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Abbreviated Outline

DFT = Density-Functional Theory

not to be confused with Discrete Fourier Transform

TDDFT Time-Dependent Density-Functional Theory

sometimes just TDFT

TDCDFT = Time-Dependent Current-Density-Functional Theory



Density-Functional Theory

Consider a system of many interacting particles (e.g. electrons):
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Given N and V (r) we have therefore specified:

e the Hamiltonian H
e all the stationary states, including the ground-state ®4(ry,ra,...,ryN)
e expectation values for all observables (O) = ($|O|®)

e i.e. everything there is to know!

But what’s new?



The Density

One observable is the density — for the ground-state it is:

N
no(I') = N/HdBTz ‘(I)()(I',I'Q, ne 7rN)|2
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Like all observables, it is unchanged by a shift in the zero of energy because this only
affects the phase of the wavefunctions (f &/ = & + A then |®') = |®) exp(—iAt)).

lgnoring rigid shifts in the potential V' (r) there is a one-to-one mapping

V(r) — no(r)



The Hohenberg-Kohn Theorems

P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964).

First: proves that this one-to-one-mapping can be reversed:
V(r) «— no(r)

l.e. give me a (reasonable) density and | can tell you which potential (to within an additive
constant) gives rise to it in the ground-state.

So given ng(r) | can also tell you:

e the number of electrons N = /d3r no(r)

e the Hamiltonian H
e the stationary states...

e everything!



Density-Functionals

An interesting subset of “everything” includes the expectation values of energy
operators e.g. ) )
Flng| = (Po|T[®o) + (Po|W|Po)

which can be therefore be expressed as a functional of the density.

Second: a variational principle: for a specified external potential Vi, (r),

Ey = ]%1 {F[n] + / d>r Vext(r)n(r)}

) {F[n] + /d?’r Vet (T)0 (1) — 1 (/ d>rn(r) — N) } =0

Solve:



But...

We have only established the existence of F'[n] — we don't (vt7) know what it is!
e Explicit density-functionals have not been very successful (except in some simple cases).

e The kinetic energy is the trickiest part.
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From R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).



Kohn-Sham Mapping

W. Kohn and L. J. Sham, Phys. Rev. 140, 1133 (1965).

1 /
“Shuffle the pack” — F[n| = Tg[n] + 5 / d°r d>r’ n‘(r)n(ﬂ) + Fyc[n]
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This is the equation we would get for a system of non-interacting particles moving in
potential V.g(r).

We have mapped the system of interacting particles onto a system of non-interacting
particles with

e the same ground-state density

e but a different (though related) external potential



Kohn-Sham Equations

The non-interacting problem is easy to solve:
-
—§V + Vet (r) | ¢hi(r) = eiti(r)

where N
no(r) = Y |ibi(r)|”
i=1
and

Ts[n] = —%Z/d?’r V¥ (r) V3, (r)

e Since V(1) is density-dependent, we need to solve these equations self-consistently.
e The problem of evaluating the kinetic energy from the density is overcome...

e ...but the buck has just been passed to E.|n|!



Local Density Approximation

Ereln] = / BBr oM (n(x)) n(r)

e F..[n| for the homogeneous electron gas is known from Quantum Monte Carlo
D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (19380),

e and their results have been parametrised
J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).



Successes

The LDA has no right to succeed:

Charge density in (001) plane Homogeneous electron gas
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Exact Conditions

e Exchange-correlation hole sum rule:
3,./ /
/d T Nye(r, ') = —1

e F..|n] depends only weakly on the shape of the exchange-correlation hole

e Newton’'s Third Law:

/ Ern(r)VV(r) = 0

/ Ern(r)r x VVi(r) = 0



Failures

e Self-interaction (c.f. Hartree-Fock) — for the hydrogen atom:

1
o Ver(r) = T

o therefore Vi.(r) = —Vi(r)
o ELPA — _0.89 Ry

e The “"band-gap” problem:

o ‘Kohn-Sham eigenvalues have no physical significance.’
o Sham-Schliiter equation relates Vi.(r) to thr self-energy of many-body theory
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Time-Dependent Density-Functional Theory

Why the excitement?

e Study time-dependent phenomena e.g. response of atoms to intense laser pulses
(electromagnetic field strengths comparable to electron-nuclear field).

e Study excited states of a system e.g. He atom:
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Response Functions

L |(|3 R
I
W)

When subject to an applied time-dependent voltage V (t) = Vpexp(iwt), the above
circuit responds with a current I(t) = Ipexp(iwt) where the response is characterised
by an impedance Z given by:



Resonance and Excitation

The undamped system (R = 0) can respond without applied voltage at the

frequency w where:
1\2
Z(w) \/ +(oL-5)

— Nodamping
Light damping
— Heavy damping

1/72
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For a system of electrons, TDDFT allows us to calculate the response of the density
to a time-dependent perturbing potential at frequency w. The response function has
poles at all the excitation energies of the system.



Time-Dependent Density-Functional Theory

The Runge-Gross theorem E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984)
establishes the one-to-one mapping between time-dependent densities and potentials
(analogous to the Hohenberg-Kohn theorem).

