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Chapter 1

Introduction

1.1 Theories and models in condensed matter physics

Solid state physics is concerned with the abundance of properties that arise
when atoms are amalgamated together. Much of what we think of as “core
physics” is deliberately reductionist; we look for the very simplest unified
description of a basic phenomenon, and the progress of much of basic physics
has always been a progress toward grander unified theories, each of which is
simpler (at least in concept) than the previous generation.

Condensed matter physics is not like this. The Hamiltonian is not in
doubt - it is the Schrödinger equation for the many particle system:

Helec = −
∑

i

h̄2

2m
∇2

i+
∑

I

P 2
I

2MI
+
∑

i,I

ZIe
2

|ri −RI |
+
1

2

∑

i6=j

e2

|ri − rj |
+
1

2

∑

I 6=J

ZIZJe
2

|Ri −Rj |
,

(1.1)
where the ri,RI label the coordinates of the electrons and the ions respec-
tively, ZI ,MI are the nuclear charge and mass. The terms in Eq. (1.1) rep-
resent, in order, the kinetic energy of the electrons, the kinetic energy of the
nuclei, and the Coulomb interaction between electron and nucleus, electron
and electron, and between nucleus and nucleus. In some sense, a complete
theory of solids would be to solve the Schrodinger equation and then apply
all the standard methods of statistical physics to determine thermodynamic
and physical properties. From this point of view, there is no “fundamental”
theory to be done, although the calculations may indeed be complex (and
in fact, impossible to perform exactly for solids with macroscopic numbers
of atoms). Because an exact solution for a macroscopic number of atoms
is impossible, we have to treat Eq. (1.1) by a sequence of approximations
(for example, perhaps fixing the ions in place, or neglecting electron-electron
interactions) that will make the problem tractable.

This view of condensed matter physics as a series of approximations that
is widely held and severely incomplete. Suppose for a moment that we could
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8 CHAPTER 1. INTRODUCTION

solve the full Hamiltonian, and we would then have a wavefunction describ-
ing some 1023 particles that contained all of the physics of solids. Writing
the solution down would be hard enough, but comprehending its meaning
would be beyond us. Condensed matter physics is about phenomena, from
the mundane (why is glass transparent), to the exotic (why does 3He become
a superfluid). There are a host of physical phenomena to be understood,
and their explanation must involve more than just detailed calculation.

Understanding a phenomenon involves building the simplest possible
model that explains it, but the models are more than just approximations
to Eq. (1.1). Models, and the theories which they give rise to, elucidate
paradigms and develop concepts that are obscured by the complexity of the
full Hamiltonian. The surprise about condensed matter physics is that there
are so many different theories that can arise from such an unprepossessing
Hamiltonian as Eq. (1.1).

1.1.1 “The Properties of MatterÔ

A venerable route to condensed matter physics, and one followed by almost
all textbooks, is to find ways of making approximate calculations based
on the full Schrödinger equation for the solid. Making approximate, but
quantitative calculations of the physical properties of solids has been one of
the enduring agendas of condensed matter physics and the methods have
acquired increasing sophistication over the years. We would like to under-
stand the cohesion of solids – why it is, for example that mercury is a liquid
at room temperature, while tungsten is refractory. We wish to understand
electrical and optical properties – why graphite is a soft semi-metal but
diamond a hard insulator, and why GaAs is suitable for making a semicon-
ductor laser, but Si is not. Why is it that some materials are ferromagnetic,
and indeed why is it that transition metals are often magnetic but simple
s-p bonded metals never? We would like to understand chemical trends in
different classes of materials – how properties vary smoothly (or not) across
the periodic table. These, and many other physical properties we now know
how to calculate with considerable accuracy by sophisticated computational
techniques, but more importantly (and especially for the purposes of this
course) we can understand the behaviour straightforwardly, and describe
the physical properties in a natural fashion.

To get this understanding we need to develop the basic machinery of
the quantum mechanics of periodic structures, especially the concept of
electronic bandstructure describing the dispersion relation between the elec-
tron’s energy and momentum. We also need to understand how the largest
effects of interactions between electrons can be subsumed into averaged ef-
fective interactions between independent quasiparticles and the background
medium. A large part (and certainly the initial part) of this course will be
to set up this fundamental machinery.
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This is a tidy scheme, but it will get us only part way to the goal. It
will generate for us a landscape upon which we can build new models and
new theories.

1.1.2 Collective phenomena

There is another view of condensed matter physics which we shall also ex-
plore, that is less concerned with calculation and more concerned with phe-
nomena per se. The distinguishing character of solid state systems is that
they exhibit collective phenomena, that are properties of macroscopic sys-
tems and that exist only on account of the many-degree-of-freedom nature
of the system.

A familiar example is a phase transition (between liquid and solid, say)
which is a concept that can only apply to a macroscopic ensemble. Con-
densed matter systems have collective modes that are a consequence of their
order; both a solid and a liquid support longitudinal sound waves, but a solid
that has a nonzero shear stiffness has also transverse sound modes. In fact
the existence of shear waves we might choose to define as the characteristic
feature distinguishing a solid from a liquid or gas. We can say that solidity
is a broken symmetry (with the symmetry being broken that of transla-
tional invariance); because of the broken symmetry, there is a new collective
mode (the shear wave). Because of quantum mechanics, the waves are nec-
essarily quantised as phonons, and they are a true quantum particle, with
Bose statistics, that interact with each other (due to anharmonicity) and
also with other excitations in the solid. This idea, that a broken symmetry
can generate new particles, is one of the central notions of condensed matter
physics – and of course of particle physics too.

A different example is the behaviour of electrons in a semiconductor.
If one adds an electron into the conduction band of a semiconductor it
behaves like a particle of charge −|e|, but a mass different from the free
electron mass due to the interaction with the lattice of positively charge
ions as well as all the other electrons in the solid. But we know that if we
remove an electron from the valence band of the semiconductor, it acts as a
hole of charge +|e|; the hole is in fact a collective excitation of the remaining
1023 or so electrons in the valence band, but it is a much more convenient
and accurate description to think of it as a new fermionic quasi-particle
as an excitation about the ground state of the solid. The electrons and
holes, being oppositely charged, can even bind together to form an exciton
- the analog of the hydrogen atom (or more directly positronium), which
however has a binding energy considerably reduced from hydrogen, because
the Coulomb interaction is screened by the dielectric constant of the solid,
and the electron and hole masses are different from the electron and proton
in free space.

The solid is a new “vacuum”, inhabited by quantum particles with prop-
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erties which may be renormalised from those in free space (e.g. photons,
electrons) or may be entirely new, as in the case of phonons, plasmons
(longitudinal charge oscillations), magnons (waves of spin excitation in a
magnet), etc. In contrast to the physical vacuum, there are different classes
of condensed matter systems which have different kinds of vacua, and dif-
ferent kinds of excitations. Many of these new excitations arise because of
some “broken” symmetry , for example, magnetism implies the existence of
spin waves, and solidity implies the existence of shear waves. Some of these
phenomena – superconductivity, superfluidity, and the quantum Hall effect
come to mind – are remarkable and hardly intuitive. They were discovered
by experiment; it seems unlikely that they would ever have been uncovered
by an exercise of pure cerebration starting with the Schrodinger equation
for 1020 particles.

Solid state systems consist of a hierarchy of processes, moving from high
energy to low; on the scale of electron volts per atom are determined the
cohesive energy of the solid, (usually) the crystal structure, whether the
material is transparent or not to visible light, whether the electrons are (lo-
cally) magnetically polarised, and so on. But after this basic landscape is
determined, many further phenomena develop on energy scales measured
in meV that correspond to thermal energies at room temperature and be-
low. The energy scales that determine magnetism, superconductivity, etc.
are usually several orders of magnitude smaller than cohesive energies, and
the accuracy required of an ab initio calculation would be prohibitive to
explain them. Although all condensed matter phenomena are undoubtedly
to be found within the Schrödinger equation, they are not transparently
derived from it, and it is of course better to start with specific models that
incorporate the key physics; we shall see many of them. These models will
usually be simply of interactions between excitations of the solid, with sets
of parameters to describe them – parameters which are usually estimated,
or derived from experiment.

1.2 Outline of the course.

This course breaks up into several sections that have different goals, but
largely interrelated material.

In the first chapters, we will discuss the landscape of condensed matter
physics, and introduce the basic tools of band theory applied to periodic
solids. Much of this will be done within the "independent particle" approx-
imation applied to the electrons, but we will also address the limitations of
this approach, as well as its successes. However, the fundamental electronic
structure of solids is the basis on which everything else is constructed.

We will then shift perspective to take a view of solids in terms of their
collective behaviour. Nearly all of the measurements that one can make on
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a system can be viewed as measuring the response of the solid to an external
perturbation – for example, with light one measures the dielectric response
to an applied oscillating electric field. When the perturbation is weak, this
behaviour can be formulated in terms of a linear response function, and this
linear response function also tells us about collective modes of oscillation.

Lastly, we shall survey just a few of the occasionally surprising collective
phenomena that occur in condensed matter systems.

1.3 Books

There are many good books on solid state and condensed matter physics,
but the subject is rich and diverse enough that each of these contains both
much more and much less than the topics covered in this course. The two
classic textbooks are Kittel, and Ashcroft and Mermin. These are both at
the correct level of the course, and have the virtue of clear exposition, many
examples, and lots of experimental data. Slightly more concise, and a little
more formal in places is Ziman. Grosso and Parravicini has a somewhat
wider coverage of material, but much of it goes well beyond the level of
detail required for this course. Marder is at about the right level (though
again with more detail than we shall need), and has a nice blend of quantum
properties with statistical and classical properties.

• C.Kittel, Introduction to Solid State Physics, 7th edition, Wiley,
NY, 1996 .

• N.W.Ashcroft and N.D.Mermin, Solid State Physics, Holt-Saunders
International Editions, 1976.

• J.M.Ziman, Principles of the Theory of Solids, CUP, Cambridge,
1972.

• M.P. Marder, Condensed Matter Physics, Wiley, NY, 2000.

• G.Grosso and G.P.Parravicini, Solid State Physics, AP, NY, 2000.

• A very good book, though with a focus on statistical and “soft” con-
densed matter that makes it not so relevant for this course, is
P.M.Chaikin and T.Lubensky, Principles of Condensed Matter Physics,
CUP, Cambridge, 1995.

Some more specialised texts, all going well beyond the needs of this
course:

• On superconductivity:
Tinkham, Introduction to Superconductivity, McGraw Hill, 1975.
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• On metal-insulator transitions and strongly correlated systems in gen-
eral - from an experimental viewpoint not too overburdened with the-
ory:
N. Mott, Metal-Insulator Transitions, Taylor and Francis, London,
1990.

• On semiconductor structure and bonding:
J.C.Phillips, Bonds and Bands in Semiconductors, AP, NY 1973.

• Two books with more formal discussions of the many-body problem,
for those of a theoretical inclination, and not for this course:
S.Doniach and E.H. Sondheimer, Green’s functions for Solid State
Physicists, 2nd Edition, Imperial College Press, 1998.
G.Rickayzen, Green’s functions and condensed matter, AP, NY,
1980.

1.4 These notes

These notes are designed as a complement to the lectures, and as a comple-
ment to reference books. They are not to be memorised for examination:
often they include detailed derivations that are there to satisfy the curious,
for completeness, and for background. The lectures will be presented using
more qualitative and physical descriptions.

In a few places, and particularly where I shall be discussing material that
is not easy to find collected in textbooks, the notes are much more lengthy.
Material which is explicitly non-examinable is placed in small type; but in
general, no detailed derivations will be required for examination. You may
find it worthwhile, however, to work through some of this at least once.

Appendix A collects mathematical techniques that are useful for this
course. Most of this course is in Fourier space, so you need to be comfortable
with Fourier series and Fourier transforms (section A.1); the calculus of
variations (A.2) and the elementary theory of analytic functions (A.3) are
also used in some of the formal development, though aside from Eq. (A.58)
there is nothing here that you need to understand in any depth.

Appendix B (on second quantisation) is included for those of a theoretical
inclination as a primer on many body theory. It is the preferred formalism
for doing detailed calculations, and for visualising the physics, though I will
not be using it in lecturing (except perhaps as shorthand, on occasion).
It is not for examination. You should recognise that the use of second
quantised notation is ubiquitous, even by those who do not use it to perform
calculations.

Problems are placed at the ends of the chapters. They vary from the
straightforward to the complex, and especially mathematical ones are given a
warning asterisk. Problems of such type will not appear in the examination.



Chapter 2

Theory of the electronic
structure of solids

2.1 Independent particles in a periodic potential

2.1.1 Periodic structures

An ideal crystal is constructed from the infinite repetitition of identical
structural units in space. The repeating structure is called the lattice, and
the group of atoms which is repeated is called the basis. The basis may be as
simple as a single atom, or as complicated as a polymer or protein molecule.
This section discusses briefly some important definitions and concepts. For
a more complete description with examples, see any of the textbooks rec-
ommended in the introduction.

Lattice symmetries

The lattice is defined by three fundamental (called primitive ) translation
vectors ai, i = 1, 2, 3. The atomic arrangement looks the same from equiv-
alent points in the unit cell:

r′ = r+
∑

i

niai ∀ integer ni . (2.1)

The primitive unit cell is the parallelipiped formed by the primitive transla-
tion vectors ai, and an arbitrary lattice translation operation can be written
as

T =
∑

i

niai (2.2)

There are many ways of choosing a primitive unit cell, but the lattice so
formed is called a Bravais lattice.

Often, the most convenient primitive unit cell to use is theWigner-Seitz
cell, which is constructed as follows: Draw lines to connect a given lattice

13
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Figure 2.1: . The Wigner-Seitz cell for the BCC and FCC lattices

point to all of its near neighbours. Then draw planes normal to each of these
lines from the midpoints of the lines. The smallest volume enclosed in this
way is the Wigner-Seitz primitive unit cell.

The are other symmetry operations that can be performed on a lattice,
for example rotations and reflections. We call the collection of symmetry
operations, which applied about a lattice point, map the lattice onto itself
the lattice point group. This includes reflections and rotations; for example
a 2D square lattice is invariant under reflections about the x and y axes, as
well as through axes at an angle of π/4 to the x and y axes, and rotations
through any multiple of π/2. Remember that adding a basis to a primitive
lattice may destroy some of the point group symmetry operations. There
are five distinct lattice types in two dimensions, and 14 in three dimensions.

The translational symmetry and the point group symmetries are sub-
groups of the full symmetry of the lattice which is described by the space
group. Every operation in the space group consists of a rotation, reflec-
tion, or inversion followed by a translation. However, the space group is
not necessarily just the sum of the translational symmetries and the point
symmetries, because there can be space group symmetries that are the sum
of a proper rotation and a translation, neither of which are independently
symmetries of the lattice.

The number of possible lattices is large. In three dimensions there are
32 distinct point groups, and 230 possible lattices with bases. Two of the
important lattices that we shall meet later are the body-centred and face-
centred cubic lattices, shown in Fig. 2.1.

Reciprocal lattice

The reciprocal lattice as a concept arises from the theory of the scattering of
waves by crystals. The weak scattering of a wave by a localised potential is
familiar from elementary quantum mechanics. If we send incoming radiation
of wavevector ko onto a potential centred at the point R, at large distances
the scattered wave take the form of a circular wave. (See figure Fig. 2.2)
The total field (here taken as a scalar) is then
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Figure 2.2: Illustration of Bragg scattering from a crystal

ψ ∝ eiko·(r−R) + f(r̂)
eiko|r−R|

|r−R|
(2.3)

All the details of the scattering is in the form factor f(r̂) which is a function
of the scattering angle. It depends of course on the arrangement and type
of atom in the crystal, as well as the momentum exchanged. For sufficiently
large distance from the scatterer, we can write

ko|r−R| ≈ kor − ko
r ·R
r

(2.4)

so if we define the scattered wavevector

k = ko
r

r
(2.5)

and the momentum transfer

q = ko − k (2.6)

we then have for the waveform

ψ ∝ eiko·r
[

1 + f(r̂)
eiq·R

r

]

. (2.7)

We must now sum over all the identical sites in the lattice, and the final
formula is

ψ ∝ eiko·r

[

1 +
∑

i

fi(r̂)
eiq·Ri

r

]

. (2.8)

Away from the forward scattering direction, the incoming beam does not
contribute, and we need only look at the summation term. Its behaviour is
well known from the theory of Fourier series, and is familiar in one dimen-
sion. We are adding together terms with different phases q ·Ri, and these
will lead to a cancellation unless the Bragg condition is satisfied

q ·R = 2πm (2.9)

for all R in the lattice, and with m an integer (that depends on R). The
special values of q ≡ G that satisfy this requirement lie on a lattice, which
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is called the reciprocal lattice. We can be sure that they are on a lattice,
because if we have found any two vectors that satisfy Eq. (2.9), then their
sum also satisfies the Bragg condition.

One can check that the following prescription for the reciprocal lattice
will satisfy the Bragg condition. The primitive vectors bi of the reciprocal
lattice are given by

b1 = 2π
a2 ∧ a3

a1 · a2 ∧ a3
and cyclic permutations . (2.10)

The Wigner-Seitz cell of the reciprocal lattice is called the first Brillouin
zone. This will play an important role in the discussion of electronic states
in a periodic potential. Because we have been discussing elastic scattering,
we had the two conditions relating incident and outgoing momenta. Con-
servation of energy requires that the magnitudes of ko and k are equal, and
the Bragg condition requires their difference to be a reciprocal lattice vector
k− ko = G. The combination of the two can be rewritten as

k · G
2

= (
G

2
)2 . (2.11)

Eq. (2.11) defines a plane constructed perpendicular to the vector G and
intersecting this vector at its midpoint. The set of all such planes defines
those incident wavevectors that satisfy the conditions for diffraction.

2.1.2 Bloch’s theorem

We consider the eigenstates ψ of the one-electron Hamiltonian in a periodic
potential

Hψ(r) =
[

−h̄2∇2/2m+ U(~r)
]

ψ(r) = Eψ(r), (2.12)

where U(r+R) = U(r) for all R in a Bravais lattice. Bloch’s theorem states
that they have the form

ψnk(r) = eik·runk(r) (2.13)

where

unk(r+R) = unk(r) (2.14)

or, alternatively, that

ψnk(r+R) = eik·Rψnk(r) (2.15)

Notice that while the potential is periodic, the wave function consists of
a plane wave times a periodic function. n is an index, call the band index,
and we shall see the physical meaning of both n and k in a moment.
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Proof of Bloch’s theorem

Here we sketch a proof of Bloch’s theorem, and we shall give a somewhat more intuitive
(but longer) one later.

First, let us define a translation operator TR, which when operating on any function,
shifts the argument by a lattice vector R :

TRf(r) = f(r+R) (2.16)

It is straightforward1 to then show that TR commutes with the Hamiltonian:

TRH = HTR (2.17)

Furthermore

TRTR′ = TR′TR = TR+R′ ; (2.18)

the translation operators commute with themselves.

We may now use a fundamental theorem of quantum mechanics; two commuting
operators can be chosen to have the same eigenstates, so

Hψ = Eψ

TRψ = c(R)ψ (2.19)

Applying the results of Eq. (2.17) and Eq. (2.18), we see that the eigenvalues of T must
satisfy

c(R)c(R′) = c(R+R′) (2.20)

Now let ai be three primitive vectors of the lattice, and write

c(ai) = e2πixi (2.21)

which is just a definition of the xi, but we have chosen this form because the boundary
conditions will in the end force the xi to be real. Since a general Bravais lattice vector
can be written as R = n1a1 +n2a2 +n3a3, we can then use the rule of Eq. (2.20) to show
that

c(R) = c(a1)
n1c(a2)

n2c(a3)
n3 = e2πi(x1n1+x2n2+x3n3) (2.22)

which is precisely of the form c(R) = eik·R when

k = x1b1 + x2b2 + x3b3 (2.23)

and the bi are reciprocal lattice vectors that satisfy bi · aj = 2πδij .

This is precisely Bloch’s theorem in the form given in Eq. (2.15).

Boundary conditions and counting states

We are not quite finished, because we have to deal with boundary conditions
in an infinite (or at least very large) sample. This will demonstrate that the
wavevector k must be real, and will determine the allowed values of k. We
shall use periodic boundary conditions

ψ(r+Niai) = ψ(r) (2.24)

10perate with the translation operator on Hψ and use the periodic symmetry of the
potential
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where Ni are integers, with the number of primitive unit cells in the crystal
being N = N1N2N3. Applying Bloch’s theorem, we have immediately that

eiNik·ai = 1, (2.25)

so that (see Eq. (2.23)) the general form for the allowed Bloch wavevectors
is

k =
3

∑

i

mi

Ni
bi, for mi integral. (2.26)

Thus the volume of allowed k-space per allowed k-point is just

∆k =
b1

N1
· b2

N2
∧ b3

N3
=

1

N
b1 · b2 ∧ b3. (2.27)

Since b1 ·b2∧b3 = (2π)3N/V is the volume of the unit cell of the reciprocal
lattice (V is the volume of the crystal), Eq. (2.27) shows that the number
of allowed wavevectors in the primitive unit cell is equal to the number of
lattice sites in the crystal. We may thus rewrite Eq. (2.27)

∆k =
(2π)3

V
(2.28)

The Schrödinger equation in momentum space

We can expand the wavefunction in terms of a set of plane waves that satisfy
the periodic boundary conditions:

ψ(r) =
∑

k

cke
ik·r, (2.29)

whereas the periodic potential U(r) has a plane wave expansion that only
contains waves with the periodicity of the reciprocal lattice

U(r) =
∑

G

UGeiG·r, (2.30)

where G are the reciprocal lattice vectors. The momentum components are

UG =
N

V

∫

unit cell
dr e−iG·r U(r) , (2.31)

and since the potential is real U∗
G = U−G.

We now insert Eq. (2.29) and Eq. (2.30) in Eq. (2.12), and obtain, after
a little reorganisation of the terms

∑

k

eik·r

[

(

h̄2

2m
k2 − E

)

ck +
∑

G

UGck−G

]

= 0 (2.32)
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Since the plane waves form an orthogonal set, each coefficient in the sum
over k in Eq. (2.32) must vanish, i.e.

[

(

h̄2

2m
k2 − E

)

ck +
∑

G

UGck−G

]

= 0 (2.33)

It is often convenient to rewrite q = k−K, where K is a reciprocal lattice
vector chosen so that q lies in the first Brillouin zone, when Eq. (2.33) is
just

[

(

h̄2

2m
(q−K)2 − E

)

cq−K +
∑

G

UG−Kcq−G

]

= 0 (2.34)

We can now see that the wavefunction is of the Bloch form, because Eq.
(2.34) mixes plane waves of momentum q with q−G, and so

ψk(r) =
∑

G

ck−Gei(k−G)·r = eik·ru(r) , (2.35)

where

u(r) =
∑

G

ck−Ge−iG·r (2.36)

is now a function with the periodicity of the lattice.

Bandstructure

There are in general infinitely many solutions of Eq. (2.34), which is why
the energies and wavefunctions are indexed by the band index n as well
as the wavevector k. The energy eigenvalue Enk, plotted as a function of
k determines the bandstructure – the allowed energy levels. In general,
because this is a Hermitian eigenvalue problem , the energy levels will be
discretely spaced in the index n. However, because k is a parameter in the
eigenvalue equations, the k-dependence of the energy levels is continuous.
For this reason, we can talk about energy bands.

The wavevector k can always be confined to the first Brillouin zone
(actually any primitive unit cell, but usually this is the most convenient).
Sometimes, it is useful (though redundant) to allow k to range through all
of momentum space, while remembering of course that

ψnk+G(r) = ψnk(r) (2.37)

Enk+G = Enk (2.38)

The energy bands themselves have the periodicity of the reciprocal lattice.
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Fermi surface and density of states

The ground state of the N-electron system is constructed by occupying all the
lowest one-electron levels until the total number of electrons is exhausted.
Although we are working in the independent electron approximation, we
must still obey Fermi statistics, which will mean that each momentum state
can accommodate two electrons of opposite spin (we are assuming for the
moment that the energy levels do not depend on spin). To get the counting
right, we count only the momentum states within a primitive unit cell –
usually the first Brillouin zone.

There are two distinct possibilities. If the number of electrons per unit
cell is even, it is possible that a set of bands is completely filled with the
higher bands completely empty. In this case we have a band gap – the differ-
ence in energy between the highest occupied level and the lowest unoccupied
level – and the material is a semiconductor or an insulator as in NaCl or
Si. Alternatively, if the bands are partially filled, there will be a surface in
momentum space separating the occupied from the unoccupied levels. This
Fermi surface is at a fixed energy EF called the Fermi energy, and is
defined by the momenta that satisfy

Enk = EF (2.39)

If a Fermi surface exists (there may be several branches if the Fermi energy
cuts through several bands), the material will be a metal. Clearly, if the
number of electrons per unit cell is not even, we must have a metal (Al
is an example); but band overlap may yield a metal even if the number
of electrons is even (An example is Arsenic, which although it has an odd
number of electrons per atom, has two atoms per primitive unit cell, and
thus an even number of electrons per cell; two bands overlap near the Fermi
surface, and As is an example of a class of materials often called semimetals.)

We often will need to perform summations over k-states, and because
the momentum states are very closely spaced, these are best turned into
integrals. Typically, we will need quantities such as a weighted average of
one electron properties, such as 2

F =
2

V

∑

nk

Fn(k) (2.40)

Using the result from Eq. (2.28), we turn this into an integral

F = 2
∑

n

∫

unitcell

dk

(2π)3
Fn(k) (2.41)

Often, we will be dealing with cases where the function Fn depends on mo-
mentum only through the energy En(k), and we can then formally introduce

2The factor of two accounts for spin degeneracy
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the density of states in energy g(E), so that

F =

∫

dE g(E)F (E) (2.42)

The familiar case of dealing with this is for a free-electron-like dispersion
(i.e. parabolic)

E(k) =
h̄2k2

2m
(2.43)

We determine the density of states in energy by calculating how many states
are enclosed in a thin shell of energy width dE; this is (in 3 dimensions -
the answer depends on dimensionality)

g(E)dE =
Volume of shell in k− space

Volume of k− space per state
=

4πk2dk

(2π)2/V
, (2.44)

hence

g(E) = 2
V

(2π)3
4πk2

dk

dE
=

V

π2

m

h̄2

(

2mE

h̄2

) 1
2

. (2.45)

where the extra factor of 2 appearing accounts for there being two spin
states for each allowed k-point. Often, the density of states is given per unit
volume, so the favtor of V disappears.

More generally, for any form of E(k), the density of states is

g(E) =
∑

n

gn(E) =
∑

n

∫

dk
4π3

δ(E − En(k)) , (2.46)

Because of the δ-function in Eq. (2.46), the momentum integral is actually over a
surface in k-space Sn which depends on the energy E; Sn(EF ) is the Fermi surface. We
can separate the integral in k into a two-dimensional surface integral along a contour of
constant energy, and an integral perpendicular to this surface dk⊥ (see Fig. 2.3). Thus

gn(E) =

∫

Sn(E)

dS

4π3

∫

dk⊥(k) δ(E − En(k))

=

∫

Sn(E)

dS

4π3

1

|∇⊥En(k)|
, (2.47)

where ∇⊥En(k) is the derivative of the energy in the normal direction.3

Notice the appearance of the gradient term in the denominator of Eq. (2.47), which
must vanish at the edges of the band, and also at saddle points, which exist generically in
two and three dimensional bands. Maxima, minima, and saddle points are all generically
described by dispersion (measured relative to the critical point) of

E(k) = E0 ±
h̄2

2mx
k2
x ± h̄2

2my
k2
y ± h̄2

2mz
k2
z (2.48)

If all the signs in Eq. (2.48) are positive, this is a band minimum; if all negative, this

is a band maximum; when the signs are mixed there is a saddle point. In the vicinity of

3We are making use of the standard relation δ(f(x)− f(x0)) = δ(x− x0)/|f ′(x0)|
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Figure 2.3: Surface of constant energy

each of these critical points, also called van Hove singularities, the density of states (or its

derivative) is singular. In two dimensions, a saddle point gives rise to a logarithmically

singular density of states, whereas in three dimensions there is a discontinuity in the

derivative.

Examples of the generic behaviour of the density of states in one, two
and three dimensions are shown in Fig. 2.4.

We now turn to two approximate methods for discussing the bandstruc-
ture of solids. In the first, we shall make the assumption that the inter-
action of the electronic plane waves with the lattice is weak, the so-called
nearly-free-electron approximation. In the second we start from the oppo-
site assumption, that the solid is a weakly interacting collection of atoms,
and then the best description starts from atomic basis states - this is the
tight-binding method.

2.1.3 Nearly free electron description

We have already written down an exact form for the wavefunction in terms
of plane waves in Eq. (2.34), which we reproduce below. The general form
for the wavefunction of a Bloch state with momentum k is

ψk(r) =
∑

G

ck−Gei(k−G)·r, (2.49)

where the coefficients ck are determined by the solution of the set of equa-
tions

[

(

h̄2

2m
(k−K)2 − E

)

ck−K +
∑

G

UG−Kck−G

]

= 0 . (2.50)
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1D

2D

3D

Figure 2.4: Density of states in one (top curve), two (middle curve) and
three (lower curve) dimensions

Remember that k is restricted to be within the first Brillouin zone.
If the periodic potential vanishes, the only nonzero solutions correspond

to the set of energy eigenvalues

E = E0
q−K (2.51)

where we write the kinetic energy of a free particle of wavevector k as E0
k =

h̄2k2/2m. Notice that this is not quite the same as the free electron picture,
because we still have the reciprocal lattice vectors chosen to index the bands
back to the first Brillouin zone; this is indicated in Fig. 2.5. If the potential
is weak, we can then incorporate its effects on the energy level spectrum and
wavefunctions by perturbation theory. Let’s multiply the potential U by a
parameter λ in order to keep track of orders of the perturbation theory, viz.

ck = c
(0)
k + λc

(1)
k + λ2c

(2)
k + ... (2.52)

E(k) = E
(0)
k + λE

(1)
k + λ2E

(2)
k + ... (2.53)

We have already derived the zeroth order terms above

c0nk−G = δG−Gn (2.54)

E
(0)
nk = E0

k−Gn
(2.55)

where we have now installed band indices to make clear that each band is
associated with a particular reciprocal lattice vector.
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Figure 2.5: Free electron parabola in one dimension, with zone folding

The first order energy is just a trivial shift by the average potential
E(1) = U0, and the first order wavefunctions are

c
(1)
n,k−G = − UGn−G

E0
k−G − E0

k−Gn

for G 6= Gn , (2.56)

and the second-order energy correction is

E
(2)
n,k = −

∑

G 6=Gn

|UG−Gn |2

E0
k−G − E0

k−Gn

. (2.57)

One can, with patience, keep going to high order; in practice nowadays one
just uses a large computer and diagonalises at will.

