiently slowly varying density, fxc(r, r′, ω) can be replaced by the (short-
ranged) homogeneous electron gas limit:

fhom
xc (n(r), q = 0, ω)∇n(r) = ∇Vxc(r)

• Impossible since the right-hand side is frequency-independent!

• The exchange-correlation kernel for an inhomogeneous system must be long-ranged
and non-local



Example: Molecular Chains

E

+−

• External field induces charges at the end points of the chain

• Influence of these charges should result in a counteracting exchange-correlation
potential along the chain

• But local approximations can’t see these charges!

• Hence the polarisability is overestimated by the ALDA

• Need an ultra-non-local exchange-correlation functional



Enter the Current Density

G. Vignale and W. Kohn, Phys. Rev. Lett. 77, 2037 (1996).

• Current must flow to establish the induced charges

• The local current tells us about non-local changes in the density

• Can replace the ultra-non-local density approximation by a local current density
approximation

• Satisifes exact conditions

• Caveat: only valid for high frequencies

• But when did that ever stop us?



Results

M. van Faassen et al., Phys. Rev. Lett. 88, 186401 (2002).