The density-density response function x(r,r’,w) gives the density response of the
system to a time-dependent perturbation V¢ (r,w) exp(—iwt):

on(r,w) = /d?’r’x(r,r’,w)ﬂfext(r’,w)

The Runge-Gross theorem means we can make the mapping across to an equivalent
non-interacting system which will be perturbed by:

on(r',w)

v — 1

Ve (r,w) = Ve (r,w) +/d3r’ +/d3r’ fxe(r, v’ w)on(r',w)



Exchange-Correlation Kernel

The exchange-correlation kernel fy.(r,r’,w) is defined in the linear response regime
by:

OVie(r, 1)
/ . / — Y
fXC(r7 r 9 t t ) 5’]’[,(1'/’ t/)

which can be Fourier transformed to get fy.(r,r’,w).

no(r)

Note that the exchange-correlation potential can respond to all past density-
fluctuations over all space: the kernel is nonlocal in both space and time.

The analogy to a local density approximation in the time domain is an adiabatic
approximation which makes the exchange-correlation kernel frequency-independent.



Calculating the Response Function

Denote the density-density response function for the non-interacting system by
Xo(r,r’;w) we can put everything together:

N OVeg(r, w) WWoxt(r,w)  0Vu(r,w)

1 / L ) . ) ’ /

Xo (1,1 w) = on(r',w)  on(r,w) on(r',w) t fre(r, s )
— X_l(ra rlaw) + + fXC(r7 I",W)

v -1
The same quantity can also be calculated from the Kohn-Sham orbitals {;(r)}:

(1) ()5 (r') i (r)
w — (Ej—8k)—|—i77

Xo (r v w) =) (fu — f))

7k

A static calculation gives us the information we need.



Exact Conditions

o fic(r,x/ t—t)=0fort <t

o As w — 00, fxe(r,r',w) approaches a real function

o fio(r, v w) — fyre(r,r’, 00) satisfies Kramers-Kronig relations
o feelr,tw) = fro(r,1, —w)

o fic(r,r W)= fr(r' r ,w)



Recall

Newton’s Third Law again

/d?’r n(r)VVi(r) =0

Take functional derivative with respect to n(r’):

V'V () + / EBr )V fue(r, 1, w) = 0

Multiply by n(r’) and integrate over r’

Similarly

/d3 /dgr’n ')V fee(r, ', w) =0

/d3'r' /d?’r’n(r)n(r’) r X Vfe(r,r',w) =0



Translational invariance

e Consider a rigid boost R(t) of a static density n(r):

e Universally valid, though first discovered for the special case of a harmonic external
potential driven by force F(t) where R/(%) is the classical motion: harmonic potential
theorem.



Adiabatic LDA

The simplest approximation for the exchange-correlation kernel:

d

fXC(r7 rla CU) — (5(1‘ T I'/) % [neggm(n)] nero(®)

e Local in space
e Frequency independent

e i.e. local in time

Again, what right has such a simple approximation to succeed?



Successes and Failures

Good results for isolated systems (atoms and small molecules) e.g. excitation energies
of atoms.

e Satisfies all exact conditions (crudely)...

e ... except the frequency-dependent response of the homogeneous electron gas

Bad for extended systems e.g. long molecular chains — overestimates polarisabilities
along the chain.



Frequency-dependent LDA

hom

Response of the homogeneous electron gas f2™(n, |r — r'|,w) is:

e Non-local in space

e Frequency dependent

Ambiguity in making a local approximation: do we evaluate the density n at r or r'?

In the limit that the wavelength of the density perturbation exceeds the range of
fxe(n, |r —r'|,w) it doesn't matter!

e [n)(r,r'w) = 6(r — 1) o™ (n(r), g = O, w)

XC XC

Compare
FALDAI (v 1 w) = 6(r — ') fR%(n(r), ¢ = 0,w = 0)

XC XC



Fluid Dynamics

Frequency-dependent response of the homogeneous electron gas is recovered...
...but several other exact conditions (e.g. translational invariance) are violated!
Make an analogy with fluid dynamics:
j(r, ¢
a(r. ) = j(r,¢)
n(r,1)
. . On(r,t .
Substitute in the (linearised) continuity equation ét ) = —V -j(r,t) to get:
don(r,t
59(t ) = —no(r)V -u(r,t) —u(r,t) - Vng(r)

o First term is compressive — frequency-dependent
o Second term is rigid — frequency-independent



Time-Dependent Current-Density-Functional Theory

One of the most promising recent developments.
(See also the local-with-memory density approximation, 1D only so far).

e Recall:
/d?’r n(r)V fxe(r, v, w) = =V’ Vi (1))

e For a sufficiently slowly varying density, fyc(r,r’,w) can be replaced by the (short-
ranged) homogeneous electron gas limit:

fee™(n(r), q = 0,w)Vn(r) = VVi(r)

XC

e Impossible since the right-hand side is frequency-independent!

e The exchange-correlation kernel for an inhomogeneous system must be long-ranged
and non-local



Example: Molecular Chains

=@

External field induces charges at the end points of the chain

Influence of these charges should result in a counteracting exchange-correlation
potential along the chain

But local approximations can't see these charges!
Hence the polarisability is overestimated by the ALDA

Need an ultra-non-local exchange-correlation functional



Enter the Current Density

G. Vignale and W. Kohn, Phys. Rev. Lett. 77, 2037 (1996).

Current must flow to establish the induced charges
The local current tells us about non-local changes in the density

Can replace the ultra-non-local density approximation by a local current density
approximation

Satisifes exact conditions
Caveat: only valid for high frequencies

But when did that ever stop us?



Results
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FIG. 1. ALDA and VK static axial polarizability of polyacety-
lene compared with restricted Hartree-Fock [18] and MP2 [22]
results.

M. van Faassen et al., Phys. Rev. Lett. 88, 186401 (2002).