This equation tells us, as expected from our usual notions from pertur-
bation theory, that non-degenerate bands repel each other, since every level
that lies below the nth band yields a positive energy shift, and every level
above yields a negative shift. Notice, however, that there is a possibility
that terms in the denominator of Eq. (2.56) and Eq. (2.57) vanish, which
will lead to a singularity. This will occur at special values of momentum,
whenever k lies on the zone boundary bisecting the reciprocal lattice vector
G + Gn. Here, the perturbation theory fails for the obvious reason that
we are coupling degenerate states, and non-degenerate perturbation theory
does not hold. However small the perturbation, the mixing between two de-
generate states is of order unity, and one must solve this degenerate problem
exactly.

As an approximation, which will be valid near the degenerate points, let
us ignore all coefficients except those corresponding to the degenerate plane
waves. To prevent the notation getting out of hand, let us just focus on
momenta near a single Brillouin zone boundary at K/2, and consider n = 0.
The (2x2) block out from Eq. (2.50) is just

(

E0
k − E UK

U∗
K E0

k−K − E

)(

ck
ck−K

)

= 0 (2.58)
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Figure 2.6: Energy bands in one dimension, and amplitudes of wavefunctions
at the band edges

The solution of the determinantal equation leads to a quadratic equation:

E±(k) =
1

2
(E0

k + E0
k−K)± 1

2

√

(E0
k − E0

k−K)2 + 4|UK|2 (2.59)

It is instructive to look at the wavefunctions in this one-dimensional
model. Exactly at k = 1

2K, the energy levels are

E±(
1

2
K) = E0

1
2K

± |UK |, (2.60)

and if we choose the potential to be attractive UK < 0, the wavefunctions
are

ψ−(
1

2
K) =

√
2 cos(

1

2
Kr) ,

ψ+(
1

2
K) =

√
2ı sin(

1

2
Kr) . (2.61)

The wavefunctions are plotted, along with the potential, in Fig. 2.6.
The results are physically intuitive; because we chose the potential to be

attractive, the lower energy state corresponds to wavefunctions concentrated
on the potential minima (i.e. near the atoms) and the higher state pushes
the charge density to the potential maxima in between the atoms. Of course,
the potential in a real solid cannot be described by a single sine-wave, but
the principle is clear.

One last comment is in order. Here we have just considered the two states
on the zone boundary, which are strongly perturbed from plane waves. As
one moves away from the boundary, the states become more nearly plane
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Figure 2.7: Fermi surface made by weak scattering from a single zone bound-
ary

wave as one can see by inspection of Fig. 2.6, or from the energy eigenvalues.
Clearly the k-states strongly affected are those for which

|E0
k − E0

k−K|
|UK|

= f <∼ 1 . (2.62)

States within this range will yield charge densities more-or-less like those of
Eq. (2.61), whereas out of this range of momentum, they will be plane-wave-
like and have a uniform charge density. So the amplitude of the periodic
component of the total charge density will be of order f , which may be quite
small. However, the states exactly at the zone boundary are always strongly
perturbed.

Brillouin zones

Now we need to go back to discuss higher dimensions. We see from the
above discussion that there will be a gap in the energy dispersion as one
crosses a Brillouin zone boundary. But notice (see Eq. (2.59) ) that if the
momentum is changed parallel to the zone boundary, both E±(k) continue
to disperse. To confirm this, let k = K/2 + k⊥, with K · k⊥ = 0 ; then

E±(k⊥) =
h̄2

2m
(
K2

4
+ k2⊥)± |UK| (2.63)

Now consider a free electron Fermi sphere intersected by a single Brillouin
zone boundary (see Fig. 2.7). Some reflection on Eq. (2.63) should convince
you that if the scattering potential is weak, then the effect is to shift the
Fermi surface outwards in below the gap, and inwards above the gap, as
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G

Figure 2.8: Fermi surface on a square lattice in the extended zone scheme.
Solid lines show the Fermi surface in the first and second zones, and the
dotted lines show the continuation into the extended zone scheme. In the
reduced zone scheme one would show the two fermi surfaces within a single
Brillouin zone

shown in the figure. Remember that the total area enclosed by the Fermi
surface in k-space is conserved. If the potential is strong enough, the second
Fermi sheet may shrink and vanish.

Here, the Fermi surface has been fractured into two pieces. If we had
a simple square lattice, with a Fermi surface which crossed only the first
Brillouin zone boundary, we would have the picture shown in Fig. 2.8. Here
we have drawn a free-electron Fermi surface containing enough states to
accommodate two electrons per unit cell. For small enough potential, the
Fermi surface breaks up into two sheets, one in the first Brillouin zone,
and one in the second. We can either draw the dispersion in the extended
zone scheme (as here), or equivalently fold the dispersion back to make two
bands in the reduced zone scheme. This picture makes it clear that the
Fermi surface(s) are still continuous; here we have one Fermi surface which
is electron-like and one which is hole-like. If we wished (and we shall),
we could describe the material whose Fermi surfaces are given in this figure
as a semimetal: a semiconductor, but with an overlap of the valence and
conduction bands so that there are equal numbers of electrons and holes.

One can extend this type of construction to arbitrary complexity by
including more reciprocal lattice vectors, each of which generates a new
Brillouin zone boundary and further Brillouin zones. Even for nearly free
electron metals, the Fermi surfaces which then are generated become quite
complex4

4There are lots of pretty pictures in Ashcroft and Mermin (Chapter 9) and Marder
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2.1.4 Tight binding description

In the last section, we calculated electronic bandstructure by viewing it as
a gas of nearly plane wave excitations, with weak Bragg scattering by the
crystal lattice. In this section, we shall discuss the opposite point of view;
of a solid as a collection of weakly interacting neutral atoms.

Consider a periodic lattice of identical atoms, with an atomic Hamilto-
nian Hatom and a set of localised discrete levels with wavefunctions φn and
energies En. Provided the overlap of the wavefunctions from one lattice site
to the next is small, we might expect that a good approximation for the
wavefunction in a solid will be to mix the degenerate levels from one atom
and its neighbours.5 Then we write an ansatz for a Bloch state

ψnk(r) =
1

N
1
2

∑

R

eik·Rφn(r−R) . (2.64)

where R are the reciprocal lattice vectors.

We can now evaluate the energy of the state in first order of perturbation
theory:

E(k) =< k|H|k > =
1

N

∑

RjRm

e−ik·(Rj−Rm) < φ(r−Rm)|H|φ(r−Rj) >

=
∑

Ri

e−ik·Ri

∫

drφ∗(r−Ri)Hφ(r) . (2.65)

Because the wavefunctions are weakly overlapping, we will keep only the
terms in Eq. (2.65) where the orbitals are on the same site, or on nearest
neighbour sites connected by ρ. The onsite term gives an energy close to
the atomic energy level, since H ≈ Hatom where the atomic wavefunction is
concentrated, and we define

ε0 =

∫

drφ∗(r)Hφ(r) ≈ En , (2.66)

and the term between neighbours - often called a hopping integral is

t =

∫

drφ∗(r− ρ)Hφ(r) . (2.67)

The band energy is then

E(k) = ε0 + t
∑

ρ

e−ik·ρ . (2.68)

(Chapter 8)
5For simplicity, we shall discuss the case when the atomic state is non-degenerate, i.e.

an s- state, not p- or d-, which are more complicated, and drop the index n
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As a simple example, take a cubic lattice with six nearest neighbours at
a distance a. We then have

E(k) = ε0 + 2t[cos(kxa) + cos(kya) + cos(kza)] . (2.69)

The bandwidth is 6t, so that the more atomic-like, the narrower the band.
At both the bottom and the top of the band, the dispersion is parabolic, i.e.
free electron-(hole-) like, but with an effective mass h̄2/2ta2; the narrower
the band, the heavier the mass.

2.1.5 The pseudopotential

The NFE method and the tight-binding method are not accurate methods
of electronic structure determination; nevertheless both of them exhibit the
basic principles. They are commonly used to write down simple models
for bands, with their parameters fit to more sophisticated calculations, or
to experiment. It turns out that band gaps in semiconductors are usually
fairly small, and the true dispersion can be modelled by scattering from
a few Fourier components of the lattice potential. The reason is that the
relevant scattering potential for valence band electrons is however MUCH
smaller than the full atomic potential ze2/r of an electron interacting with
a nucleus of charge z. The effective potential for scattering of the valence
electrons by the atomic cores is a weak pseudopotential.

When we consider the band structure of a typical solid, we are concerned
only with the valence electrons, and not with those tightly bound in the
core, which remain nearly atomic. If we solve the full Schrödinger equation
with the real Coulomb potential, we expect to calculate not just the valence
electronic states, but also the atomic like core states. A pseudopotential
reproduces the valence states as the lowest eigenstates of the problem and
neglects the core states.

A weak pseudopotential acting on a smooth pseudo-wavefunction gives
nearly the same energy eigenvalues for the valence electrons as the full atomic
potential does acting on real wavefunctions. Away from the atomic cores, the
pseudopotential matches the true potential, and the pseudo-wavefunction
approximates the true one.

A formal derivation of how this works can be given using the method of orthogonalised
plane waves. The atomic states are well described by the Bloch functions fnk of Eq. (2.64).
Higher states, which extend well beyond the atoms will not necessarily be of this kind, but
they must be orthogonal to the core levels. This suggests that we should use as a basis 6

|χk >= |k > −
∑

n

βn|fnk > , (2.70)

6We use Dirac’s notation of bra and ket, where |k > represents the plane wave state
exp(ik · r), and < φ1|T |φ2 > represents the matrix element

∫

drφ∗
1(r)T (r)φ2(r) of the

operator T .



30 CHAPTER 2. ELECTRONIC STRUCTURE THEORY

Figure 2.9: Pseudopotential: The true potential V (r) has a wavefunction
for the valence electrons that oscillates rapidly near the core. The pseu-
dopotential Vs(r) has a wavefunction Φs(r) that is smooth near the core,
but approximates the true wavefunction far from the core region.

where |k > is a plane wave, and the coefficients βn(k) are chosen to make the states
χ orthogonal to the core states |fnk >. The states in Eq. (2.70) with the coefficients
determined in Question 2.2.5 are orthogonalised plane waves (OPW); away from the core,
they are plane wave like, but in the vicinity of the core they oscillate rapidly so as to be
orthogonal to the core levels.

We can now use the OPW’s as basis states for the diagonalisation in the same way
that we used plane waves in the NFE, viz

|ψk >=
∑

G

αk−G|χk−G > . (2.71)

This turns out to converge very rapidly, with very few coefficients, and only a few reciprocal
lattice vectors are included in the sum. The following discussion explains why.

Suppose we have solved our problem exactly and determined the coefficients α. Now
consider the sum of plane waves familiar from the plane-wave expansion, but using the
same coefficients, i.e.

|φk >=
∑

G

αk−G|k−G > , (2.72)

and then 7 it is easily shown that

|ψ >= |φ > −
∑

n

< fn|φ > |fn > . (2.73)

Then substitute into the Schrodinger equation H|ψ >= E|ψ >, which gives us

H|φ > +
∑

n

(E − En) < fn|φ > |fn >= E|φ > (2.74)

7Saving more notation by dropping the index k
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Figure 2.10: A comparison of the pseudowavefunction of Si with the cor-
responding all-electron wavefunctions for the configurations 3s23p2 and
3s23p23d1, together with the corresponding psudopotential (for three differ-
ent angular momentum states)[M.T.Yin and M.L.Cohen, Phys.Rev.B 26,
5668 (1982)]

We may look upon this as a new Schrödinger equation with a pseudopotential defined
by the operator

Vs|φ >= U |φ > +
∑

n

(E − En) < fn|φ > |fn > (2.75)

which may be written as a non-local operator in space

(Vs − U)φ(r) =

∫

VR(r, r
′)φ(r′) dr′ , (2.76)

where

VR(r, r
′) =

∑

n

(E − En)fn(r)f
∗
n(r

′) . (2.77)

The pseudopotential acts on the smooth pseudo-wavefunctions |φ >, whereas the bare
Hamiltonian acts on the highly oscillating wavefunctions |ψ >.

One can see in Eq. (2.75) that there is cancellation between the two terms. The bare
potential is large and attractive, especially near the atomic core at r ≈ 0; the second term
VR is positive, and this cancellation reduces the total value of Vs especially near the core.
Away from the core, the pseudopotential approaches the bare potential.

The above are purely formal manipulations. The reason that the pseu-
dopotential is useful is that the Fourier components of Vs are small, except
for the first few reciprocal lattice vectors; and furthermore it is a good
approximation to replace the pseudopotential by a local potential.8 The
pseudopotential is the formal justification for the NFE model.

8The latter restriction is not needed in general for modern electronic structure calcu-
lations
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While this analytical formulation of the pseudopotential gives an impor-
tant explanation of the success of the NFE method, it is almost never used
in calculations. The usual formulation is to use a model pseudopotential
for an atom which replaces each atomic potential by a weak potential which
has the same scattering amplitude for the valence electrons. Question 2.13
shows how to describe a model bandstructure just in terms of reflection
and transmission coefficients of a generalised atom. Nowadays, the most
common is the ab initio norm-conserving pseudopotential, introduced by
Hamann, Schlüter and Chiang 9. We remarked above that the pseudopo-
tential and the real potential are identical outside the core, and therefor
the radial parts of the pseudo- wavefunction and the real wavefunction are
proportional. The principle of the norm-conserving pseudopotential is to
enforce equality of the wavefunctions outside the core – ensuring that the
pseudo-charge density and true charge density are equal. An example of an
atomic pseudopotential for Si is shown in Fig. 2.10.

2.2 Interactions

We have so far sidestepped entirely the effects of interactions between elec-
trons, by working in the independent electron approximation with a one
body potential U(r) which somehow incorporates the interaction effects at
the one particle level. Of course is is clear that the full Schrodinger equa-
tion Eq. (1.1) cannot be described by a set of one-body equations such as
Eq. (2.12). However, we can ask the question as to what is the best single
particle representation, and independently we can ask how good it is. This
will be the subject of this section.

If we fix the position of the ions, the electronic Hamiltonian is

Helec =
N
∑

i=1

[

− h̄2

2m
∇2

i + Uion(ri)

]

+
1

2

∑

i6=j

e2

|ri − rj |
(2.78)

where the potential due to the ions is

Uion(r) =
∑

I

ZIe
2

|ri −RI |
(2.79)

where ZI is the nuclear charge and RI the nuclear positions. We look for
the solutions for the N-particle wavefunction Ψ(r1, σ1, ...., rN , σN ) of the
Schrödinger equation 10

HelecΨ = EΨ . (2.80)

9D.R.Hamann, M.Schlüter, and C.Chiang, Phys.Rev.Lett. 43, 1494 (1979)
10ri, σi are the space and spin coordinates of electron i
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2.2.1 Preamble: a model two-electron system

The fundamental difficulty with treating interacting electronic systems is
that we cannot expect to write a wavefunction that factorises into a product
of single electron wavefunctions. Such a factorisation is disallowed by the
required antisymmetry of wavefunctions for fermions, namely that

Ψ(r1, σ1..., ri, σi, ..., rj , σj , ...., rN , σN ) = −Ψ(r1, σ1..., rj , σj , ..., ri, σi, ...., rN , σN ) .
(2.81)

Here ri,σi are the position and spin of particle i, and fermion wavefunctions
change sign when the coordinates of any two electrons are interchanged.11

Almost everything that we shall do on the interacting system can be
understood in simple terms for a model of an atom (or a molecule) with
two single particle orbitals and two electrons. We shall assume that the (or-
thonormal) single particle states ψ1,2(r) are unchanged by the interaction.
There is an important simplification that arises also because the Coulomb
interaction between particles is independent of their spin state, which we
shall denote by | ↑>, | ↓> . In that case, we already know that the eigen-
states of the two particle problem should be labelled by the total spin S and
its z-component Sz. There will be four possible spin states

| ↑↑> Sz = 1

Triplet S = 1 (| ↑↓> +| ↓↑>)/
√
2 Sz = 0 (2.82)

| ↓↓> Sz = −1

Singlet S = 0 (| ↑↓> −| ↓↑>)/
√
2 Sz = 0 (2.83)

The notation is that | ↑↓>= | ↑1> | ↓2>, i.e. up spin for the electron labelled
“1” and down spin for “2”. The singlet state is odd under exchange of
coordinates, and the triplet states are even. Because the total wavefunction
must be odd, then the spatial wavefunctions that go along with these must
be odd for the triplet states, and even for the singlet states. Since we decided
at the outset that we are restricted to only two single particle states, we must
have the following wavefunctions

ΨT (r1, r2) = (ψ1(r1)ψ2(r2)− ψ2(r1)ψ1(r2))/
√
2

= (|12 > −|21 >)/
√
2 (2.84)

ΨS(r1, r2) = (ψ1(r1)ψ2(r2) + ψ2(r1)ψ1(r2))/
√
2

= (|12 > +|21 >)/
√
2 (2.85)

where again we have used the notation that |ij >= ψi(r1)ψj(r2), so particle
“1” is in the spatial wavefunction labelled by the state “i”, and particle “2” is

11Notice that the space and spin labels must both be interchanged.
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in state “j”. The subscripts S and T label singlet and triplet wavefunctions,
respectively.

Notice that the antiymmetry of the triplet wavefunction means that
the electrons keep further apart than they would if they were independent
distinguishable particles; in the singlet (symmetric) state they are closer
together. This means that we expect that the triplet state is lower in energy
than the singlet state, given the Coulomb repulsion. This can be shown
explicitly using by evaluating the expectation value of the Hamiltonian using
the two wavefunctions, which is

< H >S,T= E1 + E2+ < 12|V |12 > ± < 21|V |12 > , (2.86)

where the +/− signs are for singlet/triplet respectively. E1,2 are the single
particle energies - i.e. the expectation value of T + Uion - and the last two
terms are matrix elements of the Coulomb interaction. The first of these is
the direct, or Hartree energy

< 12|V |12 >=

∫

drdr′|ψ1(r
′)|2 e2

|r− r′|
|ψ2(r)|2 (2.87)

which is just the interaction energy between the charge densities of the
two electronic single particle states. The second of these has no analogue
classically, and is called the exchange energy

< 21|V |12 >=

∫

drdr′ψ∗
2(r)ψ

∗
1(r

′)
e2

|r− r′|
ψ1(r)ψ2(r

′) . (2.88)

Despite the fact that the electron-electron interaction is independent of the
spin of the electron, the requirement of antisymmetry of the wavefunction
then produces a spin-dependent energy of the final state. As we shall see,
this is the origin of magnetism in solids.

2.2.2 Hartree approximation

Returning to the many electron problem, we can now repeat the calcula-
tion more formally, but this time not restricting the single particle basis
to predetermined states. The most natural first approximation to the diffi-
cult interaction term in Eq. (2.78) is to replace the interaction between the
electrons by a set of interactions between a single electron and the charge
density made up from all the other electrons, i.e. by a one-body potential
for the ith electron

Ucoul(r) = −e

∫

dr′
ρ(r′)

r− r′
= e2

∑

j 6=i

∫

dr′
|ψj(r′)|2

r− r′
, (2.89)

where the summation is over all the occupied states ψi. This clearly takes
into account the averaged effect of the Coulomb repulsion due to all the
other electron, and corresponds to the term Eq. (2.87) above.
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It turns out that the Hartree approximation can also be derived as a
variational theory. If we write as the ground state wavefunction as a product
over orthonormal wavefunctions ψ1, ψ2, etc.

ΨHartree(r1, σ1, ...., rN , σN ) = ψ1(r1σ1)× ...× ψN (rN , σN ) (2.90)

then the variational equations that minimise the total energy < Ψ|H|Ψ >
are

[

− h̄2

2m
∇2 + Uion(r) + Ucoul(r)

]

ψi(r) = εiψi(r) . (2.91)

These nonlinear Hartree equations can be solved, e.g. by iteration, to find
the “best” set of variational wavefunctions ψi.

This Hartree approximation is an example of a self-consistent field
theory, where the average configuration of all the other electrons affects the
electron under consideration, but the particular correlations between any
two (or more) electrons are ignored. It is not a simple exercise in practice
to solve these equations, despite the crudity of the approximation.

2.2.3 Hartree-Fock

One of the primary deficiencies of the Hartree approximation is that the
wavefunctions violate the Pauli principle: for fermions, the sign of the wave-
function must change when any two of the particles are exchanged, namely

Ψ1(r1σ1, ..., riσi, ..., rjσj , ..., rNσN ) = −Ψ1(r1σ1, ..., rjσj , ..., riσi, ..., rNσN ) .
(2.92)

This was precisely the physics that we were at pains to incorporate in the
model two-electron problem above. The simplest wavefunction that satisfies
this requirement is the Slater determinant

ΨHF =

∣

∣

∣

∣

∣

∣

∣

ψ1(r1, σ1) · · · ψ1(rN , σN )
...

...
ψN (r1, σ1) · · · ψN (rN , σN )

∣

∣

∣

∣

∣

∣

∣

. (2.93)

If one evaluates the energy in the form

< H >Ψ=
< Ψ|H|Ψ >

< Ψ|Ψ >

with the determinantal wavefunction of Eq. (2.93) using an orthonormal set
of orbitals ψi, one gets 12:

< H >Ψ=
∑

i

< i|(T+Uion|i > +
1

2

∑

ij

[

< ij| e
2

rij
|ij > − < ij| e

2

rij
|ji > δσiσj

]

.

(2.94)
12We shall use the notation < i|f |j >=

∫

drφ∗
i (r)f(r)φj(r) for one body matrix ele-

ments, and < ij|f |mn >=
∫ ∫

dr dr′ φ∗
i (r)φ

∗
j (r

′)f(r, r′)φm(r)φn(r′) for two-body matrix
elements.
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(This is much trickier than it looks). You should check that this result is
consistent with the model two electron calculation above.

Then one can variationally minimise with respect to the ψ∗
i obtaining

the Hartree-Fock equations

[

− h̄2

2m
∇2 + Uion(r) + Ucoul(r)

]

ψi(r)−
∑

j

∫

dr′
e2

|r− r′|
ψ∗
j (r

′)ψi(r
′)ψj(r)δσiσj = εiψi(r)

(2.95)
After solving Eq. (2.95) to determine the wavefunctions and the energy
eigenvalues the total energy can be written 13

< H >Ψ=
∑

i

εi −
1

2

∑

ij

[

< ij| e
2

rij
|ij > − < ij| e

2

rij
|ji > δσiσj

]

. (2.96)

The equations are similar to the Hartree equations, but have an extra term,
called the exchange term which is not only nonlinear in ψ but also non-
local, and spin-dependent. This complexity makes them very difficult to
use in practice.

The homogeneous electron gas

The one case where the Hartree-Fock equations can be solved straightfor-
wardly is the not uninteresting case of jellium: the periodic lattice potential
is replaced by a uniform positive background that neutralises the electronic
charge. In this case the single particle states in the Slater determinant are
just plane waves:

ψi(r) = (V )−
1
2 eiki·r × χspin (2.97)

where we occupy each wavevector |k| < kF twice (once for each spin com-
ponent). Because we know by symmetry that the wavefunctions must have
this form, we can evaluate the Hartree-Fock energy without having to solve
for the wavefunctions, which is the hard bit in a problem with an atomic
lattice.

It is useful at this point to introduce the electron gas density parameter
rs. Since the energy scale is set by the Coulomb potential, it is convenient
to measure energies in units of the Rydberg:

1Rydberg = h̄2/2ma2B = e2/2aB , (2.98)

with aB the Bohr radius. Then we measure the density n in units of the
Bohr radius by

4π(rsaB)
3/3 = 1/n (2.99)

13Notice that this is not equal to the sum of single-particle energies, because otherwise
the interaction terms would be counted twice
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so rs is a dimensionless parameter, which is the average spacing between
electrons measured in units of the Bohr radius. You should be able to see
that by dimensional analysis, rs is the only relevant parameter.

The energy can be evaluated as follows. The direct Coulomb energy cancels exactly
with the ionic energy: UCoul +Uion = 0. We are left with only the kinetic energy and the
exchange energy. The kinetic energy term in Eq. (2.95) gives

− h̄2

2m
∇2eiki·r =

h̄2k2

2m
eik·r (2.100)

and the exchange term in Eq. (2.95) becomes

UexchV
− 1

2 eik·r = −
∑

|q|<kF

V − 1
2 eiq·r

∫

dr′ V − 1
2 e−iq·r′ e2

|r− r′|V
− 1

2 eik·r
′

= −(V )−
1
2 eik·r × 1

V

∑

q<kF

∫

dr′e−i(k−q)·(r−r′) e2

|r− r′|

= −(V )−
1
2 eik·r × 1

V

∑

q<kF

4πe2

|k− q|2 . (2.101)

Eq. (2.101) makes use of the familiar result that the Fourier transform of the Coulomb
potential 1/r is just 4π/q2 .

The energy can be evaluated in closed form

ε(k) =
h̄2k2

2m
−

∫

k′<kF

dk′

(2π)3
4πe2

|k− k′|2

=
h̄2k2

2m
− 2e2kF

π
F (k/kF ) , (2.102)

where

F (x) =
1

2
+

1− x2

4x
ln

∣

∣

∣

∣

1 + x

1− x

∣

∣

∣

∣

. (2.103)

The total energy can be performed by integration over k < kF It is 14

EHF
tot = 2

∑

k<kF

h̄2k2

2m
− 2e2kF

π

∑

k<kF

F (k/kF )

= N

[

3

5

h̄2k2
F

2m
− 3

4

e2kF
π

]

(2.104)

This result is conventionally written in rydberg units, using the electron
gas density parameter rs (Eq. (2.99)) as

EHF
tot /N = 2.21r−2

s − 0.916r−1
s (2.105)

For a typical metal rs is in the range of 2-4, and the second term is compa-
rable in size to the first.

14Notice a factor of two for spin, and a factor of 1/2 (double-counting) in the second
term
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Note that the first term in Eq. (2.105) is from the kinetic energy, and
the second from the interactions. The kinetic energy term is dominant at
smaller rs, which means higher density - despite the electrons coming closer
to each other. This is of course precisely the opposite result that one would
have got for a classical gas (where the "perfect gas" limit is the dilute limit.
The difference is because electrons are fermions, and as one goes to higher
density, the Fermi energy EF increases more rapidly than the interaction
energy. High density metals are free-electron like.

Eq. (2.105) looks like the first few terms in a series expansion starting
from the high density limit. The series continues15

Etot/N = 2.21r−2
s − 0.916r−1

s + 0.0622 ln(rs)− 0.096 +O(rs) + ... (2.106)

The difference in energy between the exact energy and the Hartree-Fock
energy is often termed the correlation energy.

Wigner crystal

We discussed above that interactions become relatively more important as
the density decreases, because the kinetic energy penalty for keeping elec-
trons apart is reduced. But we are still describing the electrons as a fluid,
albeit a quantum fluid; our experience tells us that if repulsive interactions
get large enough, the ground state of the system should not be a fluid but
a solid. Quite some time ago, Wigner16 argued that the electron gas must
crystallise at low enough density. The argument is quite simple, but quite
beyond the reach of the independent electron approximation.

In an electron solid, each electron is assumed to be localised to a site on
a lattice, not spread out through the crystal as in the metallic state we have
been discussing hitherto. If the electrons are well localised and only weakly
overlap with each other, one can estimate the energy quite simply.

The Coulomb energy is just the energy of interacting charged particles -
the Hartree term. If you include the Jellium background, the interaction of
with the N-1 other electrons is approximately cancelled by their counterbal-
ancing background charge. What remains is the Coulomb energy of a single
electron that has a uniformly charged sphere of jellium around it. This is of
order

− e2

2aBrs
(2.107)

(One can improve the estimate by doing the calculation summing over all
the charges; this multiplies the result by a factor of α, called a Madelung
constant. Generally α ≈ 1.7 depending on the crystal lattice structure).

15Gell-Mann and Brueckner, Phys. Rev. 106, 364 (1957).
16E.P.Wigner, Phys. Rev. 46, 1002 (1934)
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The kinetic energy cost of localising the electron is just the zero point
energy of localising the electron inside the sphere which should be of order

h̄2

2ma2Br
2
s

(2.108)

Thus we estimate

EWC
tot /N ≈ −1

2
αr−1

s + r−2
s Ryd. (2.109)

For large enough rs, the coulomb energy must always win – because asymp-
totically the dominant energy term is negative, and scales as r−1

s .17 Compar-
ing Eq. (2.109) with Eq. (2.106) suggests a transition near rs ≈ 5, whereas
the best calculations place it closer to 100.18

2.2.4 Density functional theory

We have spent a lot of time discussing qualitatively useful but quantitatively
inaccurate methods for treating interactions. We close this chapter by dis-
cussing a practical method for including the effects of interactions, that is
based on a remarkable theorem.

The Hohenberg-Kohn theorem

The density functional theorem states that the total ground state energy of
the interacting electron system (including the interaction with the ions) is a
functional of the electronic density n(r), and that the ground state density
and energy can be obtained by minimising this functional with respect to
the density. This is a surprising result, since it somehow avoids discussing
wavefunctions (and quantum mechanics directly) at all. The hitch is that
the functional is unknown in general; the practical advance is that very good
approximations to the functional are known.

How this comes about, we shall now sketch. There are in fact two theo-
rems; or a theorem and a corollary, to be pedantic.

We first rearrange the notation of Eq. (2.78) as

H = Hint + Vext (2.110)

where

Hint = T + Vee (2.111)

17Notice that Eq. (2.109) is an expansion in powers of (1/rs) about the low- density
limit (rs → ∞), whereas Eq. (2.106) is an expansion in powers of rs about the high-density
limit (rs → 0).

18The most reliable estimates come from quantum Monte Carlo calculations, see
D.Ceperley and B.J.Alder, Phys. Rev. Lett. 45, 566 (1980).
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the sum of the kinetic energy term and the electron-electron interaction
term, and

Vext = Uion =
∑

i

vext(ri) (2.112)

The interaction with the ions is viewed as an external potential acting on the
electronic system; ri, i = (1, 2, ..., N) are the coordinates of the electrons.

The electronic density corresponding to the ground state many-body
wavefunction is

n(r) = < Ψ0(r1, r2, ..., rN )|
∑

i

δ(r− ri)|Ψ0(r1, r2, ..., rN ) >

= N

∫

dr1...drN |Ψ0(r1, r2, ..., rN )|2δ(r− r1) (2.113)

Note that

< Ψ0|Vext|Ψ0 >=

∫

drn(r)vext(r) , (2.114)

using Eq. (2.113); we need only the density, and not the wavefunctions, to
evaluate this term in the energy.

Notice that the interaction energy between the electrons and the Let us
imagine that we hold Hint fixed, as well as the total number N of electrons,
and vary the “external” potential Vext. The first Hohenberg-Kohn theorem
states that there is a one-to-one correspondence between the ground-
state density of a N-electron system and the external potential acting
on it. This theorem implies that the electron density contains in principle
all the information contained in the ground state wavefunction.

Proof:

To prove the theorem, assume it is false. Assume there are two potentials v1(r) and v2(r)
that result in the same ground state density n(r). The two resulting Hamiltonians ÝH1

and ÝH2 will then have ground state wavefunctions Ψ1 and Ψ2, and energies E1 and E2.
The variational principle tells us that19

E1 =< Ψ1| ÝH1|Ψ1 > < < Ψ2| ÝH1|Ψ2 > , (2.115)

and so

E1 < < Ψ2| ÝH2|Ψ2 > + < Ψ2|( ÝH1 − ÝH2)|Ψ2 >

E1 < E2 +

∫

drn(r)[v1(r)− v2(r)] . (2.116)

However, the argument can easily be run in the reverse order, switching the indices 1 and
2, viz.

