Motivation

We want to solve Schrodinger’s equation:
—5VY(r) + V(r)i(r) = ey (r)
e Kinetic energy operator is diagonal in momentum-space

e Potential operator is diagonal in real-space

= need to be able to switch between momentum- and real-space representations
I.e. perform Fourier transforms.



Fourier series

e Bloch’s theorem:
() = exp(ik - r)u(r)
where uy(r) is cell-periodic i.e. ux(r + R) = ux(r) for any lattice vector R.

= Expand uy(r) as a Fourier series:

ur(r) =Y a(G) exp(iG - 1)

where GG denotes a reciprocal lattice vector.

e Fourier inversion theorem gives:

1
c(G) = Vo oo dr uk(r) exp(—iG - r)



Discrete Fourier transforms

e In practice, we sample uy(r) discretely on a uniform grid of N points {r,}:

u(rn) = Y adG)exp(iG - ry)

Al@) = > uk(r,) exp(—iG - x,)

I'n

e The sum over reciprocal lattice vectors (G now only runs over those below the
Nyquist frequency determined by the real-space grid.

e Although these results are an approximation to the continuous Fourier series,
the above inversion theorem is exact.



Slow Fourier Transforms

Consider a general 1D Fourier transform relating two vectors of length n:

o {x;;0 <k < n} contains the values in real-space

e {X};0 <k < n} contains the frequency components

n—1

Xi = MU exp(—2mikj/n)z;

i=0

This is just a matrix-vector multiplication X = Fj;x;

o Fi, = lexp(—27i/n)]" = whi

n

e A straightforward implementation requires O(n?) operations.



Danielson-Lanczos Lemma

G. C. Danielson and C. Lanczos, “Some improvements in practical Fourier analysis and their
application to X-ray scattering from liquids”, J. Franklin Inst. 233, 365 (1942).
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Fast Fourier Transforms

J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier
series”, Math. Comput. 19, 297 (1965).

e [ he Danielson-Lanczos lemma enables us to write a discrete Fourier transform
(DFT) of length n as a combination of two DFTs of length n /2.

e If n is a power of 2, we may apply this lemma recursively until we require
log, 1 trivial DFTs of length 1.

e The cost is therefore O(nlog,n) instead of O(n?) which for n ~ 10000 is
roughly 1000 times faster.

e This result can be generalised for the case when n contains prime factors other
than 2.



3D Fourier Transforms
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e The product of three 1D DFTs.
e The 1D DFTs commute with each other.

e Different stages of the 1D DFTs may also be interlaced.



Traditional Parallel Fast Fourier Transforms
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New Parallel Fast Fourier Transforms
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Alternative Distribution
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Cost comparison

e Computational costs are identical.

e Communication patterns between nodes are very different:

— Traditional method has two transposition phases in which each node
communicates with every other node.
— New method has log, n phases in which only pairs of nodes communicate.



Cost modelling

The time cost to transfer a data packet between two nodes consists of two parts:

e A fixed overhead or latency, o, which is independent of the amount of data
sent.

e The time to transmit the data between the nodes, which depends upon the
bandwidth of the connection, 3, and the size of the data packet.

Notation:

o n =ng,n,n, is the full FFT grid size.

e [he number of nodes is V.



Cost for traditional method

We can get each node to communicate with every other node in N — 1 stages in
which N/2 pairs of nodes simultaneously exchange packets of size nu/N? where
u is the size of a single data element (16 bytes for double precision complex).

nu
BN?

Tirad = 2(N —1) |a+

nu
2 |laN + —
Qv +Q>\

2



Cost for new method

There are now log, N pairwise communication phases in which packets of size

nu/N are exchanged.

Tnew = 1085 N | + %

e Fewer packets exchanged = lower latency cost.

e Larger packets exchanged = higher transmission cost.

Expect the new method to be advantageous in the limits of small n and large V.

Exact cross-over depends upon the machine: the product a5 determines the
packet size which costs as much in latency as transmission to send.
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Load balancing

Cutoff sphere in momentum-space.



Application to O(N) methods
p(r,r') = Ga(r) K*Fep(r')
of

0










Advantages of the new FFT method

e Exploits localization in real-space: no need to do the initial 3D FFT on subcells
not overlapping a function in the FFT box.

e Can store the intermediate stage of the FFT in the same amount of memory
as in real-space e.g. for calculating the density:

n(r) =2)  ¢a(r)Ks(r)
o

where the functions {¢,(r)} must be Fourier interpolated before their product
is calculated.