E2 < E1 +

∫

drn(r)[v2(r)− v1(r)] . (2.117)

19We assume the ground states of the two Hamiltonians are not degenerate, which is a
technicality that can easily be fixed
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The equations Eq. (2.116) and Eq. (2.117) are in contradiction unless v1 = v2 (and then

of course E1 = E2).

The result of the theorem is to say that the external potential is a func-
tional of the density: we express this relationship with square brackets
vext[n].

In order to use the theorem, we must make a few obvious remarks. The
ground state wavefunction is a functional of the external potential vext, and
by extension this follows for the energy E[vext], the kinetic energy T [vext]
and the interaction energy Vee[vext]. But since we have seen that vext is a
functional of the density n(r), all of these are functionals of the density, as
is the ground state wavefunction itself.

This brings us to the second Hohenberg-Kohn theorem, often called the
density functional theorem, which is just the formulation of a variational
principle on the functional

EHK [n(r); vext(r)] = < Ψ0[n]|T + Vee + Vext|Ψ0[n] >

= T [n(r)] + Vee[n(r)] +

∫

drn(r)vext(r) ,(2.118)

where vext is now taken to be fixed, and n(r) is allowed to vary, with |Ψ0[n] >
the ground state wavefunction of a system with density n(r). We know that
a variational principle exists with regard to the wavefunctions |Ψ >, but be-
cause of the functional dependence of |Ψ > on n, a variational minimisation
of of EHK with respect to n(r) yields the exact ground state density, and
the exact ground state energy. Notice furthermore (and this is the useful
bit) that the function F [n] = T [n] + Vee[n] is universal and does not de-
pend on vext(which contains all the information about the actual solid) – the
problem once solved is solved for ever. Unfortunately, the functional F [n] is
not known of course – but in many cases it can be approximated very well.

The Kohn-Sham equations

To carry out the variational minimisation it is convenient to decompose the density into
a sum of fictitious independent orbital contributions

n(r) =
N
∑

i

φ∗
i (r)φi(r) . (2.119)

where the φi are orthonormal 20. These wavefunctions are not the wavefunctions for the
interacting system – this is just a useful trick.

20We are allowed to do this by use of the Hohenberg-Kohn theorem. Imagine a noninter-
acting system, whose ground state density n0(r) equals n(r). The HK theorem guarantees
the uniqueness of a potential v0ext that produces the ground state density n0. But because
the system is non-interacting, the ground state is described by a Slater determinant of the
wavefunctions φi. So the decomposition of Eq. (2.119) exists.
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We then write the variational function (Eq. (2.118)) as

EHK [n] = T0[n(r)] + VH [n(r)] +

∫

drn(r)vext(r) + Exc[n] , (2.120)

where for convenience we have removed the Hartree energy

VH [n] =
1

2

∫ ∫

dr dr′ n(r)n(r′)
e2

|r− r′| =
1

2

∑

ij

< ij|Vee|ij > , (2.121)

and the kinetic energy is now that of a system of non-interacting electrons

T0[n] =
∑

i

< i| − h̄2∇2

2m
|i > . (2.122)

The remaining energy is lumped into the exchange-correlation functional

Exc[n] = T [n]− T0[n] + Vee[n]− VH [n] (2.123)

which is, of course, unknown.

Now we use the standard variational procedure on the N orbitals {φi}, obtaining the

Kohn-Sham equations

[

− h̄2∇2

2m
+ Uion(r) + Ucoul(r) + Uxc(r)

]

φi(r) = εiφi(r) , (2.124)

where Uion and Ucoul are just the nuclear and Hartree potentials, as before
and the exchange-correlation potential is formally defined as

Uxc =
δExc[n]

δn(r)
. (2.125)

After these equations have been solved, the exact ground state energy is
given by

E0 =
∑

i

εi −
1

2

∑

ij

< ij| e
2

r12
|ij > +Exc[n]−

∫

drUxc(r)n(r) . (2.126)

The energies εi are purely formal Lagrange multipliers: any identifica-
tion with one-particle energies is purely heuristic. Of course, in situations
where the exchange-correlation energy is small (so called weakly correlated
materials, which includes many common metals and semiconductors) they
are a good approximation to single-particle terms.

The formal theory is of no practical use without a knowledge of the
exchange-correlation potential Uxc. However, here we strike good fortune.
It turns out that in many cases a very good approximation is to replace it
by that calculated for a uniform electron gas of the same local density:

ELDA
xc [n(r)] =

∫

drεxc(n(r))n(r) . (2.127)
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where εxc(n(r)) is the exchange-correlation energy per electron. This is
the local density approximation (LDA) which is widely used for accurate
ab initio calculations. It could be taken from the series expansion in Eq.
(2.106), for example, although there are better interpolations schemes over
a wide density range, and some that incorporate gradient corrections in the
density.

2.2.5 Screening and Thomas-Fermi theory

One of the most important manifestations of electron-electron interactions in
metals is that of screening. If we insert a positive test charge into a metal,
it attracts a cloud of electrons around it, so that at large distances away
from the test charge the potential is perfectly screened. We shall be looking
at screening later in the context of response functions, but we can look at
a simple, and very useful, model here, that goes by the name of Thomas-
Fermi theory in metals. It will be derived in two ways: firstly the traditional
physical route, and secondly (but completely equivalently) couched in the
language of density functional theory. To simplify matters, we will ignore
entirely the exchange correlation potential entirely, so the energy consists of
kinetic, Hartree, and external potential terms.

General remarks on screening

The charge density we introduce into the solid we will call ρext(r) = |e|next(r).
In vacuum, or if for a moment we stop the electrons in the solid from re-
sponding to this charge, it would produce a potential vext that satisifies
Poisson’s equation

∇2vext(r) = 4πe2next(r) . (2.128)

Once the electrons in the solid relax to accommodate the new potential,
the total charge density will consist of the external charge and the induced
electron charge density nind(r), viz

ρtot(r) = ρext(r) + ρind(r) = e(next(r)− nr(r)) , (2.129)

which generates the actual potential vtot seen by the electrons,

∇2vtot(r) = 4πe2(next(r)− nind(r)) . (2.130)

Because the electrons move toward the positive charge, the net effect will
be that the total potential seen by an individual electron in the Schrodinger
equation is less than the external potential.

In general, this phenomenon is incorporated into electromagnetic theory
through the dielectric function ε, and usually one assumes that the total
potential and the induced potential are linearly related (linearity being an
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assumption, for the moment). The dielectric function relates the electric
displacement D to the electric field E, in the form

D(r) =

∫

dr′ ε(r, r′)E(r′) . (2.131)

Because D is generated by "free" charges (i.e. ρext) and E by the total
charge (i.e. ρtot) Eq. (2.131) can be rewritten as a relationship between the
potentials generated by those charge distributions:

vext(r) =

∫

dr′ ε(r, r′)vtot(r
′) . (2.132)

In a spatially uniform electron gas, ε can depend only on the separation
between coordinates, i.e. ε(r, r′) = ε(r− r′), so that Eq. (2.132) becomes a
convolution in real space – better written of course in Fourier (momentum)
space as21

vext(q) = ε(q)vtot(q) . (2.133)

The job of a microscopic model is to calculate the induced charge density
(using the Schrodinger equation) produced by the external potential, i.e.
nind([vext(r)]); again assuming it is linear (expected to be the case if vext is
small enough, this will be a calculation of what is usually called the linear
susceptibility χ, defined by

nind(q) = χ(q)vext(q) . (2.134)

Looking back to the definitions of the potential in terms of the density, the
relationship to the dielectric function is

1

ε(q)
= 1− 4πe2

q2
χ(q) . (2.135)

Thomas-Fermi approximation

The Thomas-Fermi theory of screening starts with the Hartree approxima-
tion to the Schrödinger equation. We shall just treat the case of “jellium”,
where the ionic potential is spread out uniformly to neutralise the electron
liquid. So the only potential in the problem is the total potential (exter-
nal plus induced) produced by the added charge and by the non-uniform
screening cloud (see Fig. 2.11)

− h̄2

2m
∇2ψ(r) + vtot(r)ψ(r) = Eψ(r) . (2.136)

21Here we use the same symbol for a function and its Fourier transform, distinguishing
the two by their arguments
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Figure 2.11: Thomas-Fermi approximation

The second approximation is to assume that the induced potential is
slowly varying enough that the energy eigenvalues of Eq. (2.136) are still
indexed by momentum, but just shifted locally by the potential:

E(k, r) =
h̄2k2

2m
+ vtot(r) . (2.137)

This makes only sense in terms of wavepackets, but provided the poten-
tial varies slowly enough on the scale of the Fermi wavelength 2π/kF , this
approximation is reasonable. We know that after the system comes to equi-
librium the chemical potential must be a constant, throughout the system.
Keeping the electron states filled up to a constant energy µ requires that we
adjust the local kF such that

µ =
h̄2kF (r)2

2m
+ vtot(r) = EF (r) + vtot(r) , (2.138)

where we have adopted the usual convention of measuring EF from the
bottom of the parabolic band22.

Now we can substitute into Eq. (2.138) for the two terms on the RHS.
We assume that kF just depends on the local density

kF (r) = (3π2n(r))1/3 (2.139)

and we have from the discussion above that

vtot(r) = vext(r) + vind(r) = vext(r) +

∫

dr′
e2

|r− r′|
n(r′) (2.140)

Putting this all together, we get the Thomas-Fermi equation

h̄2

2m
(3π2)2/3n2/3(r) +

∫

dr′
e2

|r− r′|
n(r′) = µ− vext(r) . (2.141)

22One is often sloppy about using EF and µ interchangeably; here is a place to take
care
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This is still a nonlinear equation, but we shall be interested in the case when
the added potential vext is small, so the density cannot differ very much from
the density no of the system without the potential. Let us then write

δn(r) = n(r)− no , (2.142)

where δn is the induced charge density. Linearising Eq. (2.141) we get

h̄2

3m
(3π2)2/3n−1/3

o δn(r) +

∫

dr′
e2

|r− r′|
δn(r′) = −vext(r) (2.143)

This is a linear integral equation that is best solved by Fourier trans-
forms. The solution can be written as

δn(q) = − vext(q)

4πe2

q2

[

1 + q2

q2TF

] , (2.144)

where the Thomas-Fermi wavevector is

q2TF =
4

π

me2

h̄2
kF =

4

π

kF
aB

= (
2.95

r
1
2
s

Å−1)2 . (2.145)

Eq. (2.144) gives us the definition of the density response function χ, and
hence we have calculated the static dielectric function in the Thomas-Fermi
approximation

εTF (q) = 1 +
q2TF

q2
, (2.146)

or equivalently

vtot(q) = vext(q)
q2

q2 + q2TF

. (2.147)

In particular, if vext = Q/r is Coulombic (long range), V (r) = (Q/r)e−qTF r

is a short-range Yukawa, or screened potential23.
In a typical metal, rs is in the range 2−6, and so potentials are screened

over a distance comparable to the interparticle spacing; the electron gas is
highly effective in shielding external charges.

Thomas-Fermi is a density functional theory

The theory in the last section is all written as variational equations in terms of the den-
sity n(r), which hints that the Thomas-Fermi approximation is in fact no more than a
particular simple approximation to the density functional theory of Sec. 2.2.4. Here is the
result derived in that fashion.

23This form is originally due to P.Debye and E.Hückel, Zeitschrift für Physik 24, 185,
(1923)and was derived for the theory of electrolytes; it appears also in meson theory under
the name of the Yukawa potential; the physics in all cases is identical
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For the kinetic energy, we just use the free-electron result for a uniform electron gas
(Eq. (2.104)) for the kinetic energy density (per unit volume)

T =
3

5

h̄2k2
F

2m
n =

3

5

h̄2

2m
(3π2)2/3n5/3 (2.148)

and then write an approximate funcional by assuming this is good for a slowly varying
density, i.e.

T [n] =

∫

dr
3

5

h̄2

2m
(3π2)2/3n5/3(r) , (2.149)

and the Hartree term is as before

VH [n] =
1

2

∫ ∫

dr dr′ n(r)n(r′)
e2

|r− r′| , (2.150)

whereas the external potential is the interaction of the density with our true external
potential that we have added to the system

Vext[n] =

∫

drn(r)vext(r) . (2.151)

We now minimise the functional ETF = T + VH + Vext with respect to n, subject to
the constrain that the total number of particles is conserved. Formally, one introduces a
Lagrange multiplier µ (otherwise known as the chemical potential), and thus get

δE[n]

δn
= µ (2.152)

which generates the Thomas-Fermi equation of Eq. (2.141)24

h̄2

2m
(3π2)2/3n2/3(r) +

∫

dr′
e2

|r− r′|n(r
′) = µ− vext(r) . (2.153)

24It is straightforward to also include the exchange term from Eq. (2.104), and the
resultant equation is then called the Thomas-Fermi-Dirac equation



48 CHAPTER 2. ELECTRONIC STRUCTURE THEORY

Questions on chapter 2

Qu.2.1 BCC and FCC lattices
Show that the reciprocal lattice of a body centred cubic lattice (BCC) of

spacing a is a face centred cubic (FCC) lattice of spacing 4π/a; and that the
reciprocal lattice of a FCC lattice of spacing a is a BCC lattice of spacing
4π/a.

Qu.2.2 Reciprocal lattice
Show that the volume of the primitive unit cell of the reciprocal lattice

is (2π)3/Ωcell, where Ωcell is the volume of the primitive unit cell of the
crystal.

Qu.2.3 * Another proof of Bloch’s theorem
A more elegant way to prove Bloch’s theorem is to note that the trans-

lation operator can be written

TR = e−iÝP·R/h̄ ,

where P̂ is the momentum operator. (If you don’t know how to do this,
make the replacement P̂ = −ih̄∇, and check that the operator generates
the infinite Taylor series expansion of f(r+R).) By multiplying by the ket
< k| (an eigenfunction of momentum), show that either < k|ψ >= 0, or
c(R) = e−ik·R.

Qu.2.4 Density of states for free electrons
Calculate the density of states in energy for electrons with a quadratic

dispersion E = h̄2k2/2m in one, two, and three dimensions.

[Answer:(2m/πh̄2) × (h̄2/2mE)
1
2 , (d=1); (m/πh̄2), d=2; (m/π2h̄2) ×

(2mE/h̄2)
1
2 , d=3 .]

Show how in three dimensions, this can be re-written as

(3/2)(n/EF )(E/EF )
1
2

with n = N/V .

Qu.2.5 One-dimensional band
Consider a one-dimensional system which is filled up to the first Brillouin

zone boundary at k = π/a, and assume that there is a small gap produced
by a single Fourier component of the lattice potential U = UK=2π/a (small
meaning that U/E0

1
2K

¼ 1). Consider momenta close to the zone boundary,

show that a good approximation for the energy dispersion of the bands is

E = E0

(

1±

√

U2

E2
0

+ 4x2

)
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where E0 = E0
1
2K

and k = (π/a)(1 + x), with x ¼ 1.

Evaluate the change in electronic energy

Eelec =
∑

k occupied

[E(k;UK)− E(k;UK = 0)]

to leading order in U/E0. (Hint: the result is non-analytic - don’t try a
Taylor series in U .)
We shall be using this result later to understand the Peierls instability
of a one-dimensional system.

Qu.2.6 Some one-dimensional chemistry
Consider a diatomic lattice of two atoms labelled A and B in a lattice

with period a, at the positions ±a/4(1− δ) in a one-dimensional array with
overall period a.

Using the NFE approximation valid for momenta near the zone boundary
k → π/a, show that the solution of Eq. (2.58) leads to:
(a) a gap on the zone boundary is 2|U2π/a|, and
(b) wavefunctions that satisfy c±k /c

±
k−π/a = ±U/|U | as k → π/a.

Hence show that the probability density for the electronic states at k =
π/a take the form

|ψ+(r)|2 ∝ cos2(
πx

a
+

φ

2
)

|ψ−(r)|2 ∝ sin2(
πx

a
+

φ

2
) . (2.154)

Show that the potential can be written

U2π/a = sin(
πδ

2
)(UA

2π/a + UB
2π/a)− i cos(

πδ

2
)(UA

2π/a − UB
2π/a) , (2.155)

where

UA,B
2π/a =

N

V

∫

dr e−2πir/aUA,B(r) , (2.156)

The system contains an average of one electron per atom, or equivalently
two electrons per unit cell. Discuss the values of the energy gaps and plot
the charge densities corresponding to the highest filled electron state and
the lowest empty electron state in the two cases; (a) δ = 0, UA 6= UB; (b)
identical atoms, UA = UB, and δ 6= 0.

Explain how this provides a simple model of either an ionic or covalent
solid.

Qu.2.7 Tight binding for BCC and FCC lattices
Show that the tightbinding bandstructure for a body centred cubic lattice

(include only the hopping to the eight nearest neighbours) is

E(k) = ε0 + 8t cos(
1

2
kxa) cos(

1

2
kya) cos(

1

2
kza) , (2.157)
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and for the face centred cubic lattice (twelve nearest neighbours)

E(k) = ε0+4t[cos(
1

2
kxa) cos(

1

2
kya)+cos(

1

2
kya) cos(

1

2
kza)+cos(

1

2
kza) cos(

1

2
kxa)] .

(2.158)

Qu.2.8 * Pseudopotential
Show that < χ|fn >= 0 if we choose βn =< fn|k >.

The pseudopotential is not unique. Show that the valence eigenvalues of
a Hamiltonian H + VR are the same for any operator of the form

VRφ =
∑

n

< Fn|φ > fn ,

where the Fn are arbitrary functions.

Qu.2.9 Hartree-Fock theory for the two level atom
Show that the Hartree-Fock total energy Eq. (2.94) applied to the two-

level atom model of Sec. 2.2.1 gives exactly the direct and exchange energy
calculated in Eq. (2.86) .

Qu.2.10 * Hartree Fock equations
This problem is just to derive the Hartree-Fock equations shown

above. The first part is quite messy, because of the need to deal with
determinants. This kind of unpleasant algebra is simplified consid-
erably by using a second-quantised formalism, which is why that was
invented.

Evaluate the energy in the form

< H >Ψ=
< Ψ|H|Ψ >

< Ψ|Ψ >

with the determinantal wavefunction of Eq. (2.93) using an orthonormal set
of orbitals ψi.
Answer:

< H >Ψ=
∑

i

< i|(T+Uion|i > +
1

2

∑

ij

[

< ij| e
2

rij
|ij > − < ij| e

2

rij
|ji > δσiσj

]

.

(2.159)
Show that by minimising with respect to the ψ∗

i one obtains the Hartree-
Fock equations

[

− h̄2

2m
∇2 + Uion(r) + Ucoul(r)

]

ψi(r)

−
∑

j

∫

dr′
e2

|r− r′|
ψ∗
j (r

′)ψi(r
′)ψj(r)δσiσj = εiψi(r) (2.160)
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and that the total energy can be written

< H >Ψ=
∑

i

εi −
1

2

∑

ij

[

< ij| e
2

rij
|ij > − < ij| e

2

rij
|ji > δσiσj

]

. (2.161)

Qu.2.11 Band structure in the Hartree-Fock approximation
Using Eq. (2.102), calculate the density of states near the Fermi energy

to leading order in (E−EF )/EF . If this result were physically correct what
would be the temperature-dependence of the electronic specific heat at low
temperature?

The logarithmic singularity you found is not found in better theo-
ries than Hartree-Fock. It arises mathematically from the long-range
Coulomb interaction (and in particular the k−2 divergence) which van-
ishes when we allow for processes to screen the interaction and make
it short-range.

Qu.2.12 Ferromagnetism in the HF approximation
Previously, we considered the unpolarised spin state, which is a param-

agnet. Now consider a fully spin polarised state at the same density: the
Hartree-Fock Slater determinant corresponds to singly occupying each state
in the Fermi sphere. In analogy to Eq. (2.104), compute the total energy
of the spin polarised state, and show that this is lower in energy than the
unpolarised state if rs > 5.45 in the Hartree-Fock approximation.

The physics here is correct, but the number is very wrong, and the
paramagnetic state is believed to be stable up to rs ≈ 75. The ferro-
magnet has larger kinetic energy, because at a fixed density you have
always a larger kF (by a factor of 21/3) if only one spin subband is
filled. The exchange energy is only between parallel spins and is neg-
ative, so prefers spin-aligned states, and the interaction terms become
proportionately more important at low densities (large rs)

Qu.2.13 Thomas-Fermi screening
Check the formulae in Eq. (2.144) and Eq. (2.145). Suppose that the

potential vext = Q/r, show that the induced charge density is then of the
form

δn(r) ∝ e−r/ξ

r

and identify the screening length ξ.

Qu.2.14 * Generalised one-dimensional band theory
Many of the general features of electron bands in a periodic solid

can be appreciated without recourse to a detailed model of the lattice
potential. In this problem the scattering from the lattice potential is
treated in a general way by describing it in terms of wave relfection
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and transmission. The algebra in the first two parts is messy - but the
answer given in section (b) can be used to answer section (c).

Consider a 1D solid, lattice constant a, made of “building blocks” (−a/2 <
x < a/2) that scatter plane waves with a reflection coefficient r and trans-
mission coefficient t (|r|2 + |t|2 = 1) as shown.

r eiKx
t e-iKx

e-iKx

t eiKxeiKx

r e-iKx

x=-a/2 x=-a/2x=a/2 x=a/2

Wave incident from left Wave incident from right

The energy of the plane wave is written as ε = h̄2K2/2m. In the solid,
the building blocks are stacked together indefinitely in the x-direction.

(a) Write the solution to the Schrödinger equation in the solid ψ(x), as a
linear combination of ψr(x) and ψl(x) and use Bloch’s theorem to relate the
wavefunction at each side of the building block (the same theorem applies
to the gradient ψ′).

ψ(x+ a) = eikaψ(x) ;ψ′(x+ a) = eikaψ′(x)

Hence, show

cos(ka) =
t2 − r2

2t
eiKa +

1

2t
e−iKa

.
(b) If the transmission coefficient is t = |t|eiδ, it can be shown that

r = ±i|r|eiδ (it is relatively easy to demonstrate this graphically for the
special case when the scattering is localised at x = 0 and one can match ψ
at the origin). Use this result to eliminate r and show

cos(ka+ δ)

|t|
= cos ka .

(c) Since |t| < 1, this result shows there are values of K (and hence ε)
for which no Bloch states exist. Demonstrate this by sketching the left-hand
side as a function of K (or preferably ε) Use your sketch to illustrate the
behaviour for: (i) strong scattering; (ii) weak scattering.

Explain why, in general, electron bands tend to get wider and their gaps
narrower as the electron energy increases.



Chapter 3

Electronic structure of
selected materials

3.1 Metals

A limited number of elements are well described as nearly free electron
compounds. We should expect nearly free electron theory to apply when
the electronic density is high, for two major reasons.

The first is that as we saw in the last section, screening of an “external”
charge occurs over a range q−1

TF , which is short when the density is high. So
the nuclear charges are strongly screened, and therefore the ions’ scattering
potential is weak when they are embedded in a high density electron gas.
Secondly, we saw in the homogeneous electron gas that correlation effects,
which are defined as the effects of electron-electron interactions that cannot
be incorporated into interactions only with the average effects of all the
electrons are weaker at high density. So we should expect the independent
electron approximation to work quite well.

The ionic potential itself will be weaker also toward the left had side of
the periodic potential. That is because the core electrons are tightly bound,
and the valence electrons see only the combined potential of the nuclear
charge plus the core. For Na, Mg and Al, for example the 1s, 2s and 2p
electrons are bound into a configuration like that of the inert rare gas Ne,
and only the 3s and 3p electrons need to be included.

Thus for the alkali metals (row 1 of the periodic table), the fermi surface
is alomst spherical and well inside the first Brillouin zone.

In the divalent alkaline earth metals (row 2 of the periodic table) there
are two electrons in the outer shell. Consequently the Fermi surface volume
must be equal to the volume of the first Brillouin zone (for a solid with
one atom per unit cell). Since there is always a gap on the Brillouin zone
boundary, these materials must be either insulators, or semi-metals, but
because the potential is weak, the gaps are small, and the latter is the

53
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Figure 3.1: Periodic table of the elements. From Kittel
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Figure 3.2: Band structure of Al (solid line) compared to the free electron
parabolas (dotted line). Calculations from Stumpf and Scheffler, cited by
Marder.

case – there is a large electron pocket in the second Brillouin zone, and a
counterbalancing hole pocket in the first Brillouin zone. The Fermi surface
is now complicated.

Moving to the trivalent metal Al, Fig. 3.2 shows the calculated band
structure, compared to the plane wave parabolas, which are remarkably
similar.

The tetravalent elements are semiconductors (C,Si,Ge,Sn) or metals to-
ward the bottom of the periodic table (Sn, Pb), with tin existing in two
forms. We will discuss these in the next section.

We next turn to metals where the d-shell in the atom plays an impor-
tant role: the noble metals (Cu,Ag, Au), and the transition metals them-
selves. The electronic configuration of Cu is [Ar]3d104s1; for Ag we have
[Kr]4d105s1 and Au [Xe]5d106s1. It turns out that the d-shell electrons are
not so tightly bound to the atom that they can be considered as part of
the core: however the 3d wavefunctions are more tightly bound than the
4s, which means that in a tight-binding picture, the overlap between the
3d-states on neighbouring atoms will be smaller than the overlap between
neighbouring 4s-states. We would expect to see a broad s-band(holding two
electron states per atom), and a narrow d-band (holding 10 electron states
per atom), and this is in fact the case (see Fig. 3.3). However, these sets of
band overlap, and in the crystal, the atomic d- and s-states are not eigen-
states, of course. So where the bands cross, they mix, and this hybridization
is very important for the associated magnetic phenomena. Another very im-
portant consequence of the hybridization in Cu is that the metal has an open
Fermi surface (Fig. 3.4): in the < 100 > direction, the rapidly dispersing
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Figure 3.3: Band structure of Cu metal [from G.A.Burdick, Phys.
Rev.129,138 (1963)], cited by Grosso and Parravicini

s-like band crosses the Fermi surface, but there is no crossing in the 111 di-
rection. This topology has important consequences for transport properties
like magnetoresistance.

In transition metals (partially filled 3d, 4d and 5d shells) or rare earth
metals (partially filled 4f or 5f shells), the electronic states are determined by
a mixing of the quasi-localised d- or f- states with the itinerant s- or p- states.
However, in many of these metals (and especially in their compounds), the
bands are narrow enough that the independent electron approximation is no
longer even approximately valid. This is the realm of strongly-correlated
electronic systems, and we shall need different tools to understand them.

3.2 Semiconductors

The group IV elements, diamond, silicon, germanium, and one form of tin
(gray-Sn) crystallise in the diamond structure, which is f.c.c. with two atoms
per unit cell.

The electronic configurations are just [ ]ns2np2 with n the principal
quantum number. The band structures of Si, Ge, and GaAs are shown in
Fig. 3.6 and Fig. 3.7. The maximum of the valence bands of all the materials
is at Γ. Si and Ge are both indirect gap materials, because the conduction
bands have minima either in the (100) direction (Si) or the (111) direction
(Ge).

In contrast to the metals, these covalently-bonded solids are much less
dense - with only four nearest neighbours at the corners of a tetrahedron -
rather than the twelve of a close-packed metal. These materials have forgone
the strong cohesion that can be gained in a high-density metallic state for
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Figure 3.4: Fermi surface of Cu

Figure 3.5: Tetrahedral bonding in the diamond structure. The zincblende
structure is the same but with two different atoms per unit cell
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Figure 3.6: Pseudopotential band structure of Si and Ge [M.L.Cohen and
T.K.Bergstresser Phys.Rev141, 789 (1966)]. The energies of the optical
transitions are taken from experiment.

Figure 3.7: Band structure of GaAs [M.L.Cohen and T.K.Bergstresser
Phys.Rev141, 789 (1966)]
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the directed bonding in a covalent solid. With the electronic configurations
above we have 4 electrons per atom (8 per unit cell) to accommodate into
eight bands formed from the s-p hybridised orbitals (one s and three p per
atom). We need to fill half the available bands. When this is done in Si,
we see from the figure that we fill the states up to a substantial gap on the
surface of the Brillouin zone. The valence bands are separated from the
conduction bands by a large amount, and we need to understand where this
overall energy gap comes from.

The tetrahedral directions are well known in the theory of chemical
bonds. We know that we can combine the 1s and 2p orbitals to make a
new basis set of sp3 hybrid orbitals, which point in the < 111 > directions.
These orbitals have the nice feature that they are directional: the lobes
point mostly in the direction of the neighbouring atom.

Within the tight-binding description, we would then consider princi-
pally terms in the Hamiltonian that make overlaps to the neighbouring
atom with the orbital pointing in the same direction; if one neglects all
other overlap terms, then clearly the Hamiltonian factors into a product
of non-interacting molecules. The band-structure will then reflect these
(2x2) subunits: the mixing of a pair of degenerate orbitals will yield a split
bonding and antibonding combination of orbitals. There are then four oc-
cupied bonding orbitals, and four unoccupied antibonding orbitals, with no
dispersion.1 We have found no dispersion so far because we neglected two
things: one is the energy cost of (in chemical language) “promoting” an
s-electron into a p-state; the other is the further hybridisation or “hopping”
terms that we neglected. All this leads to broadening of the bonding and
antibonding levels into bands; but the fundamental origin of the gap can be
seen by chemical means.

It is also instructive to look at this problem from the nearly-free-electron
point of view. Except close to the chemical potential, most of the band dis-
persion is captured by the free electron model. Near the chemical potential,
there is a substantial gap. Because the gap occurs after four bands are
filled, we need to look at the band gaps on the fourth Brillouin zone bound-
ary. This is drawn in Fig. 3.8 for the diamond lattice in the extended zone
scheme.

Bands near the zone centre
It is of interest to look at the bands near the Γ-point, because then some symmetry princi-
ples help the analysis. Since the zincblende structure has inversion symmetry about each
atom, and since at k = 0 the wavefunction is the same in each unit cell, the states can be
separated into those that are even or odd about any lattice site (for our purposes s and
p). Additionally, if we have the diamond lattice there is a further symmetry point midway
between the two atoms in the unit cell; the states can also be classified as odd/even about

1Note that we would have derived the same electronic structure even if the solid was
amorphous – provided solely that each atom has four neighbours in approximately the
correct orientation
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Figure 3.8: The fourth Brillouin zone (or Jones zone) for a face-centered
cubic crystal. The surface consists of {110} planes. Points on the surface
of the Brillouin zone are labelled with both their conventional notation and
coordinates in units of 2π/a, where a is the cubic lattice constant

this point. So we must have the following sets of states:

bonding (antibonding) s1 ± s2
bonding (antibonding) p1 ± p2

(the subscript refers to the two atoms in the cell) The p− states are triply degenerate (in
the absence of spin-orbit coupling which we will come back to in a moment) because the
crystal is cubic – this degeneracy is analogous to the orbital degeneracy of px,py and pz
states in an atom. We expect these states to be ordered in the way shown in Fig. 3.9.

In zincblende materials, the admixture of states will reflect the partial ionicity, as
noted in the figure: if atom 2 is the more electronegative atom, γ(′) > 1, but the bond-
ing/antibonding character is essentially preserved.

Now let us include spin-orbit interactions, which will come with a term λL · S in the

Hamiltonian. This will split the p-states in Fig. 3.9, and we can easily see how. Without

spin orbit, we had a sixfold-degenerate level altogether – 3 (orbital) x 2 (spin). After

coupling, the states must be eigenfunctions of the total angular momentum J , which can

take on the values J = 3/2 (fourfold degenerate), and J = 1/2 (twofold degenerate). We

end up with the bands show in Fig. 3.10 and in particular with the characteristic “lightÔ

and “heavyÔ mass bands for holes.

Semiconducting band gap in the nearly-free-electron picture
In the nearly free electron picture, we should then expect a gap equal to 2U(220), because
we can scatter from k to the degenerate k−(220). Of course, there are other ways to scatter
by the same reciprocal lattice vector, and in particular we note that (220) = (111)+(111̄),
so we can get the same effect by scattering twice from the lattice potential U(111). Since
|(111)| < |(220)|, U(111) is the larger, and its effect in second order can overcome the
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Figure 3.9: Valence and conduction bands near k=0 according to a tight-
binding prescription. (a) is for diamond crystals, and (b) for zincblende;
spin-orbit splitting is neglected. (From Phillips.)

Figure 3.10: Sketch of the valence bands of diamond or zincblende structure
semiconductors showing the effect of spin orbit interaction on the topmost
valence bands
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effect of U(220) in first order 2

We can then guess that the effective scattering potential might be something like

Ueff (220) = U(220) +
U(111)× U(111̄)

∆E
, (3.1)

where we can staightforwardly see how this formula comes from second-order perturbation
theory, with

∆E =
h̄2

2m

[

|(110)|2 − |(110)− (111)|2
]

=
h̄2

2m

(

2π

a

)2

. (3.2)

In the zincblende structure, with two different atoms A and B, one has from Eq. (2.31)

U(111) = −U(111̄)∗ = [UA(111) + UB(111)] + i[UA(111)− UB(111)] , (3.3)

and so we have a gap which adds the symmetric (“covalentÔ) and antisymmetric (“ionicÔ)
components in quadrature just like the one dimensional example we studied in Problem
2.6.3

Table 3.11 shows the average band gap for a variety of tetrahedrally coordinated
crystals, separated into the covalent and ionic parts.4 There are two very compelling
trends that are quite visible in the data on the average band gap. One is that the band
gap decreases as one moves down the periodic table. This we understand most easily by
reference to Fig. 3.9, which shows that at least at k = 0 the hybrid sp3 states are not
the right description, and of course in a real atom, the energy of the s-state is lower than
the p : Ens < Enp. This comes about because the s-electrons penetrate closer to the
atomic core than the corresponding p-state, so they see a less well-screened potential and
lie deeper. This separation accentuates with increasing row number in the periodic table,
and destabilises the formation of sp3 hybrids. So elemental Sn is found in two forms, the
diamond structure gray tin, and the metallic white tin. The next element down in the
groupIV is lead, which is always found as a close-packed metal.

Gray-Sn is an interesting case, because although the average band gap is still positive,
just at the gamma point the antibonding s-states fall below the bonding p-levels (a trend
that one can already see from looking at the band structures of Si and Ge above), so it
is then a zero-gap semiconductor, because the lowest conduction band and the highest
valence band are now degenerate by symmetry.

The second trend is that the average band gap increases with ionicity. In each of the
sequences Si:AlP:MgS and Ge:GaAs:ZnSe the band gap increases as the ionicity grows;
but since each sequence is taken from the same row of the periodic table, the average
symmetric potential is presumably not strongly changed. Eventually, of course, if the
ionicity is large enough, one expects (and finds) that the fourfold-coordinated zincblende or
wurtzite structures are unstable to crystal structures such as rocksalt or caesium chloride,
where the Coulomb (Madelung energy) is greatest.

3.3 Narrow band and strongly correlated systems

Strongly correlated systems we define loosely as those which have an inter-
action energy between the electrons that is comparable or larger to their

2It turns out that often the (220) vector comes very near a node in the pseudopotential,
so U(220) is anomalously small

3This approach has been carefully worked out by J.C.Phillips, Bonds and Bands in
Semiconductors, AP, New York 1972

4This comes from an empirical analysis, rather than from a direct pseudopotential
calculation
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Figure 3.11: Average energy gaps in binary tetrahedrally coordinated crys-
tals, separated into a covalent part Eh, an ionic component C, and a total

gap Eg =
√

E2
h + C2. The “ionicity” is defined as fi = C2/E2

g . From

Phillips [1973]
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kinetic energy of motion through the solid. Notice that this definition of ki-
netic energy corresponds to the bandwidth of the relevant electronic states,
not the total kinetic energy, which includes terms from localisation of elec-
tronic states in the nuclear potential. In practice, we shall use it to mean
systems where the approximate mean-field treatment of the Coulomb inter-
action between electrons is unreliable, or fails entirely.

Correlations are responsible for many physical phenomena in solids, in-
cluding magnetism, localisation and metal-insulator transitions, charge- and
spin-density waves, high-temperature superconductivity and the fractional
quantised Hall effect.

3.3.1 Interactions and the “Hubbard UÔ

Presupposing the answer, we should really be discussing the electronic struc-
ture in terms of a localised tight-binding description, and let us for a moment
consider a model system that has one orbital per site, and one electron per
site. Band theory will tell us that we have a half filled band, and therefore
a metal. The occupied states in band-theory are indexed by momentum, of
the form

ψkσ = N− 1
2

N
∑

i=1

eik·Riφσ(r−Ri) (3.4)

Note that each electron state is spread out throughout the whole crystal: we
get an average occupancy of 1 per site by adding together N terms (one from
each occupied k-state), each of which has amplitude 1/N . The dominant
repulsive term in the Coulomb energy comes from when the electrons lie
on the same site, and usually this goes by the name of the Hubbard "U".
Formally it is

U =

∫ ∫

dr dr′ |φ(r)|2|φ(r′)|2 e2

|r− r′|
. (3.5)

The contribution of the interaction term to the energy just depends on the
probability of double occupancy; in the extended state a little thought will
convince you that the probability of double occupancy is 1

2 .
The kinetic terms and the interaction terms work against each other:

in a Hartree-Fock state of extended orbitals, the kinetic energy goes down
because of overlap (by of order t, the hopping matrix element), but the
Coulomb energy goes up by O(U). If U ½ t, one might guess that this is
not a good starting point – in this limit it would seem to be better to localise
exactly one electron on each site and forbid hopping between sites – a state
which has total energy 0, because neither the kinetic nor the interaction
terms contribute to the energy. We will come back to this picture of a Mott
metal-insulator transition in a subsequent section; for the purposes of our
survey of electronic structure, it simply causes us to consider the values and
trends in interaction strengths relative to the electronic bandwidths.
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In our simplified atom, we can define the energies of singly and doubly
occupied states as follows

Hatom = εo
∑

σ

nσ + Uatomnσn−σ (3.6)

where σ is the spin, and n the number (operator). So the energy for zero,
single and double occupancy is

E(0) = 0

E(1) = εo (3.7)

E(2) = 2εo + U

(3.8)

so that if we know the energies of the atomic levels, we will define

Uatom = E(2) + E(0)− 2E(1) . (3.9)

Suppose, as is often the case, that double occupancy corresponds to the
neutral atom; then E(2) − E(1) = I1, the first ionisation potential, and
E(1) − E(0) = I2, the second ionisation potential. Then in terms of mea-
surable atomic quantities,

Uatom = I1 − I2 . (3.10)

The second ionisation potential is generally larger than the first, because
the ion is increasingly charged; so we get a Uatom (defined this way) which is
negative, based on the "0" state as empty of electrons. But of course we have
really defined a positive U for holes, which are the elementary excitations
of removing charge from the neutral atom. Notice that the definition of
U , even in the atom, will depend on which configuration we choose as the
“ground” state.

3.3.2 3d Transition Metals

In the 3d transition metals (from Sc to Zn) the physical properties are prin-
cipally determined by the filling of the d-shell, which has a formal configu-
ration ranging from 3d14s2 (Sc) to 3d104s2 (Zn). The inner shells are quite
localised and play little role in the low energy or cohesive properties of the
solid. Note that the 4s orbitals are filled before the d-shell, in the atom. The
4s wavefunction has a large amplitude at the core, and sees a higher effective
charge on the core because it penetrates inside the inner shells. However,
the 4s also extend out further from the nucleus than the 3d states. The 4s
orbital is pushed out to help maintain orthogonality with the s-states in the
core, and has 3 radial nodes; since are no d states in the core this allows the
d-orbitals to be more tightly bound. Because the d-states are more localised
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Sc Ti V Cr Mn Fe Co Ni Cu

E1 6.5 6.8 6.7 6.8 7.4 7.9 7.9 7.6 7.7
E2 12.8 13.6 14.7 16.5 15.6 16.2 17.1 18.2 20.3
−Ec 1.2 2.8 3.1 4.0 4.6 5.7 6.4 6.7
−EF 3.5 4.3 4.3 4.5 4.1 4.5 5.0 5.1

Table 3.1: First (E1) and second (E2) ionisation potentials, position of the
center of the d-band (Ec) and Fermi energy (EF ) for the 3d transition metals
(in eV).

the effects of Coulomb repulsion are more important. This can already be
seen in the atomic configurations in that Cr 3d54s1 and Cu 3d104s1 prefer
to depopulate an s-state in order to gain the stabilization of a half-filled
or filled shell. Another trend is in the ionization potentials: both the first
and second ionization potentials increase as the d-shell is filled. This arises
because the d-electrons screen imperfectly the (increasing) nuclear charge
for an added d-electron in their midst.

In the solid, the s-orbitals will hybridise most strongly with their neigh-
bors and produce a wide band. The d-orbitals overlap much less strongly,
but this narrow band of d-states lies in the midst of the broad s-band and
hybridises with it. Some of the atomic trends persist in that the increasing
ionization potential of the ions is mirrored in a lowering of the d-bands away
from the chemical potential.(See Table 3.1) The net result is that the center
of the d-band in the metal moves from about −1eV in Sc to −7eV in Ni,
while the Fermi energy falls by less – −3.5eV (Sc) to −5.5eV (Ni) as the
d-band is filled. Overall, the d-band width is in the range of 5− 8eV .

In oxides, the effect of interactions will be stronger because the ionicity
will mean that the transition metal ion is in a M2+ or M+ state, and
therefore the relevant atomic excitation which fixes the band center is the
second ionization potential. As can be seen in Table 3.1, this increases more
rapidly than the first ionization potential. Notice that the atomic Uatom is
smallest on the left hand side of the d-series, and increases to the right.

Because of the narrow band-width, the Coulomb repulsion effects can-
not be ignored. Indeed, it was pointed out long ago that the insulating
character of some transition metal compounds cannot be understood from
conventional band theory. This problem was addressed by Mott , Anderson,
and Hubbard 5, who showed that if the d-d Coulomb interaction is larger
than the band-width a correlation gap will form with the Fermi level in the
gap.

For real d-levels, instead of just the simple single orbital case described
above, we need to consider more interaction terms. The correlations between
electrons on the same ion are dominated by the effects of the exchange

5See N.Mott, Metal Insulator Transitions
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interactions

J ij
mm′ = 〈ψim(r1)ψjm′(r2)|

1

r12
|ψjm′(r1)ψim(r2)〉 (3.11)

where ψ is a localized d orbital around an atom, i, j denotes the sites and
m,m′ are the lz quantum numbers. The atomic wave functions are ex-
tremely localized and decay exponentially fast away from the atom, so the
interatomic terms are much smaller than the intra-atomic terms (i = j).
If the transfer integral decays as e−qr, then the interatomic exchange will
decay as e−2qr, and can generally be neglected.

Estimated magnitudes of the interactions in Eq. (3.11) are U = J ii
mm ≈

20eV , and J = J ii
m6=m′ ≈ 1eV . The large disparity in magnitude between

U and J encourages ferromagnetic alignment of the spins on the same atom
so that the Pauli principle avoids the repulsion U . This is Hund’s rule, and
explains why d-metals typically have large magnetic moments.

One can define an average exchange energy Ū per pair of electrons.
This gives the energy gained from switching from antiparallel to parallel
spins, on the assumption that different angular momentum states are occu-
pied equally. This gives an estimate for the interaction in the Hartree-Fock
scheme as ŪHF ≈ (U +4J)/5 ≈ 5 eV . Although we have used the same no-
tation as for Uatom (and we will use this U in the same way as in Eq. (3.6)),
it is defined here in a different way: this is for transitions on a neutral atom.
We consider double occupancy in a single orbital, but counterbalanced by
zero occupancy in an orthogonal d-orbital.

3.3.3 Interatomic screening

The effective interaction Ū we defined above provides an example of intra-atomic screening:
charge fluctuations between orbitals in a single atom, where the atom as a whole is kept
neutral. Such an interaction in the metal would split the d-band into separate (Hubbard)
bands, because the bandwidth ≈ 5 eV is of the same order. However, in many situations
the effective U is much smaller, because of screening effects by electrons in other bands,
especially the 4s .

To see how this works in practice, let’s look carefully at a particular case relevant
for the strongly correlated d-systems with nearly closed d-shells: Cu2+ or Ni+, which are
formally close to d9s0. We can estimate an "atomic" U for the Cu2+ or Ni+ configurations
from the energy of the transition

2(3d9) → 3d10 + 3d8. (3.12)

which is also the difference between the first and second "ionization potentials" of the
3d104s0 configuration (see Table 3.2). Defined this way, if no s-states are occupied, the
energy cost is about 13.5 eV. Most of this is the isotropic Coulomb cost of a doubly-charged
(versus two singly-charged) ions. In a solid, this is an overestimate of the repulsion, because
if the s-electrons are allowed to relax to compensate for the charging of the ions, we should
consider the transition

2(3d94s) → 3d84s2 + 3d10 (3.13)

which costs only 1.8 eV for ground states of the neutral atom (see Table 3.2).
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d8s2 d9s d10s0 d9s0 d8s0

Ni Ni+ Ni++

0 0.025 1.83 7.63 25.78

Table 3.2: Term values of the Ni atom in various stages of ionization

In transition metals, this screening is quite efficient, and the effective values of the
interaction energy are of order 2-3 eV, less than the band width, so that the transition
metals are indeed metallic. The Coulomb exchange interactions are of course crucial in
understanding the magnetic properties, but they do not destroy the one-electron picture
of the bandstructure.

An additional effect of the solid environment is the crystal-field splitting of the d-levels,

which breaks the orbital degeneracy. In the metals, the crystal field splitting is generally

smaller than the overall d-band width and the exchange energy J , and is not important.

However, if the crystal-field splitting is large (as in the oxides, for example) the filling of

the orbitals will proceed independently of the spin - and generally the configurations will

have low spin.

3.3.4 Transition metal oxides and the Mott transition

In the oxides, providing the O-p states lie well below the chemical potential,
there is complete charge transfer of the metal s-electrons onto the oxygen.
The screening by the s-electrons disappears, and only the relatively ineffec-
tive screening by the intra-atomic d-levels persists. Consequently Ni is a
metal (good screening) whereas NiO is an insulator, despite the band theory
prediction.

V2O3 is the prototype for metal-insulator transitions in the oxides. It
marks the boundary in the transition metal series between metals and insu-
lators; because Ueff is not too large, a metal to insulator transition is found
at moderate temperatures and pressures, where the conductivity changes
abruptly by several orders of magnitude. To the right of Vanadium, the
insulators dominate, with NiO the classic example. As we discussed above,
this crossover is occurring because the d-band is moving lower in energy and
intra-atomic screening by the s-band is becoming less effective. Even here,
the simple theory is not complete, because the transition in V2O3 is first-
order, and accompanied by a large volume change. The change in screening
at the transition changes the interatomic interactions between ions, and
feeds back to a change in the crystalline structure.



3.3. STRONGLY CORRELATED SYSTEMS 69

Questions on chapter 3

Qu.3.1 Graphite A single sheet of graphite has two carbon atoms in the
unit cell at positions d1 = 0 and d2 = (a/

√
3)(0, 1, 0). The translation

vectors for the two-dimensional hexagonal lattice are t1 = (a/2)(1,
√
3, 0)

and t1 = (a/2)(−1,
√
3, 0).

The electronic configuration of the carbon atom is 1s22s22p2, and ignoring
the 1s core states, we need to make a band structure from the s, px, py
abd pz orbitals. Because s, px and py orbitals are even under reflection
through the plane, and pz odd, the two sets do not mix. The first three
states hybridise to form σ−bonds with a large gap between the bonding and
anti-bonding orbitals; we consider here the π-bonds from the pz.

Figure 3.12: Two dimensional structure of graphite

(a) Construct Bloch states that consist of a linear mixture of the two pz
orbitals in the unit cell, and show how this gives rise to the secular equation

∣

∣

∣

∣

Ep − E V (ppπ)F (k)
V (ppπ)F ∗(k) Ep − E

∣

∣

∣

∣

= 0 , (3.14)

where v(ppπ) is the two center integral between neighbouring pz orbitals,
and

F (k) = 1 + 2 cos (
kxa

2
) exp (−i

√
3kya

2
) . (3.15)

(b) Draw the first Brillouin zone for the 2D hexagonal lattice. Determine
a formula for the dispersion curves for the two eigenstates, and plot them
in the directions ΓP , and ΓQ. (Here Γ = (000), P = (2π/a)(2/3, 0, 0),
Q = (2π/a)(1/2, 1/2

√
3, 0).

(c) Where will the π-bands lie in energy relative to the sp2 σ- orbitals?
Is graphite a metal or an insulator?

(d) Carbon nanotubes are formed by curling a graphite sheet into a
tube, connecting the atoms with periodic boundary conditions. There are
many ways to do this, and the different nanotubes can be indexed by the
vector mt1 + nt2 that is the new period. Ignoring the effects of curvature
of the planes, but including the new periodicity, draw the new superlattice
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Brillouin zone boundaries on top of the 2D hexagonal lattice Brillouin zone,
in the cases: m=10, n=0; m=10, n=1; m=10, n=2. Discuss the effects of
this new periodicity on the electrical resistance of a carbon nanotube.

Qu.3.2
Describe the role of Bloch’s theorem in determining the form of electronic

wavefunctions in a periodic solid.
A one-dimensional solid lies in the x-direction. Sketch the Bloch wave-

functions at the centre and edge of the first Brillouin zone of a band com-
posed of:
(a) atomic s states, and
(b) atomic px states.

Sketch typical energy curves in the reduced zone scheme for:
(a) an alkali metal;
(b) a divalent metal;
(c) a non-magnetic 3d transition metal;
(d) a direct band-gap semiconductor;
(e) an indirect band-gap semiconductor;
(f) a wide-gap insulator.
Comment on the physical properties of the materials that can be related to
your sketches.

Qu.3.3 Band structure of d-band metals
In many transition metals a narrow d-band lies within a broad energy

band originating from s−orbitals. This question discusses the band struc-
ture using a simple one-dimensional model contructed from a tight-binding
Hamiltonian with one s-orbital φs(r) and one d-orbital φd(r) per atom; the
atoms are arranged in a linear chain of lattice constant a.

Write down two Bloch states φs(k) and φd(k) formed from the atomic s-
and d- states respectively. The eigenstates must be linear combinations of
these. Hence show that the one-particle bandstructure E(k) can be deter-
mined from the determinantal equation

∣

∣

∣

∣

Es − 2tss cos(ka)− E(k) −2tsd cos(ka)
−2tsd cos(ka) Ed − 2tdd cos(ka)− E(k)

∣

∣

∣

∣

= 0 .

Identify and explain the parameters appearing in the determinantal
equation, and discuss the approximations made that lead to this form.

Discuss why you would expect that tss > |tsd| > tdd.
Sketch the dispersion E(k), in the cases (i) Ed ¼ Es − 2|tss| , and (ii)

|Ed − Es| < −2|tss| .
Discuss the relevance of this model to the electronic bandstructure of Cu

metal.
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Qu.3.4
(a) Discuss the trends in electronic bandstructure and cohesion in the

group IV elements.
∗(b) Ni, NiS, and NiO all have crystal structures that would lead to an

odd number of electrons per unit cell. Explain why Ni and NiS are metals,
but NiO is an insulator.
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Chapter 4

Collective phenomena

4.1 Response functions and collective modes

Many experimental measurements in solids take the form of measuring the
linear response to a probe field. Familiar examples are the electrical con-
ductivity j = σE, the dielectric function D = εεoE, and the magnetic
susceptibility M = χH. These quantities (σ, ε, χ) appear in simple models
of electromagnetism just as material constants; in general they are however
not just numbers, but functions of space and time.

A generalised response function measures the response of the system at
a point r and time t to a field applied at some other point r′ at a time t′.
They can all be described by the formal relationship

uα(r, t) =

∫

dr′
∫

dt′χαβ(r, t; r
′, t′)Fβ(r

′, t′) , (4.1)

where u is the response, F is the force, and χ is the response function.
If the system is translationally invariant, or can be approximated as so,

then χ is only a function of the difference coordinate r − r′, rather than
either coordinate separately; and if the system is already in equilibrium,
then the response can only depend on the time difference t− t′. So Eq. (4.1)
simplifies to

uα(r, t) =

∫

dr′
∫

dt′χαβ(r− r′, t− t′)Fβ(r
′, t′) , (4.2)

which is a convolution in space and time. The relationship becomes simpler
by Fourier transforming in both space and time

uα(q, ω) = χαβ(q, ω)Fβ(q, ω) . (4.3)

What is not quite so obvious is that the response function also tells us
about collective modes in the solid.

We will continue with the formalities in a moment. It is best to get a
feeling for the concepts with some examples. The first two of these should
already be familiar.

73
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4.1.1 Phonons

We do not necessarily need quantum mechanics to describe collective modes,
and a familiar example is that of sound waves described by the classical
equation of motion for the displacement u (e.g. for waves along a string)

−K∇2u+ ρü+ γu̇ = F (4.4)

where K is the stiffness, ρ the mass density, and γ a damping parameter.
F (r, t) is the external force applied to the medium.

Let us first consider the possible wave solutions of Eq. (4.4) in the absence
of an external force:F = 0. These solutions are the modes of free oscillation
- or collective modes of the system. Formally, we can guess that these will
be waves of the form

eiq·reiωt (4.5)

and upon substituting this form into Eq. (4.4) we shall find that such a
solution is allowed if there is a relation between the wave-vector q and the
frequency ω, namely1

Kq2 − ρω2 + iγω = 0 . (4.6)

Such a relation between the frequency and wavevector ω(q) is known as a
dispersion relation; here it gives the propagation frequency (and damping,
corresponding to the imaginary part of the frequency) as a function of the
sound wavelength 2π/k.

Now consider the driven problem F 6= 0. The solution by Fourier trans-
forms is straightforward :

u(q, ω) =
F (q, ω)

−ρω2 + iγω +Kq2
(4.7)

so the response function is here

χ(q, ω) =
1

−ρω2 + iγω +Kq2
(4.8)

which has poles at ω = ±
√

K/ρ q in the absence of damping. When damping
is present, the poles move into the lower half plane (as they must, due
to causality, see below), but provided γ is small the decay rate will be
slow. Notice that the poles of the response function occur exactly along the
dispersion curve Eq. (4.6).

Remember that the equation of motion Eq. (4.4) can be derived from a classical
Hamiltonian (in the absence of dissipation), which is

H =

∫

dr

[

1

2
K(∇u)2 +

1

2
ρ( Úu)2 + Fu

]

, (4.9)

1See the appendix for a reminder
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where we have included the external force F as a perturbation. A special feature of this
Hamiltonian is that there is no term directly proportional to the displacement – only to
its derivatives in space and time. Physically this is because of a symmetry – the solid as
a whole is translationally invariant and the energy cannot depend on arbitrary uniform
displacements. We could have such a term if u were not the coordinate of a sound wave,
but say of an optical phonon, when there would be an additional term in the Hamiltonian
proportional 1

2V u2.

For acoustic phonons, the absence (by symmetry) of such terms means that ωo(q) ∝ q,

whereas for an optic mode limq→0 ωo(q) → const.. We sometimes say that acoustic modes

are massless, and others massive.

Phonon spectra can be mapped out by inelastic scattering probes, and
most efficient is neutron scattering, because the characteristic wavelength
of the neutrons can be easily made comparable to the lattice constant of
the solid. So there is relatively efficient scattering from phonon modes of
all wavelengths. Inelastic light scattering from light in the visible or UV
range (Raman scattering) can only see optical modes near q = 0, because
the wavelength of visible light is very long. However, the advent of bright
synchrotron X-ray sources means that inelastic X-ray scattering will be an
important probe (for this, and other modes) in the future.

4.1.2 Plasmons

Another classical oscillation that follows the same prescription is the plasma
oscillation of the electron gas. A plasma oscillation is a longitudinal density
wave, with the electrons displacement of the form

u = uoe
i(q·r−ωt) uo ‖ q (4.10)

where the longitudinal character has been chosen by placing the displace-
ment parallel to the wavevector. The longitudinal displacement of the charge
induces a polarisation

P = −neu (4.11)

and therefore an internal electric field in the sample which is

E = −4πP+D (4.12)

where D is the displacement field, due to external forces only. D is the
applied field. The equation of motion for the displacement is

mü = −eE = −4πne2u− eD (4.13)

which after rearrangement and Fourier transformation gives

(−mω2 + 4πne2)u = −eD . (4.14)
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The response function – here the inverse of the factor on the left hand side
of Eq. (4.14) has a pole at the plasma frequency ωp = (4πne2/m)1/2 – which
describes a massive mode2.

It is more conventional to use a response function to relate the internal
electric field E to the applied field D: some straightforward reshuffling leads
to

[

1−
ω2
p

ω2

]

E‖ = D‖ , (4.15)

which defines the longitudinal dielectric function

ε‖ =

[

1−
ω2
p

ω2

]

. (4.16)

Notice that the response function relating the internal field to the external
field is however actually 1/ε. Since D is generated (by Poisson’s law) by the
external potential, and E is generated by the screened potential, another
way of defining the dielectric function is

Vsc(q, ω) =
Vext(q, ω)

ε(q, ω)
(4.17)

Defined this way, we have already estimated a formula for the static dielectric
function in Eq. (2.146).

This classical discussion does not generate any dispersion for the plas-
mon, i.s. the plasma frequency is found to be q-independent. It turns out
that the classical theory is exact for q → 0, but there are quantum excita-
tions that are entirely missed at short wavevectors.

Since ε measures the charge response of a solid, then plasmons are gen-
erated by any charged probe. The classic experiment to observe plasmons is
Electron Energy Loss Spectroscopy (EELS), where a high energy electron
is sent into the sample and the energy loss monitored; an EELS spectrum
will therefore be proportional to

= 1

ε(q ≈ 0, ω)
(4.18)

which will therefore have a peak near the plasma frequency.

4.1.3 Optical conductivity of metals

The equation of motion we wrote down for the electrons in a solid Eq. (4.14)
assumes that electrons are accelerated in an applied field, and do not suffer
any damping — it would predict the conductivity of a metal to be infinite.
This is fixed up in a Drude model by adding a phenomenological damping

2In SI units ω2
p = ne2/εom
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Figure 4.1: . Electron energy loss spectrum for Ge and Si (dashed lines)
compared to values of Im(1/ε) extracted directly from measurements of the
optical conductivity. [From H.R.Philipp and H.Ehrenreich, Physical Review
129, 1550 (1963)

term, that represents the effects of scattering. With the additional term,
the modified equation of motion becomes

mü+ γu̇ = −eE = −4πne2u− eD (4.19)

which after Fourier transformation gives

(−mω2 − iγω + 4πne2)u = −eD . (4.20)

Clearly we can rework the previous analysis by replacing everywhere
mω2 by mω2 + iγω. We will then arrive at a complex dielectric function

ε(ω) = 1−
ω2
p

ω2 + iω/τ
, (4.21)

where we have defined a relaxation rate

1

τ
=

γ

m
. (4.22)

This is one way of expressing the result. An alternative expression is not
to relate the displacement field to the electric field, but instead to calculate
the current

j = −neu̇ = iωneu (4.23)
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induced by the applied electric field. After a few algebraic manipulations,
we get

j(ω) =
ω2
p

4π(1/τ − iω)
E(ω) . (4.24)

This instead expresses the result as a complex conductivity

σ(ω) =
ω2
p

4π(1/τ − iω)
. (4.25)

One must realise that the two results Eq. (4.21) and Eq. (4.25) are com-
pletely equivalent: a relation between D and E implies a relation between
j and E. One may translate between the two formulae by3

ε(ω) = 1 + i
4πσ(ω)

ω
. (4.26)

The real part of the conductivity is proportional to the imaginary part of
the dielectric function.

From Eq. (4.25), one can see that the theory gives rise to a familiar d.c.
conductivity

σ(0) =
ω2
pτ

4π
=

ne2τ

m
, (4.27)

so that τ has a simple interpretation as the mean free time between collisions.
At frequencies larger than 1/τ the conductivity rapidly falls off:

<σ(ω) = σ(0)

1 + ω2τ2
. (4.28)

Consequently, the dielectric function near q = 0 can be extracted directly
from optical absorption of light, which gives a measurement of the ac con-
ductivity σ(ω). A comparison between optical measurements and electron
energy loss measurements is shown in Fig. 4.1.

4.1.4 Static response

The familiar static susceptibilities in magnetism and dielectrics are just the
response to a field that is uniform in both time and space – viz χ(q → 0, ω →
0). In a classical thermodynamic system the response function can always
be determined by writing down the Helmholz free energy in the presence of
an external field: we shall largely be concerned with zero temperature, so
we need only to consider the internal energy

U = Uo(u)− u · F , (4.29)

where Uo is the energy in the absence of the external field, and the last term
represents the work done by the external field on the system. We shall be

3In SI units, replace the 4π by 1/εo
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usually dealing with the case when the response vanishes in the absence of
the external field. Furthermore, we are interested in the linear response, so
we shall assume that all the fields are small, so that Uo can be expanded
in a Taylor series (simplifying to a scalar field, but the generalisation is
straightforward):

Uo(u) = Uo + U ′
o u+

1

2
U ′′
o u2 + ... (4.30)

Minimising the energy with and without a field leads then to the stability
condition in the absence of the field

U ′
o = 0 , (4.31)

and the static susceptibility

u =
1

U ′′
o

F . (4.32)

This classical prescription for calculating a response function can be
directly adapted to quantum mechanics, and in fact quantum mechanics
offers a prescription for calculating the response to time-varying fields that
is much more straightforward than in the classical thermodynamic case.

One last remark, that we will return to later: since U ′′
o depends on

many parameters which could perhaps be smoothly changed – e.g. pressure,
temperature – it might be possible that this could vanish and change sign.
In that case, we chould see χ = 1/U ′′

o diverge, and at the sign change in
U ′′
o the displacement will grow – not without bound, because eventually

higher-order terms in Eq. (4.30) will become relevant. This is a continuous
(or second order) phase transition, where the susceptibility diverges at the
critical point. A very important example of this is discussed in a question -
the Landau theory of phase transitions.

4.1.5 Dynamic response, collective modes, and particles

The examples above should have given us a lot of intuition about the rela-
tionship between response functions and collective modes. If there exists a
curve ω = ωo(q) where χ(ω,q) is divergent, then if a driving force is applied
at exactly the correct frequency and wavevector to match this dispersion
curve, the response u will be infinite; another way of putting this is to say
that even for an infinitesimal driving force there will be a response. The
dispersion curve ω = ωo(q) defines modes of free oscillation of the system.

These collective modes may be directly visible in an inelastic scattering
experiment (see Fig. 4.2) If one sends in an incident probe that has the
appropriate symmetry to couple to the collective excitations, it will then be
able to create (or absorb) the collective modes, and therefore be scattered
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Figure 4.2: Generic description of an inelastic scattering experiment

both in frequency and energy. By comparing the incident and outgoing
energy and momenta, one can then deduce the spectrum of excitations. If
the excitations are underdamped (poles close to the real frequency axis) then
the features will appear as sharp resonances; continuum excitations will lead
to broad features. Very generally , the probability of making an excitation
of momentum q and energy ω is proportional to

=χ(q, ω) (4.33)

of course multiplied by matrix elements and selection rules appropriate for
the probe at hand. 4

The collective modes are just waves propagating through the solid; in
the examples above they are waves of atomic vibration (phonons), of longi-
tudinal polarisation (plasmons),or of transverse electric field (light). Later
on we shall see other examples, e.g. spin waves.

4.1.6 Causality and Kramers-Krönig relations

The response functions we are using must be causal or retarded, so that
there is no possibility of a response before the force is applied, i.e. a causal
response function κ must satisfy

κ(t− t′) = 0 if t′ > t . (4.34)

The principle of causality imposes conditions on the behaviour of κ(ω) in
Fourier space (we shall drop the momentum or space coordinate for the
moment): κ(ω) must be an analytic function of ω in the upper half plane,

4We shall use the symbols = (Imaginary part), < (Real part) and ℘ (Principal value).
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and in turn this analyticity will enforce a relation between the real and
imaginary parts of κ(ω) on the real frequency axis, which are called Kramers-
Krönig relations.

Derivation of Kramers-Krönig relations.

You should understand the principles behind this, but do not need to be able to reproduce
the derivation. For those who need reminding, some elements of the theory of analytic
functions are in the appendix.

κ(t) and its Fourier transform are related by the standard relations

κ(ω) =

∫ ∞

−∞
κ(t)eiωtdt κ(t) =

1

2π

∫ ∞

−∞
κ(ω)e−iωtdω . (4.35)

We may construct κ(t) by evaluating the inverse Fourier transform (Eq. (4.35) as a
contour integral, as shown in the Fig. 4.3. Provided |κ(ω)| falls off faster than 1/ω as
|ω| → ∞, then we can close the contour by a semicircle at ∞, in either the upper or lower
half plane, depending as t < 0 or t > 0 respectively.

Then the contour can be shrunk to enclose the poles, so that

κ(t) =
1

2π

∫ ∞

−∞
κ(ω)e−iωtdω

= 2πi
∑

(residues) (4.36)

In order for causality, and Eq. (4.34) to be satisfied, κ(ω) must be an analytic function
in the upper half plane, so that there are no poles contributing to the integral. All the
non-analytic structure of the response function must lie below the real frequency axis.

Using this property, we can write (using Cauchy’s theorem)

κ(ω) =

∮

dω′

2πi

κ(ω′)

ω′ − ω − iη
(4.37)

for any causal response function κ(ω), where the contour runs as shown in Fig. 4.4. We
should remember that κ(ω) is a complex function, even on the real frequency axis, and it
is useful to use Eq. (4.37) to derive an integral relationship between the real and imaginary
parts. To do this, we need to have all the terms multiplying κ(ω′) to be pure imaginary.
We thus send η → 0, deforming the contour as shown in Fig. 4.4. If we perform the
integral around the semicircle it gives precisely half the contribution of the pole, and what
remains is the principal value integral along the line:

κ(ω) = ℘

∫ ∞

−∞

dω′

πi

κ(ω′)

ω′ − ω
(4.38)

Taking the real and imaginary parts separately of Eq. (4.38) we get the
Kramers-Krönig relations:

<κ(ω) = ℘

∫

dω′

π

=κ(ω′)

ω′ − ω

=κ(ω) = −℘

∫

dω′

π

<κ(ω′)

ω′ − ω
(4.39)

The real and imaginary parts are not independent.
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Figure 4.3: Contour to evaluate the inverse Fourier transform of κ(ω). For
t < 0, the contour is closed in the upper half plane; for t > 0 in the lower
half plane

Figure 4.4: Contour to evaluate the Cauchy integral Eq. (4.37). Upon de-
forming the contour so that the pole moves onto the real axis, the integral
separates into a principal value integral along the real line (defined by in-
tegrating along the domain (−∞, ω − η][ω + η,∞)), and the contribution
integrating half way around the pole, leading to the difference of a factor of
two between Eq. (4.37) and Eq. (A.75)

The KK-relations are not just a mathematical nicety, but a practically
useful tool. For example, one can infer the frequency-dependent complex
conductivity simply by measuring the reflectivity as a function of frequency
(all phase information about the complex reflection coefficients is apparently
lost), and then reconstruct the full complex conductivity using Eq. (4.39).

4.1.7 Recap.

It is worth listing the general properties of dynamical response functions
that we have discussed in this section.

• Definition. A linear response function χ(qω) in a homogeneous
medium defines the response u to an infinitesimal applied force F .

u(q, ω) = χ(q, ω)F (q, ω) . (4.40)
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• Collective modes. Modes of free oscillation of the system are de-
scribed by the pole structure of χ; namely the dispersion ω(q) of the
collective mode is given by the solutions of

χ(q, ω(q))−1 = 0 . (4.41)

The solution for ω(q) may be complex, in which case the modes are
damped.

• Instabilities. If the static susceptibility diverges (e.g. as a function
of some parameter), it is a signature of an instability of the system.

• Energy absorption. The rate of energy dissipated by the system
when driven by an external force F exp(iq · r+ iωt) is proportional to
=χ(q, ω).

• Causality. A causal response function χ(ω) is an analytic function of
ω in the upper half frequency plane. The real and imaginary parts of
χ are related by integral relations called the Kramers-Krönig relations,
and therefore are not independent.

4.2 The electron as a collective excitation

The title of this section seems rather perverse, because we surely know
that an electron is a fundamental particle. But in a solid, the an individual
electron cannot be separated from the rest of the interacting quantum liquid,
so the existence of individual particles is moot. Instead, we should think of
the kind of experiments we might do to study “electron-like” excitations.

The most direct thing we could do is to add an electron at some point r
at time t, and take an electron out at some later time t′ at a point r′. What
we would be studying is the propagation of an electron from one point to
another in a solid. As always, it is easier to think of this in Fourier (kω)
space, and let us start with free particles with no interaction between them.

If we put a particle into an eigenstate of the Hamiltonian labelled by
its momentum k, then the wavefunction will evolve in time following the
Schrödinger prescription

ψk(r, t) = ψk(r)e
−iεkt . (4.42)

Here ψk is the Bloch wavefunction satisfying the time-independent Schrödinger
equation, and the time-dependent solution oscillates in time with a single
frequency ω = εk. If we look at this in fourier space, we should say that

ψk(r, ω) = 2πψk(r)δ(ω − εk) (4.43)
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so that the wavefunction has spectral weight only at ω = εk/h̄.
5

We can say that the probability of finding an electronic state with energy
ω and momentum k is just

A(k, ω) = δ(ω − εk) , (4.44)

and the quantity A(k, ω) is usually called the electron spectral function.
What about an interacting system? If we add a particle, it will collide,

interact, and exchange with all the other particles in the system, but suppos-
ing the interactions are weak (though they aren’t) one might imagine that
something similar to the particle will survive. First, if we fix the momentum
k of the excitation, that cannot change because the two-particle interactions
conserve momentum. Of course, some of the character of the original parti-
cle will now be shared with a “cloud” of electrons screening it. Second, since
we can see that in a metal there is a continuum of excitations, we should
expect it to decay with a finite lifetime - say 1/Γk. The time-dependence
of the state will now become e(iεk−Γk)t. Third, there is no reason that the
dispersion relation should be the same as for the free particle: we should
replace εk by a renormalised ε̃k. Last, one might imagine that because there
are already electrons in the system, it is in some sense harder to find space
for it, and its overall spectral weight might be reduced. These effects can be
combined into an ansatz for the spectral function in an interacting system
of the form

A(k, ω) = − 1

π
=
[

Zk

ω − ε̃k + iΓ(k)

]

(4.45)

Notice that if the inverse lifetime Γk → 0 and the spectral weight Zk → 1,
the spectral function reduces to the noninteracting Eq. (4.44). Eq. (4.45)
describes quasiparticles with spectral weight Zk ≤ 1, a dispersion curve ε̃k,
and a decay rate (inverse lifetime) Γk. If Γk is small, then the quasiparticles
are long-lived and have some real meaning. They also have charge e and
spin 1

2 ; we will not mess with Fermi statistics.

We must be careful about the chemical potential. If we are in equilibrium
(and at T=0), we cannot add fermionic excitation at an energy ω < µ. So we
shall infer that for ω > µ, Eq. (4.45) is the spectral function for particle-like
excitations, whereas for ω < µ it is the spectral function for holes.

4.2.1 The Fermi liquid

Why is it that Γ can be small in a metal where the typical separation
between electrons is only an Angstrom or so? The answer is provided by
Fermi statistics, and is codified in Landau’s theory of the Fermi liquid. In

5Getting the sign here requires one to adopt a sign convention for Fourier transforms
that is used in Eq. (4.35) – opposite to the one often used in maths books. We have also
set h̄ = 1.
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Figure 4.5: Collision between two quasiparticles near the Fermi surface. The
initial and final states are marked by open and filled circles.

short, the fact that Fermi statistics exclude double occupancy of the same
quasiparticle state guarantees that

Γ ∝ (ω − µ)2 . (4.46)

So for excitations close to the fermi surface, the lifetime becomes very long.

Here is a sketch of how to obtain that result. Let us assume that quasiparticles exist,
and estimate the effect of the interactions between them. So in Fig. 4.5 we show the
Fermi sea, with a test particle (1) added – of course it has to be placed above the chemical
potential because the states below are filled. Now consider the interaction of this particle
with a particle (2) (which must be inside the Fermi sea). The result of the collision will be
scattering to final states labelled (1′, 2′). The final states must have initially been empty
(Fermi statistics), so both 1′ and 2′ must lie at energies above the chemical potential µ.
But we also have to satisfy energy (and momentum) conservation

ω1 + ω2 = ω1′ + ω2′ , (4.47)

which means that
ω1 + ω2 > 2µ . (4.48)

We can rewrite this as
µ− ω2 < ω1 − µ . (4.49)

We see that the only particles which are allowed to scatter from the test particle 1 are
those whose energy is closer to the Fermi energy than particle 1 itself. So if ω1 → µ, there
are no scattering processes allowed, and the quasiparticle is long-lived.

There is a further constraint according to momentum conservation. The momentum
transfer in the scattering process takes particle 1 from state p to p + ∆p, with exactly
the same momentum transfer in reverse for particle 2. We can separate the components
of the momentum transfer perpendicular and parallel to the Fermi surface, and it is clear
that ∆p⊥ < vF (ω1 − µ), where vF is the Fermi velocity. In order to calculate the
overall scattering rate, we need to integrate over all the possible final states, and over
all the possible states of particle 2. What is important in what follows is that two of
these integrals are constrained: the energy of particle 2, and the momentum transfer
perpendicular to the FS. We can now estimate that the scattering rate must be of order

Γ(ω1) ∝
∫ µ

2µ−ω1

dω2

∫ vF (ω1−µ)

0

d∆p⊥

∫

d(other momenta)W (1, 2; 1′, 2′)
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Figure 4.6: Expected form of the quasiparticle spectral function A(k, ω)
plotted for momenta crossing through the Fermi energy. The spectral func-
tion is plotted as a function of energy, for three different momenta corre-
sponding to bare energies εk − µ = 0.2, 0.4 and 0.6; the damping rate is
assumed to be of the fermi liquid form Γ = 1

2W (ω − µ)2, with here W = 2
as an example.

∝ W (ω1 − µ)2 (4.50)

where W is the scattering matrix element, which we replace by its average value near

the Fermi surface. So Γ → 0 for quasiparticles whose energy lies exactly on the Fermi

surface, and our assumption that quasiparticles exist and are long-lived is self-consistent.

Moreover, it can be shown that the quasiparticles are in a one-to-one correspondence with

the particles of the noninteracting theory.6

Fig. 4.6 shows a plot of a model quasiparticle spectral function as a
finction of momentum and energy passing through the Fermi momentum.
There is a peak in the spectral function along the dispersion curve ω = εp,
which sharpens as the Fermi energy is approached.

This is an existence proof7 of the quasiparticle concept, but of course
it does not guarantee that the Fermi liquid state always exists. It can
be shown that turning on the interaction between particles adiabatically
from zero then the free particles smoothly transform into quasiparticles,

6The proof is formidable, and is known as Luttinger’s theorem : J.M.Luttinger and
J.C.Ward, Physical Review 118, 1417 (1960); ibid. 119, 1153 (1960).

7Actually not very rigorous. The rigorous basis is given in the book by A.A.Abrikosov,
L.P.Gor’kov, and I.E.Dyalozhinski, Methods of Quantum Field Theory in Statistical
Physics , Dover Edition, 1975
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and the volume contained within the Fermi surface is unchanged (this is
the Luttinger theorem). However, this does not preclude a phase transition,
where the Fermi liquid character abruptly disappers. The conditions under
which fermi liquids exist or not is an active field of both experimental and
theoretical research.

4.2.2 Photoemission

The most direct way to measure the electron spectral function directly is
by photoemission, although this is a difficult experiment to do with high
resolution. In a photoemission experiment, photons are incident on a solid,
and cause transitions from occupied states to plane wave-like states well
above the vacuum energy; the excited electron leaves the crystal and is
collected in a detector that analyses both its energy and momentum.8 The
photon carries very little momentum, so the momentum of the final electron
parallel to the surface is the same as the initial state in the solid, while
of course the perpendicular component of the momentum is not conserved.
Photoemission data is therefore most easy to interpret when there is little
dispersion of the electronic bands perpendicular to the surface, as occurs in
anisotropic layered materials. It is fortunate that there are many interesting
materials (including high-temperature superoconductors) in this class. If one
analyses both the energy and the momentum of the outgoing electron, (this
is Angle Resolved Photo-Emission Spectroscopy, or ARPES) the signal will
be proportional to

IkA(k, ω)f(ω) (4.51)

where Ik is the (dipole) matrix element for transitions, and is slowly varying
as a function of momentum, and f(ω) is the Fermi function – one can have
emission from occupied states only.

If one integrates over all angles, then the spectrum is roughly propor-
tional to the density of states in energy (exactly so if the matrix element is
a constant), i.e.

∑

k

A(k, ω)f(ω) = N(ω)f(ω) , (4.52)

measuring the energy-dependent density of statesN(ω). The ideal schematic
for an ARPES experiment would then be as shown in Fig. 4.6, cutoff by the
fermi function so that the line should disappear as the Fermi surface is
crossed.

An example of real data is shown in Fig. 4.9.

8For a detailed discussion of photoemission experiments, see Z.X.Shen and D.S.Dessau,
Physics Reports, 253, 1-162 (1995)
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Figure 4.7: Schematics of a photoemission experiment. The optical transi-
tions are nearly vertical, so the electrons are excited from the valence bands
to high energy excited states (above the vacuum energy necessary to escape
from the crystal) with the same crystal momentum. In this case the two
transitions that can be excited by a single frequency will yield a double peak
in the kinetic energy distribution of the escaped electrons. When the excited
electrons escape through the surface of the crystal, their momentum perpen-
dicular to the surface will be changed. If the surface is smooth enough, the
momentum of the electron parallel to the surface is conserved, so the angle
of the detector can be used to scan k‖

Figure 4.8: Idealised results from a photoemission experiment. A peak is
observed at the band energy in each spectrum, but disappears when the
band crosses the Fermi energy
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Figure 4.9: . Photoemission spectra on the two dimensional layered metal
TiTe2. The bands are nearly two-dimensional in character, so the interpre-
tation of the photoemission data is straightforward – different angles (see
Fig. 4.7 )correspond to different in-plane momenta. The left panels show
energy scans as a function of angle that correspond to changing the in-plane
momentum in the direction from the centre of the Brillouin zone Γ towards
the centre of the hexagonal zone face. (The right hand upper panels show
the crystal unit cell, and the reciprocal lattice unit cell. ) Several bands
appear to cross the Fermi energy, with very different velocities, and there is
some tendency to sharpening of the features as their energies approach EF .
The right hand lower panel plots the positions of the peaks as a function
of energy and momentum in comparison to the band structure (on a very
expanded scale). Open circles correspond to weak features in the data, and
may not be real. Steeply rising bands correspond to rapidly dispersing states
derived mostly from Te 5p orbitals, and a nearly flat band appears to arise
from the Ti 3d states. From Claessen et al., Physical Review B, 54, 2453,
(1996).
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4.3 Dynamics of the electron gas

4.3.1 Density response function

We now need to ask what the response of the electron gas is to a time
dependent potential, so that we can calculate the density response function,
viz.

δρ(q, ω) = χ(qω)V (q, ω) , (4.53)

We will start by doing this for free electrons, but including Fermi statistics;
following this we will put in the interaction effects only via the screening of
the potential, in a way that should be familiar already from the discussion
of screening earlier.

The next three sections sketch the derivation of the density response
function for the free Fermi gas. They are all straightforward (but messy)
algebra, and you are not expected to be able to reproduce them. The end re-
sults are transparent, but you may find it worth going through the equations
at least once.9

Time-dependent perturbation theory

Our calculations will use standard time-dependent perturbation theory; this is completely
straightforward, as we need to go only to first order, with the main problem being to keep
track of all the indices. Here is a quick reminder of the standard results from quantum
mechanics.

We have to solve the Schrodinger equation under a time-dependent perturbation
V (r, t) which is assumed small, i.e.

ih̄
∂ψ(r, t)

∂t
= [Ho + V (r, t)]ψ(r, t) . (4.54)

Assume that we have already solved for the eigenvalues εn and eigenfunctions φn(r) of
Ho. Thus we now look for a solution of the time-dependent problem in the form

ψ(r, t) =
∑

n

an(t)e
−iεnt/h̄φn(r) (4.55)

where we now need to find the time-dependent coefficients an. As always, substituting
back in the SE, and taking matrix elements w.r.t. the basis functions gives us the following

ih̄
∂am(t)

∂t
=

∑

n

an(t)e
iωmnt < m|V |n > . (4.56)

where h̄ωmn = εm − εn. There are no approximations so far, but now the perturbation
theory arrives. We shall assume that the system starts out at t = 0 in a particular state
an(t = 0) = a0

n = 1; then we get to first order in V

a1
m(t) = − i

h̄

∫

dt < m|V |n > eiωmnta(0)
n . (4.57)

9For more details of the general method, a good book is Landau and Lifshitz, Statistical
Physics, A course of Theoretical Physics, vol 5, pages 377-388.
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Now let us choose a particular form of the perturbation to be just a plane wave

V (r, t) = V eiq·re−iωt (4.58)

and choose as our basis states the free particle plane waves

|k >= eik·r (4.59)

So after a little time the first order perturbation theory result is

ψk(r, t) = |k > e−iεkt/h̄ + a
(1)
k+q(t)|k+ q > e−iεk+qt/h̄ (4.60)

where

a
(1)
k+q(t) =

V

h̄

ei(ωmn−ω)t

ωmn − ω
. (4.61)

Notice that the k in ψk is just a label to remind you of where the state originated; because
of the scattering, k and k + q are now inextricably mixed.

Now we need to calculate the density change, which is

δρ(r, t) =
∑

k

[

|ψk(r, t)|2 − 1
]

(4.62)

which is, to linear order in perturbation theory

δρ(r, t) =
∑

k

[

a
(1)
k+q(t)e

iq·re−i(εk−εk+q)t/h̄ + complex conjugate
]

= V
∑

k

eiq·re−iωt

εk+q − εk − h̄ω
+ complex conjugate (4.63)

Notice that the response is real, of course - the potential at q, ω generates an inphase
response (at q, ω) and an out-of-phase response (at −q,−ω). Hence it is conventional (in
this case) to define the response function as the response to a real field; so we add to the
potential its complex conjugate 10

V ∗ = V e−iq·reiωt , (4.64)

which does not generate any extra harmonics. Substituting for a
(1)
k (t) and collecting all

the terms, we have

δρ =
∑

k

[

1

εk+q − εk − h̄ω
+

1

εk − εk−q + h̄ω

]

× eiq·reiωt

+ complex conjugate . (4.65)

We are almost done. Now we have to account for the occupation of the states, which
means that the sum over k should only include states which are occupied in the absence
of the perturbation: this means that we can multiply the numerator by a factor n(k) =
1 (|k| < kF ) and zero otherwise11. Making this replacement, and also writing k for k− q
in the second term, we now get12

δρ = 2
∑

k

[

n(k)− n(k+ q)
εk+q − εk − h̄ω

]

× eiq·re−iωt + complexconjugate (4.66)

10This gets rid of the ambiguities about ±ω in the fourier transform
11at finite temperature, it is the correct answer to use the Fermi function n(k) =

(eβ(εk−µ) + 1)−1.
12The factor of 2 is for spin
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and hence the density response function is

χo(q, ω) =
δρ(q, ω)
V (q, ω)

= 2
∑

k

n(k)− n(k+ q)
εk+q − εk − h̄ω

. (4.67)

Eq. (4.67) is the basic result we shall be using later, but now we will look at another
way of getting it.

Energy loss

The time-dependent perturbation theory we started out using can be continued in general
to give the famous Fermi’s golden rule for transition rates:

Wk =
π

h̄

∑

l

| < k|V (r, t)|l > |2 (4.68)

for the total transition rate out of the state k into all the others (labelled by l) If we apply
this formula directly in our case, (i.e. using a plane wave basis) then

< k′|V |k >= V
[

δ(k′ − q− k)δ(εk′ − εk − h̄ω) + δ(k′ + q− k)δ(εk′ − εk + h̄ω)
]

(4.69)

so that the first δ-function gives conservation of momentum, and the second conservation
of energy13.

In each transition, the system absorbs or emits a quantum of energy εk′ − εk = ±h̄ω,
and the sum

Q = V 2 π

h̄
h̄ω [δ(εk′ − εk − h̄ω)− δ(εk′ − εk + h̄ω)] (4.70)

is the mean energy absorbed per unit time. Notice the sign change of the second term
relative to the first – absorption versus emission.

If we then sum over all the occupied states k, we have for the total rate of energy
dissipation for a perturbation of wavelength q and frequency ω 14

Q(q, ω) = 2πωV 2
∑

k

(n(k)− n(k + q))δ(εk+q − εk − h̄ω) , (4.71)

which may be written as15

Q(q, ω) = ωV 2=χo(q, ω) (4.72)

This is just as we should have expected: the imaginary part of the response function gives
the energy dissipated by the perturbation, just as for a classical oscillator.

Correlation function

There is another important quantity related to the response function, which is the corre-
lation function in the ground state. A classical correlation function for the density relates
the density at one point in space and time to a nearby point, i.e.

g(r, t; r′, t′) =< ρ(r, t)ρ(r′t′) > − < ρ >2 . (4.73)

The subtraction of the average density squared means that g measures only the correlation
between particles: we expect it to decay at large distance and large time differences in a
fluid. If the system is in equilibrium, it can depend only on the time difference t− t′, and

13Again, we add the complex conjugate of V so that we get both absorption and emission
14The two terms are combined by the change of variables k → k + q in one of them, as

before
15Using, of course, the correct analytic continuation: limη→0 1/(x− iη) = 1/x+ iπδ(x).
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in a homogeneous, translationally invariant system, only on the spatial difference r − r′.
Thus we can just look at the fourier transform

S(q, ω) =< ρ(q, ω)ρ(−q,−ω) > (4.74)

which is sometimes called the structure factor.

In a quantum system we need to calculate averages of operators, say in some stationary
state k. We shall also immediately move to fourier space (in frequency) and ask about

1

2
< k|Ýρ(ω)Ýρ(ω′) + Ýρ(ω′)Ýρ(ω)|k >

=
1

2

∑

l

[

< k|Ýρ(ω)|l >< l|Ýρ(ω′)|k > + < k|Ýρ(ω′)|l >< l|Ýρ(ω)|k >
]

, (4.75)

where we have introduced a complete set of states, using the completeness relation

∑

l

|l >< l| = 1 . (4.76)

The time-dependence of an operator just means that its matrix elements must be
calculated using time-dependent wavefunctions, viz.

< l|Ýρ(ω)|k > =

∫

dteiωte−i(εk−εl)t/h̄ < Ýρ >lk

= 2π < Ýρ >lk δ(ω − ωkl) . (4.77)

Again, with a certain amount of algebra, one can evaluate all of this and show that

1

2
< k|Ýρ(ω)Ýρ(ω′) + Ýρ(ω′)Ýρ(ω)|k >

= δ(ω + ω′)π
∑

l

| < Ýρ >lk |2 [δ(ω + ωkl) + δ(ω − ωkl)] (4.78)

Applying this further to our problem where the states are plane waves, eventually one
reaches the result

S(q, ω) = πh̄
∑

k

(n(k)− n(k+ q))δ(εk+q − εk + h̄ω) (4.79)

= h̄=χo(q, ω) . (4.80)

4.3.2 Response functions and the fluctuation - dissipation
theorem

The algebra has been a little extended, so here are the three results.

First we calculated directly the density response function χo = ∂<ρ>
∂V ,

with the result

χo(q, ω) = 2
∑

k

n(k)− n(k+ q)

(εk+q − εk)− h̄ω − iη
(4.81)

This is a formula that one could almost have guessed. Remember we are
applying a perturbation with momentum q and frequency ω. Thus it can
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produce scattering only between the plane wave eigenstates k and k+ q; in
first order perturbation theory there is a resonant energy denominator16

1

(εk+q − εk) + h̄ω
(4.82)

The occupation factors (n(k)−n(k+q)) appear because we can only make
transitions from below the Fermi surface to above it, which limits the allowed
transitions. The factor of 2 is for spin.

We then discovered that the energy dissipated by applying a perturbation
could be written

Q(q, ω) = 2πωV 2
∑

k

(n(k)− n(k+ q))δ(εk+q − εk − h̄ω) (4.83)

= ωV 2=χo(q, ω) . (4.84)

The relation makes use of the one important piece of complex algebra we
need in the course

lim
η→0+

1

x+ iη
= ℘

1

x
− iπδ(x) . (4.85)

This is the same result that you should be familiar with for a classical oscil-
lator. Again the result is intuitive; because we are dealing with absorption
or radiation of energy, the δ-function represents energy conservation. The
process involves removing an electron from below the Fermi surface, and
putting it in a state above the Fermi surface - with both momentum and
energy conserved. Often this is viewed as the creation of an electron-hole
pair.

Furthermore, we found that the correlation function is directly related
to the imaginary part of the response function

S(q, ω) =

∫

dteiωt < ρ̂q(t)ρ̂q(0) >

= h̄=χo(q, ω) . (4.86)

This correlation function is often referred to as the dynamic structure fac-
tor. This last result is no accident, but an example of the fluctuation –
dissipation theorem. Although we have derived it for the specific case of
the density fluctuations in a fermi liquid, the relationship between S and =χ

16The signs arise because the Schrodinger wavefunctions have a time-dependence
exp(−iεkt/h̄) with an opposite sign to our chosen convention for Fourier transforms; this
is the source of unending suffering. However, <χo is an even function of frequency, =χo

is odd. η is an infinitesimal positive number, put here to make sure that causality is
respected.
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is general. Remarkably, note that it relates a response function (i.e. prop-
erties of a perturbed system) to quantum fluctuations in the unperturbed
system.17

The relations between energy lossQ, structure factor S and susceptibility
χ are general for any response function, though here we have just exhibited
them for noninteracting fermions. These relations provide the foundations
to interpret the results of many experimental probes of condensed matter
systems. Directly related to the density response function of electrons are
the optical conductivity σ(ω) and the EELS spectrum, and inelastic light
scattering (Raman or X-ray). In all cases these are probes that interact
by coupling to the fluctuations in the electronic charge density. The d.c.
conductivity is just the static limit of σ(ω).

The density response of the nuclear motion (i.e. phonons) can be seen in
inelastic neutron scattering, and also in optical absorption or inelastic light
scattering (near q ≈ 0).

The electronic spin density fluctuations are observed by in inelastic neu-
tron scattering, because the neutron has a magnetic moment. The spin-
density correlation function may be constructed from a formula just like
Eq. (4.86), but with the spin density operator replacing the number density
operator; since the spin density couples to a magnetic field H through a
term in the Hamiltonian H · S, then the dynamic spin response function
χspin = M/H will be related to the spin density correlation function. The
static limit ω → 0 yields the Pauli paramagnetic susceptibility.

4.3.3 Screening and the dielectric function

Unfortunately, electrons interact, If we want to use the above results to
calculate the density response of charged electrons, we must be careful about
the effects of the long range Coulomb interaction. As we discovered earlier,
screening in a metal arises because the bare or external potential induces a
change in the charge density, and that charge density itself causes a change
in the potential; the total potential that acts on the carriers in the metal is
the sum of the two, and they largely cancel.

We can incorporate the screening effect by replacing the bare potential
by the screened potential, and because we are dealing with negatively charge
electrons, we have to be careful with signs. We are here just going to repeat
the arguments we gave in Sec. 2.2.5, but now using a dynamical potential,
rather than a static one.

The screened potential is given by

Vscr(q, ω) = Vext(q, ω)− ρ(q, ω)vee(q) (4.87)

17It also applies to classical thermal systems, and the result is modified at finite tem-
perature: S = h̄=chi coth(h̄ω/2T )
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Note that we have used here the (positive) density ρ, rather than the (neg-
ative for electrons) charge density −|e|ρ.

Following the earlier calculation, we now write

ρ = χoVscr (4.88)

with the argument (q, ω) suppressed for clarity, and we obtain

ρ =
χoVext

1 + χovee
(4.89)

An alternative way of stating this result is the ratio between the screened
and the external potential

Vscr

Vext
=

1

ε(q, ω)
=

1

1 + vee(q)χo(q, ω)
. (4.90)

This gives us the formula for the dielectric function in what is called, for
obscure historical reasons, the Random Phase Approximation or RPA.

εRPA(q, ω) = 1 +
8πe2

q2

∑

k

nk − nk+q

εk+q − εk + ω + iη
. (4.91)

It is much better understood as a self-consistent field theory, where the den-
sity response self-consistently adjusts to the external and its self-generated
potential. It is the dynamical generalisation of Thomas-Fermi theory.

4.3.4 Properties of the RPA density response function

We are now back at the point where we can do physics again. Of course,
we need to calculate the behaviour of χo, which is just algebra. Here are
the main results, and the details are below, in small type. The dielectric
function behaves very differently in the limits q → 0, (with ω 6= 0), and
ω → 0 (with q 6= 0).

In the static limit ω = 0, we have

εRPA(q, 0) = 1 +
q2TF

q2
F (q/2kF ) (4.92)

where the function F (x) → 1 as x → 0 (so that we recover the Thomas
Fermi result), and the function itself is sketched in Fig. 4.10.

At q = 2kF , χo is singular in one dimension, and has discontinuous
derivatives in two and three dimensions. A singular static response in 1D
means that a one-dimensional metal is always unstable - this is called the
Peierls transition, and is the subject of question 4.5. The derivative singu-
larities in higher dimensions mean that in real space χo(r) oscillates as a
function of distance, along with the decay - these oscillations, called Friedel



4.3. DYNAMICS OF THE ELECTRON GAS 97

Figure 4.10: Sketch of the static susceptibility χo(q, 0) as a function of q/2kF
in one, two and three dimensions

oscillations, are shown in Fig. 4.11, and are important in mediating mag-
netic interactions between local moments in a metal. It can be shown that
the induced charge density produced by an external point charge Q decays
(in three dimensions) as

ρind(r) ∝
Q

r3
cos(2kF r) , (4.93)

In the long-wavelength limit, but at nonzero frequency, we find

εRPA(0, ω) = 1−
ω2
p

ω2
, (4.94)

which is the same as the classical result we got in our discussion of plasmons.
In both the static, and in the long-wavelength limits, the dielectric func-

tion is real; an imaginary part can exist only when the potential can induce
real transitions between states, which is confined to a bounded region in
(q, ω)-space shown in Fig. 4.12.

A more detailed discussion (and calculation) of these results is given
below.

Static response

Let us first look at the behaviour at ω = 0, where the response function is purely real.

χo(q) = 2
∑

k

nk − nk+q

εk+q − εk
. (4.95)

For q → 0 , we have

χo = −2
∑

k

q · ∂nk
∂k

q · ∂εk
∂k
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Figure 4.11: Behavour of the induced charge density when a point charge
+|e| is inserted at the origin. The dashed line is the Thomas-Fermi approx-
imation, which has the unphysical singularity at the origin; the solid line is
the RPA response, finite at the origin, and showing Friedel oscillations at
large distances.

Figure 4.12: . Regions of (q, ω) space where the dielectric function and
density response function have different characters. The imaginary part
is non-zero only in the hatched region, defined by Eq. (4.107). Along the

frequency axis (q ≈ 0), we have χo = − nq2

mω2 and ε = 1 − ω2
p/ω

2; along the
momentum axis, we have (q ¼ 2kF ) χo = g(µ) and ε = 1 + q2TF /q

2.
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= −2
∑

k

(q · ∂εk
∂k ) ∂nk

∂εk

q · ∂εk
∂k

= −
∫

dεg(ε)
∂n(ε)

∂ε
(4.96)

where we have made use of the fact that the occupancy depends only on the energy to
transform the sum over momentum into an integral over energy; g(ε) is the density of
states in energy that we derived in chapter 2. Now n(ε) is of course a step function at
ε = µ, so we get

χo(q) = g(µ) (4.97)

This result gives for the RPA dielectric function in the long-wavelength limit the same
result we derived earlier in the Thomas-Fermi theory:

ε(q → 0, ω = 0) = 1 +
4πe2g(µ)

q2
= 1 +

q2TF

q2
. (4.98)

Larger momentum is more tricky, and we just quote the result (in three dimensions):

εRPA(q, 0) = 1 +
q2TF

q2
F (q/2kF ) , (4.99)

where F (x) is a function we have seen before

F (x) =
1

2
+

1− x2

4x
ln

∣

∣

∣

∣

1 + x

1− x

∣

∣

∣

∣

. (4.100)

which decays monotonously with increasing argument.

We noted earlier that the function F (x) has a logarithmic singularity in the derivative
at q = 2kF . This arises because if q < 2kF , it is possible to find contributions to the
integral where εk+q = εk, but for q > 2kF this is not allowed. This subtle feature has
important consequences, in the form of Friedel oscillations. If one goes from momentum
space into real space, any sharp features in q will lead to oscillations in r. The slope
singularity means that the induced charge density due to the screening of a local potential
will have oscillations in space with wavevector 2kF ; for a Coulomb potential of charge Q
for example one gets

ρind(r → ∞) ≈ Q

r3
cos(2kF r) . (4.101)

Such oscillations also occur in the spin density when a local exchange (i.e. spin-
dependent) potential is applied to an electron gas. These spin density oscillations then
generate the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interactions between localised
moments at a distance.

The singularity at q = 2kF becomes more pronounced in lower dimensions. In Fig.
4.10 we sketch the behaviour of the static susceptibility in one, two, and three dimensions.
In 2D, there is a cusp, and in 1D a singularity. The one-dimensional singularity implies
that the metallic state is unstable, of course.

Dynamic response

By doing the relabelling k+ q → −k in the n(k+ q) term, the dynamic density response
function can be rewritten18

χo(q, ω) =
4

V

∑

k

nk
εk+q − εk

(εk+q − εk)2 − (h̄ω + iη)2
(4.102)

18We put back in the factor of 1/V before the momentum sums, and reintroduce h̄
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Clearly, if q is small and ω finite, we can perform an expansion of the denominator in
powers of (εk+q − εk)/ω; we shall just keep the first term, which is

χo(q, ω) ≈ − 4

V

∑

k

nk
εk+q − εk
(h̄ω + iη)2

= − 4

V

∑

k

nk

h̄2

2m (2k · q+ q2)

(h̄ω + iη)2

= − 4

V

h̄2q2

2m(h̄ω + iη)2

∑

k

nk

= −4
h̄2q2

2m(h̄ω + iη)2
n

2

= − nq2

mω2
. (4.103)

Note that the angular average kills the term linear in q, and in the next to last line we
used (1/V )

∑

k<kF
= n/2.

We have in fact seen this result before, but in a different guise: substitute Eq. (4.103)
into the formula for the dielectric function

εRPA(q → 0, ω) = 1− 4πne2

mω2
(4.104)

which we derived earlier in the context of plasmons and the energy loss function. The
next order terms in Eq. (4.103) are of order (vF q/ω)

2 and give an upward dispersion to
the plasmon, shown in Fig. 4.12.

This expansion is valid for any frequency ω provided (vF q/ω) ¼ 1, and yields a
dielectric function which diverges to −∞ as ω → 0; this should be contrasted with the
static dielectric function which diverges to +∞ as q → 0. In order to understand just how
these two opposing singularities resolve themselves we need to look at the imaginary part
of the response function, hitherto ignored,

=χo(qω) = 2π
∑

k

(nk − nk+q)δ(εk+q − εk − ω) . (4.105)

Remember that the imaginary part of the response function refers to the energy
dissipated by real transitions induced by the external potential; the δ-function is there to
conserve energy, and the factor (nk − nk+q) makes sure that the transition occurs from
an occupied state to an unoccupied state. It looks at first sight as if it will give a series of
sharp spikes, but in fact there is a continuum of values of k for which the condition can
be satisfied. The energy difference between initial and final states is

εk+q − εk =
h̄2

2m
(q2 + 2k · q) (4.106)

and thus, depending on the angle between k and q

h̄2

2m
(q2 − 2qkF ) < εk+q − εk <

h̄2

2m
(q2 + 2qkF ) , (4.107)

and therefore only for frequencies inside this range are excitations possible. These two
boundaries are shown in Fig. 4.12.

The excitations that can be made in the system consist either of collective oscillations

(the plasmon) or of continuum “single-particleÔ-like oscillations. The presence of the latter

explains the dramatic sign changes in ε that we referred to above. Imagine that we could

resolve the discrete transitions corresponding to individual particle-hole transitions (this
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Figure 4.13: Behaviour of the real part of the dielectric function sweeping
through a sequence of closely space poles, followed by an isolated pole at
high frequencies – the plasmon

is correct in principle, because the momenta are all quantised inversely to the length of

the system). Then at finite q, and varying ω we can plot the real part of ε as it sweeps

through the sequence of closely spaced poles, as in Fig. 4.13. ε must cross zero many times

in the continuum, but there is a single isolated zero above the continuum, which is the

collective mode.
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Questions on chapter 4

Qu.4.1 LCR circuit
This question on electrical circuits is to remind you of the basic

ideas of a dynamical response function, resonance, and dissipation.
An electrical circuit consists of an inductance L, resistance R and ca-

pacitance C in series, driven by a voltage source V (t) = Vo cos(ωt). Show
that the charge Q(t) on the capacitor satisfies the equation

Lq̈ +Rq̇ + q/C = V (t) , (4.108)

and use it to define the complex susceptibility from

q(ω) = χ(ω)V (ω) (4.109)

Show that the forced solution of this equation is

q(t) =
Vo cos(ωt− φ)

[

(

−ω2L+ 1
C

)2
+ (ωR)2

] 1
2

, (4.110)

where

tan(φ) =
ωR

ω2L− 1/C
. (4.111)

Show that the mean rate of power dissipation is

W =
1

2

ωV 2
o sin(φ)

[

(

−ω2L+ 1
C

)2
+ (ωR)2

] 1
2

. (4.112)

Sketch the real and imaginary parts of χ as a function of frequency, for
the cases Q ¼ 1, Q ≈ 1 and Q ½ 1, where Q = (1/R)(L/C)

1
2 is the “quality

factor”.
Where are the poles of χ in the complex ω plane?.
It is of course more usual to work with the complex impedance

Z = 1/(−iωχ), but this is a little obscuring because then the equation
of motion for the current has a source term V̇ .

Qu.4.2 Landau theory of phase transitions
An expansion of the free energy as a power series in a collective

order parameter is called a Landau or Ginzburg-Landau expansion. It
is very commonly used as a simple mean-field description of a phase
transition. Here we use it to describe a ferro-electric.

A ferroelectric crystal is one that supports a macroscopic polarisation
P – that usually arises because the underlying crystal structure does no
have inversion symmetry. However, as temperature or pressure is changed,
the crystal may recover the inversion symmetry. This can be modelled by
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Landau’s theory of second order phase transitions, where we postulate a
form for the Free energy density (per unit volume)

F =
1

2
aP 2 +

1

4
bP 4 +

1

6
cP 6 + ... (4.113)

where the coefficient a = ao(T − Tc) is temperature dependent, and all the
other coefficients are constant. Although the polarisation P is of course a
vector, we assume that it can point only in a symmetry direction of the
crystal, and so it is replace by a scalar.

(a) Assume that b > 0 and c = 0. Use Eq. (4.113) to determine the form
for the equilibrium P (T ).

(b) Including in F the energy of the polarisation coupled to an external
electric field E, determine the dielectric susceptibility χ = ∂P

∂E both above
and below the critical temperature.

(c) Sketch curves for P (T ), χ−1(T ), and χ(T ).

(d) In a different material, the free energy is described by a similar form
to Eq. (4.113), but with b < 0 and c > 0. By sketching F at different
temperatures, discuss the behaviour of the equilibrium polarisation and the
linear susceptibility, contrasting the results with those found in (c).

Qu.4.3 Reflectivity of metals
The phase velocity of light in a conducting medium is the speed of light

divided by the complex dielectric constant N(ω) = ε(ω)1/2 where we may
use for ε the Drude result

ε(ω) = 1−
ω2
p

ω2 + iω/τ
. (4.114)

In a good Drude metal, we have 1/τ ¼ ωp.

Sketch curves of
(a) <σ(ω),
(b) <ε(ω),
(c) =(1/ε(ω).

Consider a light wave with the electric field polarised in the x−direction
at normal incidence from the vacuum on a good Drude metal (with 1/τ ¼
ωp) occupying the region z > 0. In the vacuum (z < 0), the incident E1 and
reflected E2 waves give rise to a field

Ex = E1 exp(iω[z/c− t]) + E2 exp(−iω[z/c+ t]) , (4.115)

whereas in the medium, the electric field is

Ex = E0 exp(iω[N(ω)z/c− t]) . (4.116)
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Matching the electric and magnetic fields on the boundary, show that

E0 = E1 + E2 , (4.117)

NE0 = E1 − E2 , (4.118)

and hence show that the reflection coefficient satisfies

R =

∣

∣

∣

∣

E2

E1

∣

∣

∣

∣

2

=

∣

∣

∣

∣

1−N

1 +N

∣

∣

∣

∣

2

. (4.119)

Using the Drude formula above, show that

R ≈ 1− 2

(

ω

2πσ(0)

)1/2

for ω ¼ 1/τ (4.120)

≈ 1− 2

ωpτ
for 1/τ ¼ ω ¼ ωp (4.121)

≈ 0 for ωp ¼ ω (4.122)

and sketch the reflectivity R(ω).
Deducing the complex conductivity by measuring the reflectivity is a

standard experimental technique. To get both real and imaginary parts
from a measurement of only |R| (rather than the complex R) requires
employment of the Kramers-Krönig relations.

Qu.4.4 Phonons
From Eq. (4.8) construct =χ in the limit that γ → 0. Use the Kramers

Krönig relation to then reconstruct <χ from =χ in the same limit.

Qu.4.5 Screened Coulomb interaction
Consider a nucleus of charge Z producing an potential

Vext(q) = −4πZe2

q2

Using the long-wavelength limit of the dielectric function, show that the
screened potential satisfies

Vscr(q = 0) = −2

3
ΩEF

where Ω is the volume of the unit cell, and EF is the Fermi energy for Z
free electrons per unit cell.

Qu.4.6 Peierls transition
By rewriting the term containing nk+q (replace k+ q → −k′ and then

relabel k′ as k), show that the static density response function can be written

χo(q, 0) = 2
∑

k<kF

1

εk+q − εk
. (4.123)
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In one dimension, make a linear approximation to the electronic disper-
sion near kF , i.e. εk = vF |k|, and consider the response for q = 2kF + p,
where p ¼ 2kF . By considering terms in the sum over k near k ≈ −kF ,
show that

χo(2kF + p) ≈ 1

2πvF
ln

∣

∣

∣

∣

2kF
p

∣

∣

∣

∣

. (4.124)

Explain why this result suggests that a one-dimensional metal will be
unstable to a lattice distortion with wavevector 2kF .

This result is exactly analogous to the nonanalytic behaviour we saw
in Question 2.5. There we found that the energy gain from opening a
gap U at the chemical potential was ≈ U2 ln |EF /U |, when we chose the
periodicity of the potential to be exactly 2kF . Remember that linear
response theory will predict that

U = −ρVext +
1

2
χ−1ρ2 (4.125)

which after minimisation, yields

Umin = −1

2
χV 2

ext (4.126)

In our linear response calculation, χo(2kF ) is singular, indicating
as usual the failure of non-degenerate perturbation theory, whereas the
exact calculation done earlier showed that χ0(2kF ) ∝ ln |EF /Vext| – a
result that could perhaps have been guessed from Eq. (4.124).

Qu.4.7 Optical properties
Discuss why, at optical frequencies, glass is transparent, and silver is

shiny, while graphite appears black, and powdered sugar is white.

Qu.4.8 Metals and insulators
Explain the differences between a metal and an insulator. Your discus-

sion should include reference to: single particle properties; screening of the
Coulomb interaction; optical properties; and electrical and thermal proper-
ties.
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Chapter 5

Magnetism

We have already gained quite some familiarity with the origins of magnetic
interactions either from Hartree-Fock theory in the electron gas, or from
the point of view of localised exchange interactions on transition metal ions.
In this chapter we will pull these points of view together, and also look at
magnetism as a collective phenomenon, using the tools of the last chapter.

5.1 The origin of local magnetic moments

Strongly-bound core states in atoms acquire magnetic moments because of
interactions between ions as we discussed in Sec. 3.3. The general rule is
that many-particle wavefunctions that are built out of orthogonal orbitals
have a tendency to spin-alignment. This is called Hund’s rule, and can be
seen simply within the Hartree Fock approximation.

As a simple example, consider a model atom with two orbitals of single-
particle energies EA,B in which we wish to accommodate two electrons (Fig.
5.1). Often they will be of similar, or identical energies, but for definiteness,
let’s take EA < EB . Within Hartree-Fock (see Eq. (2.95)) in this simple

2E +QA AA E + QA ABE +B E + Q -JA AB ABE +B

A

B

Figure 5.1: Possible low energy configurations of two electrons in a two-level
atom

107



108 CHAPTER 5. MAGNETISM

model, there are the following interaction terms: the direct (Hartree) terms

QAA = < AA| e
2

r12
|AA >

QAB = < AB| e
2

r12
|AB > (5.1)

QBB = < BB| e
2

r12
|BB >

and the exchange energy

JAB =< AB| e
2

r12
|BA > (5.2)

that operates only betgween configurations where the single particle states
are occupied with identical spin. Since the orbitals are assumed orthogonal,
then QAA ≈ QBB ½ QAB ≈ JAB

The three configurations have the energy shown in Fig. 5.1; two are
singlets, and the last is a triplet. The triplet configuration will have the
lowest energy if

QAA −QAB + JAB > EB − EA (5.3)

which is very commonly the case when QAA (which we have elsewhere mod-
elled as the Hubbard U parameter) is large.

This simple example reflects a general phenomenon. Remember that we
can factorise the wave function into a product of orbital and spin compo-
nents. Since the total wavefunction must be antisymmetric, if we choose the
spin wavefunction to be symmetric under exchange of coordinates (which
enforces a triplet: one of | ↑↑>; | ↓↓>; 2−1/2(| ↑↓> +| ↓↑>))then the spatial
part of the wavefunction is anti- symmetric. The singlet state 2−1/2(| ↑↓>
−| ↓↑>) is antisymmetric in spin space, and therefore the real space wave-
function must be symmetric. An antisymmetric wavefunction must have
nodes whenever two spatial coordinates are equal: ψ(...., ri = r, ...rj =
r, ...) = 0. So it is then clear that the particles stay farther apart in an
antisymmetrised state than in a symmetric state, and because of the Pauli
principle an antisymmetric wavefunction (which will generally have high
spin) has lower energy.

The physical reason for the existence of local moments on atoms is then
a combination of the Pauli principle together with repulsive interactions
between ions. If we consider, say, d-levels in an ion, since the d-states are
degenerate, we shall always get high spin configurations. However, in the
environment of a solid, the d-levels are split because the atom is no longer
in a potential of spherical symmetry. If this crystal field splitting is large
enough, then the condition of Eq. (5.3) will not be satisfied, and the orbitals
will be filled one after another - and generally the atom will have low spin.
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5.1.1 Spin Hamiltonian and the Heisenberg Model

If we focus only on those states with the same orbital occupancy, they differ
only by their spin degrees of freedom - for example the two rightmost states
in Fig. 5.1. If QAA ≈ QBB ≈ U is large, only the fluctuations between these
two spin configurations will be important. The spatial degrees of freedom
of the wavefunction are frozen in place, and we can work in models with
spin degrees of freedom alone. Clearly, this is only going to be justified in
an insulator 1 but such a situation is quite common.

We then need to write down a Hamiltonian for the spins SA, SB . First
note that the total spin S is given by

S2 = (SA + SB)
2 = (SA)

2 + (SB)
2 + 2SA · SB =

3

2
+ 2SA · SB (5.4)

where we have used for a spin-half state S2
i =

1
2(

1
2 +1) = 3

4 . Now S2 has the
eigenvalue S(S + 1) in a state of spin S, it then follows that the eigenvalue
of SA ·SB is −3

4 in the singlet state (S = 0), and 1
4 in the triplet state. This

allows us to cast the spin Hamiltonian as

Hspin =
1

4
(Es + 3Et)− (Es − Et)SA · SB (5.5)

with Es,t the energies of the singlet and triplet states. If we drop the constant
term by redefining the zero of energy, we have then

Hspin = −JABSA · SB (5.6)

where we see that the model will favour parallel spins if J > 0, and antipar-
allel spins if J < 0.

5.2 Types of magnetic interactions

The existence of magnetic moments locally on atoms is only part of the
story of magnetism, because to obtain an ordered magnetic ground state,
the moments between neighbouring atoms must be coupled. There are a
number of different ways that these couplings can arise. The net effect of the
couplings between neighbours can in the end usually be parametrised quite
simply, just in terms of pairwise interactions between spins on neighbouring
sites, viz.

Hspin = −
∑

ij

JijSi · Sj (5.7)

This is the Heisenberg model, which now couples the total spin on an atom
(which will be determined by the solution of the atomic problem Eq. (5.6))

1Or where the conduction electrons are only weakly coupled to spin degrees of freedom
in the core
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to that of its neighbours. Notice that the coupling only depends on the
relative orientation of the spins, and not on their absolute direction relative
to the crystal lattice. When the angular momentum of the ion contains an
orbital part as well as a spin part, then the spin Hamiltonian will include a
piece that depends on the absolute spin direction.

5.2.1 Dipolar Interaction

The first idea might just be that the moments could couple via through the
magnetic fields they generate. However, this is very small: the energy of
interaction of two magnetic dipoles of strength m at a distance r is of order
µom

2/4πr3. Putting in a magnetic moment of order a Bohr magneton, we
get

Udipolar ≈
µo

4π
(
eh̄

2m
)2

1

r3
≈ πα2(

aBohr

r
)3Ryd. (5.8)

where α ≈ 1/137 is the fine structure constant. At typical atomic sepa-
rations of 2nm, this is about 4 × 10−5 eV, or less than a degree Kelvin.
As always, magnetic interactions are over-ruled by charge interactions, and
such energy scales are rarely important. 2

Dipolar terms do play an important role in the domain structure of
magnets, once the spins have already been aligned by other means.

5.2.2 Direct, itinerant, and super-exchange

The intra-atomic exchange interaction we discussed in Sec. 5.1 is an example
of direct exchange, because it comes from interactions between overlapping
orbitals. When the orbitals concerned are orthogonal, J is positive in sign,
i.e. the lowest energy state is a triplet. However, if the overlapping orbitals
are not orthogonal – as will happen between two orbitals between neigh-
bouring atoms – the interaction may be of a negative sign, so the lowest
energy is a singlet.

In molecular H2, for example, the singlet is lower than the triplet –
because although the symmetric spatial wavefunction causes the two elec-
trons to be closer together than in the antisymmetric state (so increasing
the repulsive inter-electronic Coulomb energy), this is counterbalanced by
the spatial wavefunctions having charge density maxima located in the bond
between the ions. So covalent bonds are singlet pairs, and covalent solids
are magnetically inert.

In d- and f- electron magnets, the direct overlap between the atomic
magnetic states on different ions is usually very small. Magnetic interactions
between such atoms arise when the magnetic interaction is mediated by an
otherwise nonmagnetic electrons. There are two common cases. One is

2Interactions between electrical dipoles – as occurs in a ferroelectric – are not negligible.
Here we get the same expression but without the factor of α2
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Figure 5.2: Schematic picture of the origin of the superexchange interaction.
The figure shows the charge density for the wavefunctions in a singlet state
(solid line) and a triplet state(dotted line)

where the two magnetic atoms are separated by a nonmagnetic ion with a
closed shell, commonly in an insulating magnetic oxide where the oxygen
ion is O2−. This is called superexchange. The second case is in a magnetic
d- or f-band metal, where there are itinerant s- or p-like electronic states.
A magnetic interaction mediated by conduction electrons is called itinerant
exchange.

Superexchange can be visualised in Fig. 5.2. We have in mind here a
Mott insulating state, so that the direct overlap between the d-electrons
on the nearest magnetic ions is too small to overcome the local Coulomb
repulsion. Furthermore, because the mediating O ion is almost completely
full, there is only a little overlap between the d-wavefunction and the oxy-
gen neighbour. This small overlap is, however, just enough to generate an
exchange interaction.

As usual, if we consider the spatial wavefunctions for the singlet and
triplet states, they will be of the form

ψ =
1√
2
[ψA(1)ψB(2)± ψA(2)ψA(1)] (5.9)

where the + sign goes with the spin singlet, and the − sign with the triplet.
Because the triplet state has a node, it has less possibility for both electrons
to spill over onto the O ion than does the singlet. Consequently the singlet
state has a somewhat lowered kinetic energy (the electrons a little less lo-
calised) and this is enough to lower its energy below the singlet state. So for
superexchange J is negative favouring antiparallel, or antiferromagnetic
alignment of spins. Values of J for transition metal oxides range from a few
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tens of Kelvin to a few hundreds.
Itinerant exchange comes about in metals because the atomic moments

produce a spin-polarisation of the itinerant cloud. If we have an ion of spin
S embedded in the conduction electrons, one would expect that the local
direct exchange will give rise to a contact interaction of the form

Hint = −JS · sδ(r) , (5.10)

with s the conduction electron spin density, and J a direct exchange interac-
tion. The spin density is not otherwise polarised, but the perturbation will
induce a weak spin density modulation in the conduction cloud, which will
of course decay away to zero at large distance from the ion. The induced
spin density is just

s(r) = Jχσ(r)S (5.11)

using the definition of the spin susceptibility χσ. At a nearby lattice site
(say R), the induced spin density caused by the polarisation of one atom
interacts with the spin of another, and the energy is then

−JS(R) · s(R) = J2χσ(R)S(R) · S(0) , (5.12)

Summing over all pairs of sites in the crystal we obtain

HRKKY = −
∑

ij

J2χσ(Rij)S(Ri) · S(Rj) , (5.13)

which is the RKKY (Ruderman-Kittel-Kasuya-Yoshida) interaction.
If the itinerant electrons can be approximately described as a free elec-

tron gas, then χσ = χo derived for a density perturbation in the electron gas
in chapter 4. (The interaction term can be thought of as a potential which
has interactions of the opposite sign between up and down electrons.) We
saw that χo is of order N(µ), the density of states per unit energy, and is
positive for small r (ferromagnetism), but has Friedel oscillations at large
distances of the form cos(2kF r)/r

3, so the interaction will then oscillate in
sign. If the neighnouring ions are close, the Heisenberg interatomic exchange
parameter is of order J2N(µ) which can be large - up to 1 eV or so. The
RKKY interaction is visualised in Fig. 5.3.

5.3 Stoner-Hubbard theory of itinerant magnetism

In the pictures of magnetism described in the last section, we relied on
the atomic physics to generate the moment, and then were concerned only
with the (weaker) interactions between the moments. However, it would
be pedagogogically useful to be able to start with a picture of itinerant
electrons in Bloch states, with the moments determined self-consistently by
taking proper account of exchange and correlation effects. We have already
addressed this partially when we looked at ferromagnetism in the electron
gas within the Hartree-Fock approximation.
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Figure 5.3: . In metals, a local moment will polarise the conduction electron
spins, producing a spin density that decays away and oscillates in sign with
period 1/2kF . The interaction of the induced spin density with a neighbour-
ing local moment produces the RKKY interaction

5.3.1 Spin paramagnetism in metals

We will begin this section by reviewing the standard theory of Pauli param-
agnetism. We consider a fermi gas with energy dispersion εk in a magnetic
field H. Because of the energy of the spin in a magnetic field, the spin-up
and spin-down bands will be split (see Fig. 5.4), and have energies

εk↑ = εk + µBH ,

εk↓ = εk − µBH . (5.14)

Since the chemical potential must be the same for both spins, there must be
a transfer of carriers from the minority spin band to the majority

n↑ − n↓ = µBHg(µ) (5.15)

where g(µ) is the density of states at the Fermi level3. The magnetisation
is M = µB(n↑ − n↓) which then gives us the static spin susceptibility

M

H
= χσ(q = 0, ω = 0) = µ2

Bg(µ) . (5.16)

5.3.2 Ferromagnetism in the Stoner-Hubbard model

Now let us include in a very simple fashion the effect of interactions. We
will turn to the Hubbard model again, where now in addition to the kinetic
energy of the electrons, we put in an interaction

Ĥint = U
∑

i

n̂i↑n̂i↓ , (5.17)

3Obviously, we must assume that the splitting is small enough that the density of states
can be taken to be a constant. We define g(µ) to be the density of states for both spins.
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Figure 5.4: Spin-split bands in the Stoner approximation

where n̂iσ is the number operator for the electron on lattice site i. In contrast
to our Hartree-Fock treatment when we used the full long-range Coulomb in-
teraction, we expect the effective interactions between electrons to be short-
range due to screening, and they are parametrized here by the Hubbard
interaction U . It is of course just the Coulomb energy of having two elec-
trons on the same site — and notice that because of the Pauli principle they
must already have opposite spins.

In a ferromagnet, the spin and charge are the same on every site, so
< n̂i↓ >= n↓ = N↓/N and < n̂i↑ >= n↑ = N↑/N , with N = N↑ + N↓
the total number of electrons. In a simple mean field approximation, the
interaction term is then just replaced by a potential Un↑ for the ↓ spin, and
Un↓ for the ↑ spin. As in the last section, we also include an applied field,
which then gives a Zeeman energy −2µBs ·H, of different signs on the up
and down spins.

The energies of the two spin bands are now (see Fig. 5.4)

εk↑ = εk + Un↓ + µBH

εk↓ = εk + Un↑ − µBH (5.18)

With the same approximation as before - that the density of states can be
taken to be a constant, we can then self-consistently determine the average
spin density

n↑ − n↓ = [U(n↑ − n↓) + 2µBH]
1

2
g(µ) . (5.19)

The magnetisation is M = µB(n↑ − n↓) which then gives us the static
spin susceptibility

χσ(q = 0, ω = 0) =
µ2
Bg(µ)

1− Ug(µ)
2

. (5.20)

In the noninteracting case, this is just the Pauli paramagnetic suscepti-
bility of free particles, which is (apart from constants) the same as χo (Eq.
(4.81)).
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In the interacting case, it is enhanced, and will diverge if U is large
enough that the Stoner criterion is satisfied

Ug(µ)

2
> 1 , (5.21)

which marks the onset of ferromagnetism in this model.

5.3.3 Dynamical spin response function in the Hubbard model

The calculations of the uniform susceptibility in the last section can be
immediately generalised to calculate the finite q, ω response at the same
level of approximation. Instead of adding a perturbation term of a static
uniform magnetic field, we can imagine adding a dynamic perturbation

µBH(q, ω)(n̂↑(q, ω)− n̂↓(q, ω)) .

If we also make the same mean-field approximation to the Hubbard interac-
tion, then again we have separate Hamiltonians for both up- and down-spins.
The up spins see an effective self-consistent potential

µBH(q, ω) + Un↓(q, ω) (5.22)

and the down spins

−µBH(q, ω) + Un↑(q, ω) (5.23)

so that the effective field is self-consistently modified by the average spin-
fluctuation density through the interaction parameter. We can now get the
average spin density from a calculation of the free-electron susceptibility
χo

4:

n↑(qω)− n↓(qω) = [U(n↑(qω)− n↓(qω)) + 2µBH]
1

2
χo(qω) . (5.24)

and we thus self-consistently determine the dynamical susceptibility

χσ(q, ω) =
µ2
Bχo(q, ω)

1− 1
2Uχo(q, ω)

. (5.25)

The parallel with the last section should be clear; but notice that here
we explicitly calculated the response function, rather than evaluating the
densities directly from the shifted bands. As (qω) → 0, the results are the
same, because we showed earlier that χo(0, 0) = g(µ).

4Again, the factor of 1
2 is because χo was calculated for both spins
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5.3.4 Spin-density waves and antiferromagnets

If we look at the static susceptibility from Eq. (5.25), it should be clear
that as we increase U, the first instability that is reached need not be at
q = 0, but might be at nonzero momentum. In general, the instability
will occur with the wavevector corresponding to the maximum value of the
static susceptibility χo(q). For free electrons, we saw that three dimensions,
the maximum is indeed at q = 0, but in one dimension, the peak is at 2kF
(actually a singularity). In general the value of the susceptibility will depend
on the details of the band-structure, but as a general rule, any quasi-one-
dimensionality in the band structure - i.e. strong anisotropy in the dispersion
between different directions will lead to peaks at finite momentum.

In a case where the instability occurs at finite q, the ensuing magnetic
order will be periodic, and generally this is called a spin-density wave, or
an antiferromagnet. (Spin-density wave as a term is usually reserved for
cases when the magnetic period is not exactly a lattice vector, and where
the amplitude of the magnetic order parameter is small. Examples include
a number of quasi-one-dimensional organic metals, and metallic Cr.)

It is worth exploring the one-dimensional case a little further, because it
provides a way of connecting to the Mott transition. We saw that in 1D the
instability was likely to occur at 2kF , and therefore in the spin-density-wave
state, there should be a periodic spin density component at a wavevector 2kF
(see Fig. 5.5). If there are n electrons per unit cell, note that kF = nπ/2a,
where a is the lattice periodicity. Furthermore, the instability in a 1D model
will occur for infinitesimal U , because the response function is singular at
2kF .

Now let us imagine increasing U from zero. When it is small, the spin-
density-wave state will be of small amplitude: It is best to think of it as two
periodic charge density waves, each of period

2π/2kF = 2a/n

but precisely 180◦ out of phase. For definiteness, let us take n = 1, although
the argument will work for other densities too. Because there is a new
periodicity in the structure (at 2kF ), then there is a new Brillouin zone
plane (at wavevector kF ), and hence a gap in the single particle bands. The
onset of the spin-density-wave is also a metal-insulator transition. Scattering
from this periodic structure self-consistently regenerates the spin-density
modulation with the correct period. When the amplitude is weak (U/t ¼ 1),
the spin density modulation is very close to being sinusoidal (i.e. a small gap
means that the NFE approximation is good); so the charge density remains
very nearly uniform. However, if we increase the value of U, we expect the
amplitude of the modulation to grow, and therefore the gap to increase.

Eventually the picture (for U/t ½ 1 will surely become that shown in
the lower panels of Fig. 5.5. The wave can no longer be sinusoidal, because
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Figure 5.5: One dimensional atomic chain undergoing a spin-density-wave
instability. The left panels show charge density for spin up and spin down
bands, and the right panels show the bandstructure. In the top panels, we
have U = 0, and thus a half-filled band (the Fermi energy is marked by
the horizontal dash-dot line). In the second panels, U/t < 1, and a small
gap has opened at the Fermi surface, corresponding to the new magnetic
period of 2a. In the lowest panels, U/t ½ 1, and the amplitude of the SDW
saturates so that there is exactly one electron on each atomic site; the gap
at the Fermi surface is now of order U .
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the charge density must remain always positive, for each spin. It will even-
tually localise to so that each period of the spin density modulation contains
precisely one electron, and there is very little overlap from one electron to
its neighbour - but of course this is still a ferromagnet. The charge gap is
of order U now, because the excitation of a carrier involves moving it from
one site onto the neighbouring charge. However, although the ground state
is still antiferromagnetic, the (superexchange) interaction which determines
the magnetic transition temperature must now be quite small, because it
will depend on the overlap of wavefunctions from one electron to its neigh-
bour: it is not difficult to argue that in fact Jij ≈ t2/U . This is of course a
Mott insulator.

Note the distinction between the two regimes: in ‘weak coupling’ (U/t ¼
1), the instability which produces the antiferromagnetic order also opens a
gap at the Fermi surface5 - but the magnetic interaction is the driving force.
In ‘strong coupling’ ( U/t ½ 1) it is fundamentally the interaction between
charges that produces the Mott transition, and subsequently magnetic order
appears on a low energy scale. These two regimes are however smoothly
connected.

5.4 Collective magnetic properties

5.4.1 Magnetic phase transitions

The Heisenberg model, however complicated the mechanisms that generate
the interactions, provides a very good description of the low energy spin
dynamics of many magnetic materials.

For most purposes, and especially to describe phenomena at finite tem-
peratures, it turns out that the spins can be treated classically and so the
analysis of magnetic ground states and magnetic ordering becomes a topic
in classical statistical physics, that is somewhat removed from the agenda
of this course. Because the interaction J is usually small in comparison to
other electronic energies in the problem, we need to include the thermal
fluctuations only of the spins at low temperatures, because other degrees
of freedom are comparatively stiff, so produce only small changes to the
free energy at the temperatures where macroscopic magnetic phenomena
are seen. The transition temperature of a magnet is determined by a com-
petition between the energetics of the interaction between spins – favouring
ordering – and the entropy, which is larger in a disordered state. Only in
rare cases do we need to go beyond simple classical models of interacting
moments to understand the magnetic behaviour of real materials.

5Of course, only if the Fermi surface is completely one-dimensional will a small gap
lead immediately to an insulator - this is why the antiferromagnetic state of Cr is still
metallic
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Figure 5.6: . Schematic picture of the ground state of a ferromagnet and an
antiferromagnet. The order parameter for the ferromagnet is the uniform
magnetisation, and for an antiferromagnet it is the < S(Q) >, where Q is
the wavevector corresponding to the period of the order

Depending on the sign of J , the ground state will be ferromagnetic
(aligned spins) or anti-ferromagnetic (anti-aligned spins on neighbouring
sites); more complicated magnetic states can arise if we have different mag-
netic ions in the unit cell, and also on taking account of magnetic anisotropy.

While it is straightforward to measure the magnetisation in a ferromag-
net, measuring the order parameter of an antiferromagnet is more tricky
because it corresponds to spins ordering with a finite wavevector. Such
order can, however, be cleanly observed by elastic neutron scattering.

5.4.2 Spin waves

The collective excitations are determined by χσ(q, ω) for which Eq. (5.25)
is an approximation. It is clear that as one approaches the transition from
the paramagnetic side, there must be a build up of oscillator strength at low
energies, near the wavevector of the imminent instability. But in general,
provided that q < 2kF all of these features will lie in the continuum, so the
spectral function =χσ will only have peaks which are overdamped.

In the magnetically ordered state, the picture is different, and we will
consider here the case of a ferromagnet, starting from the nearest neighbour
Heisenberg Hamiltonian

HHeis = −J
∑

i,j=n.n

ÝSi · ÝSj (5.26)

The spin variables are angular momenta, and as such they satisfy the com-
mutation relations for angular momenta

[Ŝα, Ŝβ] = ih̄εαβγŜγ , (5.27)

where the subscripts in Eq. (5.27) refer to the cartesian axes (x, y, z), whereas
those in Eq. (5.26) are the site labels.
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Figure 5.7: The top figure shows the classical picture of a spin wave gen-
erated by an array of precessing spins; the bottom figure shows the same
viewed from the top.

We can use these two equations to obtain the Heisenberg equation of
motion for a spin at a single site

Ý̇Sn = − i

h̄
[ÝSn, HHeis] =

2J

h̄

∑

j=n.n. of n

ÝSn ∧ ÝSj (5.28)

To derive this, we need to assume (correctly) that spin operators on different
sites commute. The factor of two in this equation comes about because
HHeis contains a sum over all pairs i, j, and the commutator will pick out
terms with both i = n and j = n.

Notice that the form of this equation is that it describes precession of
the spin at site n about the effective exchange field J

∑

j
ÝSj of the nearest

neighbour spins. While this is a fully quantum mechanical problem, we can
gain insight (and the correct answer when the magnitude of the spin is large)
by treating this in a semiclassical approximation. 6

We can assume that in the ordered state there is a uniform ferromagnetic
moment < S >= Sẑ, which we have chosen to point in the z-direction. We
shall now look for the collective modes of small amplitude spin fluctuations
about the magnetically ordered ground state. One can guess the form of
the solutions by considering a single spin tilted from its axis by a small
angle, while the neighbouring spins are held fixed - in this case the spin will
simply precess in a circle about the ẑ-axis. But of course the motion of one
spin will affect the others, so the precession of a single spin will not be an
eigenstate; but if all of the spins precess in such a way as to keep the relative
angles between neighbours constant, then we can have a wave with uniform
precessional rate. This is shown pictorially for a one-dimensional chain in
Fig. 5.7

To get the dispersion relation for the spin wave mode, we write

ÝSn = Sẑ + δSn (5.29)

6The quantum mechanical case is not much more difficult, but involves making a dif-
ferent representation for the quantisation of the spins; see Marder pp 753-757 .
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Figure 5.8:

where δSn is a vector lying in the x − y plane. Substituting this into Eq.
(5.28) we get

˙δSn =
2JS

h̄

∑

j=n.n. of n

(δSn − δSj) ∧ ẑ (5.30)

The equation in now classical – all the operators have been approximated
by classical vectors.

The generalisation to a three-dimensional lattice is quite straightforward:

h̄ωSW (q) = 2ZSJ(1− 1

Z

∑

R=n.n.

eiq·R) , (5.31)

where Z is the number of nearest neighbours. Notice that as q → 0, ω ∝ q2.
We are of course not surprised to find the mode frequency vanishing in

the long-wavelength limit, because at q = 0, this mode would be a uniform
tilting of all the spins in the whole lattice. The Heisenberg model knows
only about relative directions of spins, so this must have zero energy; our
choice of the z-direction for the ordered moment was completely arbitrary.
However, the quadratic - rather than linear, as for phonons - behaviour
is a consequence of a further conservation law – the total spin

∑

i
ÝSi com-

mutes with the Hamiltonian Eq. (5.26). In the case of the Ferromagnet this
means the order parameter is conserved and the quadratic dependence is a
characteristic of ferromagnetic spin waves; spin waves exist also in antifer-
romagnetically ordered states, but their momentum dependence is indeed
linear in that case.

5.4.3 Neutron scattering

Neutron scattering is an ideal probe for the observation of typical mag-
netic fluctuations in solids, because the characteristic energy and momentum
range of spin fluctuations is comparable to the energy-momentum dispersion
of neutrons available either from reactor or “spallation” sources. Neutrons
have a magnetic moment, and therefore interact with magnetic electronic
fluctuations, as well as directly with the nucleus.
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Reactor sources of neutrons operate continuously, and the energy range
of the neutrons is determined by thermalising with a surrounding moderator.
This produces beams with a broad band of wavelengths. In a spallation
source, neutrons are produced by the bombardment of a heavy metal target
with energetic particles from an accelerator. Specific wavelengths can be
separated out by scattering from a single crystal monochromator – that
operates in essentially the same way as a diffraction grating for light – or by
a “chopper” spectrometer that selects the velocity directly.

The neutron-nucleus interaction makes neutron scattering a useful probe
for crystal structure determination (elastic) and determining phonon dis-
persion relations (inelastic). The magnetic interaction allows neutrons to
be used as a probe to determine the magnetic ordering of magnetic ground
states (by elastic scattering), and to determine the magnetic fluctuation
spectrum by inelastic scattering.

Its value is best displayed by showing some data. Fig. 5.9 shows elastic
magnetic scattering determining the existence of an antiferromagnetic or-
dered phase7. and Fig. 5.10 shows how inelastic neutron scattering can be
used to determine the dispersion relations of spin waves in a ferromagnet8.

7R.Plumier, data quoted by Kittel, p 698
8T.G. Perring et al., Physical Review Letters 77, 711 (1996)
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Figure 5.9: Elastic neutron scattering on MnV2O4, which is an antiferro-
magnet with a transition temperature of TN = 56K. The angular scan
measures the angle of diffraction of the neutrons, and two magnetic peaks
can be seen, that decrease in intensity as the temperature is raised.
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Figure 5.10: Inelastic neutron scattering from the ferromagnet
La0.7Pb0.3MnO3, which is well described as a Heisenberg ferromagnet, at
10K. The upper figure shows a slice of the spectrum at a constant energy
transfer of approximately 7 meV, as a function of momentum near the (100)
reciprocal lattice point. The two peaks correspond to excitation of spin
waves of well-defined momentum, with the width of the peaks in the figure
given entirely by the experimental resolution. The lower figure maps out
the full dispersion relation of the spin waves in the major symmetry direc-
tions, using multiple scans of the type shown above (the material is a cubic
perovskite, and the magnetic Mn ions lie on an f.c.c. lattice). The solid
line is a fit of the dispersion curve to a nearest neighbour Heisenberg model,
with an exchange constant 2JS = 9 meV ; the dotted line corresponds to a
slightly different theoretical model – whose distinction from the Heisenberg
model is of no consequence to our discussions.
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Questions on chapter 5

Qu.5.1 Exchange
Consider single-particle wavefunctions on two neighbouring identical atoms

ψA, ψB, which may be assumed real. These are to be used as the basis for a
two-electron state. Show that the charge density in a singlet (triplet) state
made out of the two orbitals is given by

ρ(r) = |ψA(r)|2 + |ψB(r)|2 ± 2 < ψA|ψB > ψA(r)ψB(r) . (5.32)

Explain why the singlet state will usually be lower in energy.

Qu.5.2 One-dimensional spin waves
Assume a one-dimensional chain of spins, precessing according to Eq.

(5.30). By considering two neighbours of the nth spin, as in Fig. 5.8, each at
relative angles θ, show that the rate of precession according to Eq. (5.30) is

ω =
4JS

h̄
(1− cos θ) . (5.33)

Hence show that for a spin wave of wavevector q, the dispersion is

h̄ω = 4JS(1− cos(qa)) . (5.34)

Qu.5.3 Colossal magnetoresistance
This question introduces an active subject of current research: although

lengthy, it involves nothing beyond the material discussed in the lectures.
In a material like that shown in Fig. 5.10 the magnetism arises from a
mechanism called double exchange, which is a version of itinerant ex-
change but involving two types of d-bands. The prototype compound is
La1−xSrxMnO3, where the valence of La is 3+ and Sr is 2+. This is a cubic
(perovskite) crystal structure where the Mn ions are nominally equidistant
from six oxygen neighbours in three cartesian directions.

(a) Explain why the valence of Mn in the compound La1−xSrxMnO3 is
expected to be between 3+ and 4+ and that the occupancy of the d-levels
is expected to be 4− x electrons per Mn ion.

(b) The degeneracy of the 5 d-levels in the free ion is split by the cubic
environment into a low energy three-fold degenerate subset (whose notation
is t2g) and a higher energy doubly degenerate orbital set (eg). Explain why
the spin configurations of these levels for the Mn3+ and Mn4+ ions are
expected to be as shown in Fig. 5.11.

(c) The lowest three electron states can be regarded as forming a classical
spin S = 3

2 which has negligible hopping from site to site, whereas the highest
state is potentially itinerant. Now consider two neighbouring sites i, j in the
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Figure 5.11:

solid, each having the same “core” spin S, and sharing a single itinerant eg
electron, that has a tight-binding matrix element

t =< φeg(r−Ri)|H|φeg(r−Rj) > (5.35)

for hopping from site to site.
Explain the origin of the terms

Hint = −J
∑

i

Ýsi · Si + Jx
∑

ij

Si · Sj , (5.36)

in the total Hamiltonian (Ýsi) is the spin of the eg electron) and suggest
relative magnitudes of U , Jand Jx.

9

(d) Consider two neighbouring core spins Si Sj that are at a relative
angle θij . By considering that the spin wavefunction of the itinerant electron
must, for J ½ t, be always aligned with the local core spin S, explain why
the Schrödinger equation for the itinerant electron can be simplified to one
in which the tight-binding hopping matrix element from site i to site j is
replaced by

teff = t cos(
θij
2
) . (5.37)

To do this, you may wish to note that under a rotation by an angle θ,
the spin wavefunction transforms as

(

| ↑′>
| ↓′>

)

=

(

cos θ
2 sin θ

2
− sin θ

2 cos θ
2

)(

| ↑>
| ↓>

)

(5.38)

(e) Sketch the density of states of the itinerant electrons for different
alignments of the core spins S:
ferromagnetic (all core spins aligned),
antiferromagnetic (all neighbouring core spins anti-aligned),

9In second-quantised notation, the full Hamiltonian can be written as

H = t
∑

ij=n.n.,σ

Ýc†iσÝcjσ + U
∑

i

ÝniσÝni−σ − J
∑

i

Ýsi · Si + Jx

∑

ij

Si · Sj .
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Figure 5.12: Resistivity as a function of temperature and magnetic field for
a series of samples of doped manganese oxides with different compositions.
The ferromagnetic transition temperatures Tc are marked by the arrows.

paramagnetic (core spins randomly aligned).
Discuss how the total Free energies of these states differ, and suggest what is
the magnetic ground state when x = 0; and when tx > Jx; give rough esti-
mates of the transition temperatures of the ordered magnetic states toward
high temperature paramagnetism.

(f) Fig. 5.12 shows the resistivity as a function of temperature of several
samples of La1−xSrxMnO3 with different concentrations x, as well as the
magnetic-field-dependence of the resistivity (which gives rise to the label
“colossal” magnetoresistance).10 Discuss this data in light of the results
above.

10Urushibara et al. Physical Review B 51 14103 (1995)
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Chapter 6

Electrons and Phonons

6.1 Electron-phonon interaction

The movement of atoms from their equilibrium position generates an elec-
trostatic potential from which the electrons will scatter, and this interaction
is generically called the electron-phonon interaction. This is a large subject,
and we will cover only the very basics in this course.

We will begin with a somewhat heuristic1 derivation of the electron-
phonon interaction.

Without being specific about the details, it should be clear that the
induced potential due to a lattice displacement u(r) = uqe

iq·r will be of the
form

V (q, ω) = gquqω , (6.1)

where gq is the electron-phonon coupling constant, a function that can in
principle be calculated using the tools of Section 2. For later reference, we
should note that this potential should be regarded as screened by the other
electrons:

V = Vext/ε(qω) (6.2)

The Hamiltonian for electrons interacting with the phonons should now
be familiar:

He−ph = Ho −
∑

qω

V (q, ω)ρ̂qω . (6.3)

where Ho contains all of the terms involving interactions of the electrons
with the static lattice potential, and with each other. The phonons appear
as a time dependent potential coupling to the electronic system.

In the electron-phonon interaction, one should remember that not only
do the phonons influence the electrons, but the electrons influence the phonons,

1I will treat the lattice as a classical medium, whereas a more correct derivation requires
second quantisation of the phonons.

129
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because the last term in Eq. (6.3) will induce a force on the atoms propor-
tional to the electron density perturbation. In order to describe the phonons,
we will simply need to know the response function to an external density
perturbation, i.e a phonon susceptibility which will be of the general form 2

χph(q, ω) =
1

−ω2 + ω(q)2
, (6.4)

where ω(q) describes the dispersion of the phonon mode of wavevector q.

6.2 Effective interaction between electrons

One of the most important features of the electron-phonon interaction is
that it generates an effective interaction between electrons.

This can be visualised as follows: A quantum density fluctuation in the
electron gas will couple to a local lattice distortion by the second term in Eq.
(6.3); the magnitude and time dependence of this distortion will be governed
by the interaction strength gq, and resisted by the stiffness of the lattice χ−1

ph

(see Fig. 6.1).

This lattice distortion, once formed will last for a characteristic time
scale ≈ ω−1

phonon, but the density fluctuation in the electron gas has a much

shorter lifetime ≈ E−1
F . However, the very presence of the long-lived lattice

distortion will of its own account encourage further quantum fluctuations
of the electron density – this means that the interaction with the lattice
produces correlations of the density fluctuations in the electron gas, just as
if there were an attractive potential between electrons.

We can work this out straightforwardly from the Hamiltonian Eq. (6.3)
and the phonon response function.

First, we calculate the lattice displacement induced by a density fluctu-
ation in the electron gas:

uqω = gqχph(qω)ρ̂qω (6.5)

Then we may substitute for u in Eq. (6.3) , and get an effective Hamiltonian
which no longer depends on the lattice:

Heff = Ho −
∑

q

|gq|2χph(qω)ρ̂qωρ̂−q−ω . (6.6)

Eq. (6.6) has now produced a dynamical interaction between the elec-
trons which should be added to the Coulomb interaction (which is contained

2It is conventional to define χph with a factor of ω(q) in the numerator. However, for
our purposes this will be swept up into the coupling constant later on.
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Figure 6.1: Schematic picture of the electron-phonon interaction, and how
it induces a retarded, attractive force between electrons. The top figure
illustrates the distortion induced by a charge fluctuation, which persists
long enough to attract another electron into its wake. The bottom figure is
the diagrammatic description.

in Ho). Going back to real space, the total (electron-electron plus phonon-
mediated) interaction between two particles is just

Ve−e+e−ph−e(r1, r2) =
e2

|r1 − r2|
−

∑

q

eiq·(r1−r2)|gq|2χph(qω) . (6.7)

however, it depends on frequency. If the electrons are in well-defined quasi-
particle states, of momenta k, k′, then the relevant energy is ω = εk − εk′

– this is most clearly seen in the schematic Fig. 6.1, where the interaction
transfers energy h̄ω and momentum q from one particle to the other.

The total interaction is sketched in Fig. 6.2 as a function of frequency.
Note that the effect of the phonons is to reduce the interaction between
electrons on energy scales just below the phonon frequency, and for a finite
range of energy, to make the overall interaction attractive. This overscreen-
ing is of crucial importance in generating the attractive interaction between
electrons that leads to superconductivity.

Notice that the interaction only looks attractive because it is retarded.
The instantaneous (i.e. ω → ∞) interaction between electrons is still the
repulsive Coulomb interaction. It is very important here that ωph ¼ EF ,
because the interaction between electrons is then between a charge density
fluctuations at different times, and can be attractive for times greater then
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Veff(q; !)

Vee(q)

!!(q)

Figure 6.2: Dynamical electron-electron interaction

ω−1
ph .

6.3 Effective mass enhancement

The interaction between particles in Eq. (6.6) is of the form

veff (k,k
′) = −|gq|2χph(q, ω), q = k− k′, ω = εk − εk′ . (6.8)

Notice that the interaction couples quasiparticles with different energies,
and furthermore that it is operative only for those states within a narrow
shell of width h̄ωD (ωD is the Debye frequency) of each other.

This interaction gives rise to a renormalisation of the quasiparticle en-
ergy, and the simplest approximation is to use the Hartree-Fock approxima-
tion that we used earlier for the effect of the Coulomb interaction. This will
give an energy shift (see Eq. (2.102))

∆εk = −
∫

dk′

(2π)3
nk′veff (k,k

′) , (6.9)

which is (µ is the chemical potential, as usual)

εk − µ = εk
o − µ−

∫

dk′

(2π)3
|gk−k′ |2nk′

(εk − εk′)2 − ω(k− k′)2
, (6.10)

where εk
o is the quasiparticle dispersion in the absence of the electron-

phonon interaction.
Details of the algebra are relegated to a question, but one can estimate

the effects straightforwardly. It is important to remember that usually the
electronic bandwidth is much larger than any characteristic phonon fre-
quency ωD (say the Debye frequency for acoustic phonons). Then it should
be clear that the effects of the electron phonon interaction are small for
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states far from the chemical potential. If εk − µ ½ ωD, then since the ef-
fective potential has to be generated by occupied states – note the factor of
nk′ in Eq. (6.10) – the energy shift gets small. It is actually of order

g2N(µ)

εk − µ
(6.11)

where N(µ) is the density of states in energy3.
When the energy is within the Debye frequency of the chemical potential,

the effects can be large. For |εk − µ| ¼ ωD,

εk − µ =
εk

o − µ

1 + λ
(6.12)

where

λ =
g2N(µ)

ω2
D

(6.13)

is a dimensionless coupling constant. The velocity of the electronic disper-
sion in the vicinity of the chemical potential is reduced – as if the particles
became heavier. In fact they do, because the physics is that they are mov-
ing surrounded by a cloud of lattice polarisation – but quasiparticles that
are moving at energies much more than the phonon frequency above the
chemical potential escape from the cloud, and are not renormalised by it.

For most materials, the dimensionless electron-phonon coupling constant
λ is less than or of order unity, but nevertheless gives a substantial renor-
malisation of the energy spectrum near the Fermi surface, but which rapidly
vanishes at higher energies. The characteristic correction is shown in Fig.
6.3.

In the vicinity of the Fermi surface, the carrier velocity is reduced, and
hence there is an enhancement of the density of states

N∗(µ) = N(µ)(1 + λ) , (6.14)

or equivalently of the quasiparticle effective mass

m∗ = m(1 + λ) . (6.15)

These corrections apply only to energies within ωD of the Fermi energy.
The enhanced effective mass feeds into other thermodynamic properties,
although one cannot apply the correction indiscriminately. It turns out that
the specific heat

Cel/T =
π2

3
k2BN

∗(µ) (6.16)

is renormalised, but the Pauli susceptibility

χPauli = µ2
BN(µ) (6.17)

is not enhanced.
3We change notation from the g(ε) we have used before to avoid confusion with the

coupling constant gq
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Figure 6.3: Phonon renormalisation of the electronic dispersion

6.4 Cooper’s problem

If electrons close to the Fermi surface can experience an effective attraction
this leads to the idea that two electrons might bind to form a pair, and this
was shown by Cooper4. In fact the idea that even a very weak attraction
might produce a bound pair seems not reasonable, because we know that
(in three dimensions) a two body bound state does not form unless the
attractive potential exceeds a certain strength. It turns out that one gets
a bound state for an arbitrarily weak interaction, because of the presence
of the Fermi sea. We will go through the algebra, but the answer can be
found at the end of this section.

The general wavefunction for a bound pair can be written

ψC(r1, r2) =
∑

k1k2

g(k1,k2)e
ik1·r1eik2·r2 (6.18)

but if we restrict ourselves to states with zero centre-of-mass momentum,
we shall choose k2 = −k1, and write g(k,−k) = g(k). Furthermore, if we
are looking for a bound state, we expect to put the pair into a singlet state,
so that the spatial part of the wavefunction is nodeless – and the electrons
in the pair have a greater probability of being close to one another.

Cooper’s problem includes an attractive interaction between two elec-
trons added to the Fermi sea, but neglects any interactions of those states
with the Fermi sea itself. The only use of the Fermi sea is to prevent the

4L.Cooper, Physical Review 104, 1189 (1956)
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added electrons occupying states inside the Fermi surface. Of course this is
not strictly legal, but nevertheless it is very helpful as a toy problem.

In the momentum representation, the two particle state can be an eigen-
state of energy E if

(E − 2εk)gk =
∑

k′>kF

Vk−k′gk′ . (6.19)

This equation can be solved with the simplifying approximation of taking
Vk−k′ = −V , a negative constant for k-states within ωD of µ. Then the RHS
of Eq. (6.19) is just a constant, and

gk = V

∑′ gk′

2εk − E
(6.20)

where the prime on the summation means the restriction µ+ωD > εk′ > µ.
Summing this equation, we can then cancel the

∑

gk′ and get

1

V
=

∑′ 1

2εk − E
. (6.21)

We can replace the sum over momentum by an integral over the energy, with
N(0) the density of states at the fermi energy:

1

V
= N(0)

∫ µ+ωD

µ

dε

2ε− E
=

1

2
N(0) ln

∣

∣

∣

∣

2µ− E + 2ωD

2µ− E

∣

∣

∣

∣

. (6.22)

Finally if we take the weak coupling limit N(0)V ¼ 1, we get

E = 2µ− 2ωDe
−2/N(0)V . (6.23)

Despite having used only electrons whose kinetic energy was greater than µ,
we have a bound state just below the fermi surface. Though weak, the bind-
ing energy is finite even for an infinitesimally small attractive interaction.
And lastly, the binding energy is a non-analytic function of V as V → 0;
this result cannot be obtained to any finite order in perturbation theory.

Cooper’s result was the breakthrough that led rapidly to the BCS5 theory
of superconductivity. The fundamental aspects of the Cooper problem –
bound pairs, therefore a gap – persist in the BCS theory, but the BCS
ground state goes further in having a collective broken symmetry.

5J.Bardeen, L.N.Cooper and J.R.Schrieffer, Physical Review 108, 1175 (1957)
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Questions on chapter 6

Qu.6.1 Electron-phonon interaction
Write short notes explaining the physical effects that may be produced

by the electron-phonon interaction in metals.

Qu.6.2 Electronic mass enhancement
The integral in Eq. (6.10) can be approximated by neglecting the mo-

mentum dependence of the coupling constant g, and replacing the phonon
frequency by the characteristic scale ωD. Show that in this case the integral
becomes

g2
∫ µ

−∞
dε′N(ε′)

1

(ε′ − εk)2 − ω2
D

. (6.24)

where N(ε) is the density of states in energy6 . Since the dominant part
of the integral comes from energies near the Fermi energy, we can usually
replace N(ε) by N(µ). Making this approximation, show that

(a) For energies |εk − µ| ¼ ωD,

εk − µ =
εk

o − µ

1 + λ
(6.25)

where

λ =
g2N(µ)

ω2
D

. (6.26)

(b) For energies |εk−µ| several times ωD the correction to εk is of order

λ
ω2
D

(εk − µ)2
(εk − µ) (6.27)

Qu.6.3 * Cooper’s problem
For those who want to work out a non-trivial problem using operator

techniques, this is Cooper’s problem done that way. It is good practice
of your operator technique to go through the following manipulations of
H|ψC >, although this is pretty hard. But if you follow the rules, it all
works out in about a page of algebra.

The wavefunction of a Cooper pair of electrons added to the Fermi sea
is

|ψC >=
∑

k>kF

gkĉ
†
k↑ĉ

†
−k↓|FS > , (6.28)

where only terms in the sum for k > kF are allowed.

6We change notation from the g(ε) we have used before to avoid confusion with the
coupling constant gq
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We can now test out the pair wavefunction with the Hamiltonian

H =
∑

p

εpĉ
†
pĉp +

1

2

∑

pp′q

Vq ĉ
†
pĉ

†
p′ ĉp′−q ĉp+q . (6.29)

applied to the two electrons in question, but leaving the fermi sea inert. Vq

is here taken to be an attractive interaction.
Show that the first term in Eq. (6.29) operating on |ψC > is

Ho|ψC > =
∑

pkσ

εpgk ĉ
†
pσ ĉpσ ĉ

†
k↑ĉ

†
−k↓|FS >

=
∑

k

2εkgk ĉ
†
k↑ĉ

†
−k↓|FS > . (6.30)

(Hint: the trick in all of these operator manipulations is to move the an-
nahilation operator to the RHS, so that it can destroy the vacuum state.
Along the way, it has to anticommute with the creation operators initially
on its right and these anticommutators always generate an extra δ-function.
The two terms in the last equation come because we must have either p = k,
σ =↑, or p = −k, σ =↓– and ε−p = εp. Remember that for this toy problem
alone, we don’t apply the Hamiltonian to the Fermi sea.)

Similarly, show that the operation of the second term in Eq. (6.29) gives

Hint|ψC > =
∑

kpp′qσσ′

Vqgk ĉ
†
pσ ĉ

†
p′σ′δp+q,kδσ↑δp′−q,−kδσ′↓|FS > (6.31)

=
∑

kk′>kF

Vk−k′gk′ ĉ
†
k↑ĉ

†
−k↓|FS > . (6.32)

Getting to the final equation involves a little crafty relabelling of the mo-
menta in the sum.

This gets us to the two-particle Schrödinger equation Eq. (6.19).
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Chapter 7

Recapitulation

These are some of the things that you should have seen running through the
course. The order that these are written down is not the same as you saw
in the presentation of the material in the course - but you should be able
to follow the connections. Some topics belong in several places and thus
appear more than once. This is anyway a partial list, but you may find it
useful to organise your thoughts.

For the purposes of revision, you should consider that you may need to
explain everything, but complicated derivations and proofs (e.g. Bloch’s
theorem, Hartree-Fock equations (in first quantised form), proof of den-
sity functional theory, calculation of the general form of the linear response
function for electron gas, fluctuation-dissipation theorem, proof of Kramers-
Kronig relations, electron-phonon mass enhancement and Cooper pair) will
not be required for examination. Sketches of the derivations that explain
the principles involved may be required.

7.1 Response functions

1. Definition
u(q, ω) = χ(q, ω)F (q, ω)

2. Examples for a classical field, e.g. acoustic phonons, plasmons, op-
tical conductivity, reflectivity of metals, spin waves, Thomas-Fermi
screening.

3. The origin of the response function in a classical equation of motion.

4. What the response function contains

(a) Collective modes

(b) Absorption of energy, inelastic scattering

(c) Stability criterion at ω = 0
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(d) Relationship to correlation function and fluctuation-dissipation
theorem

(e) Causality and Kramers-Krönig relations.

5. Density response function of the electron gas

(a) Motivate the formula (for the free electron gas)

χo(q, ω) = 2
∑

k

(nk − nk+q)

(εk+q − εk)− ω − iη

Behaviour of χ(q, 0) in 1,2,3 dimensions.

(b) Use of χo in self-consistent field theories

• For the charge (dielectric response)

χρ = χo/(1 + vee(q)χo)

Hence εRPA = 1 + vee(q)χo; limits at long wavelengths and
low frequencies

ε(q, 0) = 1 + q2TF /q
2

ε(0, ω) = 1− ω2
p/ω

2

and simple derivations of these results. Friedel oscillations
2kF , particle-hole continuum excitations

• Spin response In the Hubbard model (short range interac-
tions).

χσ = χo/(1− Uχo/2)

– Relation to Hartree-Fock, static calculation of Pauli para-
magnetic susceptibility.

– Instabilities - Stoner Ferromagnetism, Spin DensityWave,
antiferromagnetism, connection to Mott insulator

– Spin waves in the ferromagnet.

• Density waves/Peierls

χρ = χo/(1 + Ueffχo)

Note that Ueff negative due to electron-phonon interaction:

Ueff = vee(q)− g2qχph(q, ω)

(c) Electron-phonon interaction

• Dynamical effective interaction

• Mass enhancement

• Cooper pair

• Peierls instability, looked at from several points of view

– Direct calculation of the energy from the bandstructure
with an added potential from the lattice displacement

– From the static or dynamic susceptibility
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7.2 Fermi liquids

1. Electronic band structure of independent particles.

• Bloch’s theorem and the existence of bands, with E(k) a contin-
uous function of k.

• Density of states in k and in energy.

• Fermi surface.

• Interactions in the mean-field Hartree- and Hartree-Fock approx-
imation.

• Sketch of density functional theory, and the meaning (or not) of
energy bands in this case.

2. Quasiparticles.

• Definition of electron spectral function A(p, ω).

• Renormalisation of the energy bands for independent particles;
mass, lifetime, spectral weight. Effects of the above on specific
heat, paramagnetic susceptibility.

• Photoemission.

7.3 Metal-Insulator transitions, local moments, and
magnetism

1. Jellium. Instability to ferromagnetic metal (in HF), and to Wigner
crystal. Stoner-Hubbard model of ferromagnetism. (same as Hartree-
Fock, but with a screened short-range Coulomb interaction, U)

2. Screening of the Coulomb interaction: Thomas-Fermi in electron gas;
on-atom screening of effective U and the Hubbard Hamiltonian.

3. Mott insulator in the Hubbard model.

• Simple argument comparing energy of localised versus delocalised
electrons at half-filling.

• Connection of the Mott insulator to the spin-density-wave insta-
bility of the electron gas.

• Applicability of the model, origin of U (screening), value of U/t
etc.

4. Local moment magnetism

• Origin of local magnetic moments - direct exchange and Hund’s
rules.
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• Interactions between moments - direct exchange, superexchange,
itinerant exchange.

5. Collective modes in ferromagnets - spin waves.

6. Elastic and inelastic neutron scattering as probe of magnetic order and
fluctuations.

7.4 Materials

1. Basic principles of the bandstructure of simple metals, d-band metals,
and semiconductors.

• Electron counting, band gaps, etc.

• Bonding and antibonding states in simple models; covalent and
ionic bonds.

2. Interaction parameters and screening for transition metals and transi-
tion metal oxides



Appendix A

Mathematical appendices

These are a brief recapitulation of the principles involved, together with some
definitions and generalisation to three dimensions. If you are uncomfortable
with the details, look back at your 1B lecture notes (either in Maths for Nat
Sci, or the ?? course)

Other useful sources are the examples sheets of the 1B mathematical
physics examples classes (see especially II & III for Fourier series and trans-
forms, VII for variational methods, and IX for applications of quantum
mechanics).

A.1 Fourier series and Fourier transforms

A.1.1 Fourier’s Theorem

Take a function f(x) that is periodic with period a:

f(x+ a) = f(x) .

This can be expanded in terms of any complete set of orthogonal functions
with the same period. One choice is the set of complex exponentials, in
terms of which Fourier’s theorem (in its complex form) states that:

f(x) =
∞
∑

−∞
bne

i2πnx/a (A.1)

bn =
1

a

∫ a/2

−a/2
dxf(x) e−i2πnx/a . (A.2)

In crystals, the (one-dimensional) set of points {Gn = 2πn/a} form a
one-dimensional set that makes up the reciprocal lattice. Also we often
indulge in the (bad) habit of using the same label for the function as its
transform, distinguishing the function and its transform by its argument.
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Consequently, a one-dimensional periodic potential V (x) = V (x+a) will
be written as

V (x) =
∞
∑

G=−∞
V (G)eiGx (A.3)

V (G) =
1

a

∫ a/2

−a/2
dx V (x) e−iGx (A.4)

Generalising this to a three-dimensionally periodic structure with prim-
itive lattice vectors ai gives

V (r) =
∑

G

V (G)eiG·r (A.5)

V (G) =
1

Vcell

∫

cell volume
dr V (r) e−iG·r (A.6)

where the Gi lie on the three-dimensional reciprocal lattice formed from the
primitive vectors

b1 = 2π
a2 ∧ a3

a1 · a2 ∧ a3
and cyclic permutations . (A.7)

This should be obvious if the lattice vectors are orthogonal; it is true in
general, and it is easiest to see why by considering the Fourier transform
below.

A.1.2 Fourier transforms

A Fourier series arises when you consider a periodic function; it can be made
up only of sine/cosine waves of periods that are divisors of the basic period
(or wavevectors that are multiples). Bit if you have a function that is not
periodic, you need to include waves of all possible wavelengths to make up
the function. Eq. (A.1) and Eq. (A.2) can also be used to develop a Fourier
transform of a function extending through the whole body of the solid. In
one-dimension, for a system of length L, we periodically replicate that large
system by applying periodic boundary conditions, viz

f(x+ L) = f(x) (A.8)

(remember that L will be a very long length compared to the lattice constant
a).

Rewrite Eq. (A.1) and Eq. (A.2) by defining

f̃(kn) = Lbn where kn = 2πn/L , (A.9)
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so that

f(x) =
1

2π

∑

n

2π

L
f̃(kn)e

iknx (A.10)

f̃(kn) =

∫ L/2

−L/2
dxf(x)e−iknx . (A.11)

Assuming that f(kn) is a smooth function of its argument, then in Eq.
(A.10) the sum can be replaced by an integral, by noting that

∑

n

2π

L
→

∑

n

δk →
∫

dk . (A.12)

If we let L → ∞ the fourier series then turns into the fourier transform

f(x) =
1

2π

∫ ∞

−∞
dkf̃(k)eikx (A.13)

f̃(k) =

∫ ∞

−∞
dxf(x)e−ikx . (A.14)

The extension to three dimensions is then obvious – replace the scalars
by vectors.

To return to the reciprocal lattice; Suppose we decided to take the
Fourier transform of a function periodic on a lattice, i.e. f(r +R) = f(R)
where R is any vector on the Bravais lattice with primitive vectors ai. Eq.
(A.14) would then become

f̃(k) =

∫

crystal
drf(r)e−ik·r

=
∑

R

e−ik·R
∫

unit cell
dr′e−ik·r′ . (A.15)

The sum in the last equation is over all lattice sites R; only for special values
of k where the phases in the exponential will be multiples of 2π will these
sum to a value that scales proportionately to N , the number of unit cells in
the system. The special values are just that k = G, with G a vector in the
reciprocal lattice, defined above; the fourier transform reverts to a fourier
series.

A note on notation. We need to be careful about counting states, on
occasion, so although the distance between k-points is very small, it is worth
remembering that there the density of k-points scales as 1/volume. One
shuffles between sums and integrals as

∑

k

=
(2π)3

V

∫

d3k . (A.16)

Note also that the conventional normalisations are such that the coefficients
of a fourier series have the same dimension as the function; the fourier
transform has the further dimensional factor of 1/Volume.
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A.1.3 Delta functions

With the discrete fourier series, and the continuous fourier transform come
two types of δ-functions: Kronecker, and Dirac. In both cases, they arise
from orthogonality of the basis states.

The normalised Fourier mode basis set on a line of length a is

φn(x) =

√

1

a
ei2πnx/a , (A.17)

and satisfies

〈φm|φn〉 =
∫ a/2

−a/2
dxφ∗

m(x)φn(x) = δnm (A.18)

This would be true for any orthonormal basis set. Invariably the δ func-
tion will appear inside a summation – for example this is how one gets the
coefficients of the Fourier series, e.g.

Given the expansion

f(x) =
∑

n

bnφn(x) , (A.19)

we calculate the coefficients bn by multiplying both sides by φ∗
m(x) and

integrating over x.
∫

dxφ∗
m(x)f(x) =

∫

dxφ∗
m(x)

∑

n

bnφn(x)

=
∑

n

bnδnm

= bm (A.20)

which, for the case of a plane wave basis, is Eq. (A.2).
The generalisation of this to the fourier transform is that

〈

k|k′
〉

=

∫

dxe−ikxe−ik′x = 2πδ(k − k′) . (A.21)

Similarly, the Dirac δ function will always appear inside an integral, and its
properties are

∫

dxg(x)δ(x− xo) = g(xo) (A.22)

where g(x) is some sufficiently smooth function.

A.1.4 Wave equations, dispersion relations, and response
functions

The Fourier transform of df/dx is ikf̃(k), and in general
∫

dx
dnf(x)

dxn
e−ikx = (ik)nf̃(k) (A.23)
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This important result means that linear partial differential equations can be
turned into algebraic equations in fourier space.

Consider the one-dimensional diffusion equation

−D
∂2f(x, t)

∂x2
+

∂f(x, t)

∂t
= 0 . (A.24)

Usually, one is taught to solve these things by substituting in a wave-like
form ei(kx+ωt), and finding the condition that allows this to be a solution;
what this actually amounts to is just taking the Fourier transform of the
whole equation in both space and time variables, i.e.

f(k, ω) =

∫

dx

∫

dte−ikxe−iωtf(x, t) (A.25)

Applied to the diffusion equation above, this gives

(Dk2 + iω)f(k, ω) = 0 , (A.26)

so that there is no solution (f vanishes) unless there is a specific relationship
between ω and k, called a dispersion relation.

This means that the general solution of the equation must be of the
form1

f(x, t) =
1

2π

∫

dkf̃(k)e(ikx−Dk2t) (A.27)

This could of course have been written

f(x, t) =
1

4π2

∫

dk

∫

dωf(k, ω)eikxeiωtδ(ω − iDk2) . (A.28)

Often the problems are presented as an initial value problem, where
you know the solution (and a time derivative, if necessary) at one time (say
t = 0), and are asked to propagate it forward in time. The general method
is then as follows.

Take the initial values f(x, t=0) (and derivatives if necessary) and use
the inverse transform to Eq. (A.27) (or the equivalent) to determine f̃(k).
Hence

f(k) =

∫

dyf(y, 0)eiky , (A.29)

and after substitution in Eq. (A.27) we get

f(x, t) =
1

2π

∫

dk

∫

dy eik(x−y)e−Dk2tf(y, 0) , (A.30)

which can be written

f(x, t) =

∫

dy G(x− y, t)f(y, 0) , (A.31)

1In general there may be more that one solution of the dispersion relation, so there
will be more modes
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with the Green’s function or propagator defined by

G(x, t) =
1

2π

∫

dk eikxe−Dk2t (A.32)

=
1

2(πDt)1/2
e−

x2

4Dt (A.33)

Another common type of problem is not free propagation, but a driven
system, epitomised by the diffusion equation with a source term, viz.

D
∂2f(x, t)

∂x2
− ∂f(x, t)

∂t
= c(x, t) . (A.34)

The solution to this is again straightforward using transforms:

f(k, ω) =
c(k, ω)

(Dk2 + iω)
(A.35)

The problem has been essentially solved by this step; of course if one need
to have the solution as a function of space and time, there are some messy
fourier transforms to do.

Here they are: in real space

f(x, t) =
1

4π2

∫

dk

∫

dω

∫

dx′
∫

dt′
eiω(t−t′)eik(x−x′)

Dk2 + iω
c(x′, t′) . (A.36)

After the ω integral is done by contour integration this can be further rewrit-
ten in terms of the Green’s function Eq. (A.32)

f(x, t) =

∫

dx′ dt′ G(x− x′, t− t′)c(x′, t′) . (A.37)

Of course

G(x, t) =

∫

dk

∫

dω G(k, ω)eikxeiωt , (A.38)

where for this problem

G(k, ω) =
1

Dk2 + iω
. (A.39)

To recap:

• The Green’s function, gives both the propagation of waves forward
(or backward, for that matter - be careful!) in time and space - for
this reason it is often called the propagator.

• The Green’s function is also the response function to an external
source.

• For a linear PDE with constant coefficients, it is trivial to write down
the response function in fourier (k, ω) space, and more complicated in
real space.

• The response function has a pole at the (possibly complex) frequency
that satisfies the dispersion relation.
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A.2 Variational methods

The calculus of variations is used to find the stationary value of a quan-
tity with regard to small changes (variations) of a function upon which it
depends. The variational method has great importance in physics, because
most of the differential equations of physics can be framed as variational
principles.

A.2.1 Functionals

A quick reminder: a functional is a quantity that depends on the value of
a whole function, say y(x). The following are functionals of y

ỹ(k) =

∫ ∞

−∞
y(x)eikx dx , max(y(x))

I[y(x)] =

∫ b

a
f(y(x), y′(x), x) dx (A.40)

(here F is a known function of y, y′ = dy/dx, and x) and the following are
not (i.e. just functions)

sin(y(x)) ,

∫ b

a
exp(iky(x)) dk

A function such as f depends locally on the values of its arguments; a
functional such as I depends globally on the whole shape of the function.
We often use square brackets to denote the functional dependence.

A.2.2 Variational method

Requiring I of Eq. (A.40) to be stationary under small variations of y(x)

δI

δy
= 0 (A.41)

generates Euler’s equation:

∂f

∂y

∣

∣

∣

∣

y′,x

− d

dx

∂f

∂y′

∣

∣

∣

∣

y,x

= 0 . (A.42)

Note the difference between the partial derivatives (where the other variables
are held constant) and the total derivative

d

dx
=

∂

∂x
+

dy

dx

∂

∂y
+

dy′

dx

∂

∂y′
. (A.43)

Proof.
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Varying the choice of function y(x) causes I in Eq. (A.40) to take different values.
Under an arbitrary small change y(x) → y(x) + η(x), where η(a) = η(b) = 0, I[y(x)] →
I + δI where

δI[y(x), η(x)] =

∫ b

a

[

∂f

∂y
η(x) +

∂f

∂y′ η
′(x)

]

=

∫ b

a

[

∂f

∂y
− d

dx

∂f

∂y′

]

η(x) dx . (A.44)

(The second term arises from an integration by parts.) The condition that the path y(x)
must obey, for I to be stationary, is then expressed as

δI[y(x), η(x)] = 0 ∀ η(x) (A.45)

(often written as δI = 0) which, since η(x) is arbitrary, implies Euler’s Equation Eq.
(A.42).

A.2.3 Variation under constraints

We sometimes wish to find the function y that makes stationary the func-
tional I[y(x)] under a constraint

J [y(x)] =

∫ b

a
g(y, y′, x) = Jo dx (A.46)

with Jo a constant. This is equivalent to an unconstrained variation of the
functional

K = I − λJ , (A.47)

where λ is a parameter (called an undetermined multiplier or a Lagrange
multiplier). λ is to be fixed by considering boundary conditions, and the
value of Jo.

A.2.4 Complex functions

We shall also deal with situations where the function y is a complex function
φ(x) = u(x)+ iv(x) (u, v real). In this case the variational minimisation has
to be done with regard to both the real and imaginary parts of the function
φ independently, viz.

δI[u, v]

δu
=

δI[u, v]

δv
= 0 , (A.48)

However, we could equally well take variations with regard to the two inde-
pendent quantities φ = u+ iv and φ∗ = u− iv, obtaining

δI[φ, φ∗]

δφ
= 0 (A.49)

δI[φ, φ∗]

δφ∗ = 0 (A.50)

If I is a real quantity, the two Euler’s equations arising from Eq. (A.49) and
Eq. (A.50) will be complex conjugates of each other.
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A.2.5 Quantum mechanics

In quantum mechanics, we consider the functional that is the expectation
value of the energy

E[φ, φ∗] = 〈φ| Ĥ |φ〉 =
∫

dxφ∗Ĥφ , (A.51)

where the wavefunctions are assumed normalised

J = 〈φ| |φ〉 =
∫

dxφ∗φ = 1 . (A.52)

and Ĥ is the Hamiltonian operator.
By making stationary the quantity E−λJ using the complex variational

Eq. (A.50) we obtain the Schrödinger equation

Ĥφ(x) = λφ(x) , (A.53)

where now the Lagrange multiplier appears as an eigenvalue. The stationary
values of E are then given by the eigenvalue(s) λ.

A.3 Elementary theory of analytic functions

For some students this may be the least familiar of the explicitly mathe-
matical background we need for the course. Complex analysis is a large
and well-developed subject, but we shall need only one elementary thing in
this course - the calculus of residues. For completeness, I have included the
background necessary to get there.

The results we need are to do with contour integrals in the complex
z = x+ iy plane of analytic functions (analytic meaning differentiable). The
importance for this course arises because the physical necessity of causality
forces analytic behaviour of response functions in the complex frequency
plane. The three or so things needed for the course are the residue theorem,
Cauchy’s integral representation, and the treatment of simple poles on the
real axis. They are briefly summarised below, and if you are happy with the
summary, you need read no further.

The residue theorem

An integral around a closed contour2 C of a function f(z) that contains only
isolated singularities is the sum of the residues of that function at the poles,
multiplied by 2πi.

∫

C
dz f(z) = 2πi

∑

i

Resf(zi) (A.54)

2The convention is that the direction is counterclockwise, unless otherwise stated.
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Figure A.1: A contour integral along the contour C of a function with only
isolated singularities can be deformed to surround just the singularities –
here at C1 and C2

Here the residue of the function is the coefficient d−1 of 1/(z − zi) in the
(Laurent) expansion of the function about the pole

f(z) = . . .+ d2(z − zi)
2 + d1(z − zi) + d0 +

d−1

z − zi
+

d−2

(z − zi)2
+ . . . (A.55)

Contours can be moved around at will, as long as they stay within regions
where the function is analytic and cross no singularities.

Cauchy’s integral representation

A function that is analytic can be expanded as a power series (Taylor series)
about a point within its radius of convergence. However, a generalisation
of the residue theorem allows one to reconstruct the value of an analytic
function at any point inside a closed curve, in terms of the value at the
boundary.

If f(z) is analytic within a closed contour C then

1

2πi

∫

C

f(z)

z − z0
dz = f(z0) if z0 is interior to C

= 0 if z0 is exterior to C (A.56)

These results are extremely powerful, and reflect the fact that to have
a function be differentiable in the complex plane produces very nonlocal
constraints on its behaviour.
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Figure A.2: Contour to evaluate the integral in Eq. (A.57)

Integrals of simple poles along the real axis

We often find ourselves needing to do an integral of the form

g(xo) =

∫ ∞

−∞
dx

f(x)

x− x0
(A.57)

where x, xo are on the real axis. This needs some care, because the integral
apparently runs straight through the pole. The physics will in fact always
determine which way around the pole we go, so that the contour either go
above, or below, the pole in the complex plane. If we take it to be as shown
in Fig. A.2, we split the integral into three pieces: along the real axis up to
a small distance ε either side of the pole, and a small semicircle round the
pole.

The parts along the real line give rise to the principal value of the
integral

lim
ε→0

∫ x0−ε

−∞
+

∫ ∞

x0+ε
dx

f(x)

x− x0
(A.58)

If f(x) is smooth near x0, this will converge to a finite value because the
positive and negative divergences of 1/(x− x0) cancel. The remaining part
is the integral round the semicircle, that we can get by changing variables
to z = ε eiθ:

lim
ε→0

∫ 0

π
f(x0)

d(ε eiθ)

ε eiθ
= −iπf(x0) (A.59)

Notice how an imaginary part has appeared in the result, automatically
due to our treatment of the pole. If we had integrated around the pole in
the opposite direction, the sign of Eq. (A.59) would have been opposite.

We often express this result as shorthand

1

x− xo ± iη
= Pr

1

x− x0
∓ iπδ(x− x0) (A.60)

where η is an infinitesimal positive number (to remind us to keep the pole
below, or above, the contour line in the complex plane as necessary), Pr
stands for principal value (as in Eq. (A.58)) and δ(x) is the conventional
Dirac δ-function (all of these symbols make sense only within integrals).

An outline of the theory is given in the next sections.
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A.3.1 Functions of a complex variable

We shall be working in the two dimensional complex (x, y) plane, and define
the complex variable

z = x+ iy .

We can define a function of a complex variable f(z) in terms of its real and
imaginary parts

f(z) = u(x, y) + iv(x, y) . (A.61)

In order to make use of the function f(z) we need to be able to differen-
tiate it with respect to z, which is a two dimensional coordinate; i.e. when
we define

df

dz
= lim∆z→0

f(z +∆z)− f(z)

∆z
(A.62)

we must get the same answer whatever direction ∆z vanishes. This produces
the Cauchy-Riemann conditions

∂u(x, y)

∂x
=

∂v(x, y)

∂y
(A.63)

∂u(x, y)

∂y
= −∂v(x, y)

∂x
(A.64)

Proof. From Eq. (A.62) we have

df

dz
= lim

∆x→0∆y→0

u(x+∆x, y +∆y) + iv(x+∆x, y +∆y)− u(x, y)− iv(x, y)

∆x+ i∆y
. (A.65)

We now impose the condition that Eq. (A.65) yield the same answer independent of the
order in which the limits ∆x,∆y → 0 are taken. If we first set ∆y = 0 and take the limit
∆x → 0, we have

df

dz
=

∂u

∂x
+ i

∂v

∂y
, (A.66)

but taking the limits in the opposite order, we have

df

dz
=

∂v

∂x
− i

∂u

∂y
. (A.67)

Equating the real and imaginary parts of the two equations produces the Cauchy-Riemann
conditions Eq. (A.63).

Harmonic functions. As an aside, note that if Eq. (A.63) are differentiated first
with respect to x, and then with respect to y, we get

∂2u

∂x2
+

∂2u

∂y2
= 0 (A.68)

∂2v

∂x2
+

∂2v

∂y2
= 0 (A.69)

so both the real and imaginary parts of a differentiable function satisfy Laplace’s equation.

This is a useful trick to solve potential problems in two-dimensions.
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A.3.2 Analytic functions

A function f(z) is said to be analytic at a given point if the function is
single-valued and differentiable.

The region in the complex plane over which a function is analytic is
called the domain of analyticity; a function that is everywhere analytic is
called an entire function.

If a function is not analytic at some point, the point is called a singular
point. For example f(z) = 1/z is analytic everywhere except at z = 0 which
is therefore an isolated singular point.

Some examples of analytic functions

(Most of these can be checked by inspection).

• A constant is an entire function.

• An integer power of z, e.g. zn is an entire function.

• By obvious extenmsion, a polynomial of finite order pn(z) =
∑n

k=0 akz
k

is also an entire function.

• A power series ( a polynomial of infinite order)

f(z) =
∞
∑

k=0

ak(z − z0)
k

is analytic within its radius of convergence; (i.e. the series converges
for |z − z0| < R).

• The exponential function ez is an entire function — the radius of
convergence of the power series

ez =
∞
∑

k=0

zk

k!

is infinite.

• The logarithm ln(z) is by definition the function that satisfies

exp(ln(z)) = z

If we write z = reiθ, we can see that in general the logarithm is multiply
valued

ln(z) = ln(r) + i(θ + 2πn) n = 0,±1,±2, ... (A.70)
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If we choose n = 0 so as to define a single valued function (sometimes
called the principal logarithm, and restrict the range of θ, viz.

ln(z) = ln(r) + iθ − π < θ < π (A.71)

the logarithm is analytic everywhere except on the negative real axis
where it has a discontinuity.

A.3.3 Cauchy’s integral theorem

This is one of the most famous theorems of mathematics, which plays a
central role in the theory of analytic functions.

If C is a closed curve in the complex plane, and a function f(z) is analytic
on C and everywhere within C, then the contour integral

∫

C
dz f(z) = 0 (A.72)

The importance of this theorem is that one may continuously deform a
contour in an integral without changing the value of the result, provided one
keeps the contour within the domain of analyticity of f(z).

Sketch of proof. One way to prove the theorem is to divide up the closed area into
infinitesimal squares, and replace the contour integral by a summation of contour integrals
around each square (see Fig. A.3); the integrals along common boundaries of two squares
cancel.

Figure A.3: Tiling of the contour for Cauchy’s theorem

First, note that along a contour connecting two points za and zb

∫ b

a

zn dz =

[

zn+1

n+ 1

]b

a

(A.73)

and in particular for a closed loop za = zb,
∫ a

a

zn dz = 0 (A.74)
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Now consider each square separately. Because f(z) is analytic, one can expand the
function in a power series about the centre zo of the square, viz

f(z) = f(z0) + (z − z0)
df

dz

∣

∣

∣

∣

z0

+ ... (A.75)

where the higher order terms will become irrelevant as the box size shrinks to zero.3

Using Eq. (A.74), the contour integral of Eq. (A.75) around each infinitesimal square can

be shown to vanish, and Eq. (A.72) follows.

A.3.4 Singular points and the residue theorem

The function f(z) = 1/z is an example of a function with an isolated singular
point at the origin. At an isolated singular point of a general function, one
should expand the function not as a Taylor series, but as a Laurent expansion
in powers of 1/(z − z0), viz.

f(z) =
∞
∑

k=0

ak(z − z0)
k +

b1
z − z0

+
b2

(z − z0)2
+ . . . (A.76)

If b1 is non-zero, but b2 = b3 = . . . = 0, the function is said to have a simple
pole at z0. The coefficient b1 is also called the residue of the function f(z)
at the pole: b1 = Resf(z0).

Residue theorem. If a contour C contains only isolated poles at points
zi of a function f(z)

∫

C
f(z) dz = 2πi

∑

i

Resf(zi) . (A.77)

Sketch of proof. We have already shown that a contour can be arbitrarily deformed
through an analytic region of a function, so we know that the answer to Eq. (A.77) must
just come from the singular points (see Fig. A.1)

Let us consider one singularity, conveniently placed at the origin, and we assume that

f(z) =
∞
∑

n=−∞

dnz
n

We deform the contour around it to C′, a small circle of radius ε; then along the contour
z = ε eiθ

∫

C′
f(z)dz =

∞
∑

n=−∞

dn

∫ 2π

0

εneinθ d(εeiθ)

=
∞
∑

n=−∞

dnε
n+1

∫ 2π

0

ei(n+1)θ dθ (A.78)

3This is where the work goes in for the real proof
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Notice that for all the terms in the sum except n = −1, the integral over θ is of a periodic
function, and yields zero. The only term that survives is n = −1, hence

∫

C′
f(z)dz = 2πid−1 (A.79)

which is conveniently independent of ε. The residue theorem Eq. (A.77) follows.

Cauchy’s integral representation is a straightforward consequence
of the residue theorem.

If f(z) is analytic within a closed contour C then

1

2πi

∫

C

f(z)

z − z0
dz = f(z0) if z0 is interior to C

= 0 if z0 is exterior to C (A.80)



Appendix B

Second quantisation

This appendix introduces some formalism for the treatment of many particle
physics. It is not for examination, and except for the discussion of Heisen-
berg and Schrödinger representations (covered already in QM courses) it is
not needed in the course.

The point of this formalism is to make descriptions of the physics, and
calculations, simpler. We shall not be performing any lengthy many-body
calculations, but the concepts behind the many-body formulation – partic-
ularly that of “second quantisation” – are important. The language and
notation of second quantisation is all-pervasive in the research literature;
the aim of this section is to help you gain some familiarity and demystify
this topic.

B.1 Heisenberg and Schrödinger representations

The most familiar representation of quantum mechanics is in the wave equa-
tion, where the wave function |ψ(t) > evolves in time under the presecription
given by the Schrödinger equation1

i
∂|ΨS(t) >

∂t
= H|Ψs(t) > . (B.1)

This has a formal solution

|ΨS(t) >= e−iH(t−to)|ΨS(to) > . (B.2)

A physical observable is represented by a time-independent operator ÂS , and
“measurements” of this observable involve calculation of matrix elements:

< ÂS >=< ΨS |ÂS |ΨS > . (B.3)

1For convenience, I will set h̄ = 1, which means that you should think of ω and 1/t as
energies

159
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This is not the most convenient form to describe many-particle systems
because keeping track of time-dependent wavefunctions in many variables
is not straightforward. There is an alternative formulation of quantum
mechanics due to Heisenberg, where the state vectors ΨH > are time-
independent and all the time-dependence is ascribed to the operators ÂH(t).

Formally, this is achieved with the unitary transformation

|ΨH > = eiH(t−to)|ΨS(t) >= |ΨS(to) > , (B.4)

ÂH(t) = eiH(t−to)ÂSe
−iH(t−to) , (B.5)

which evidently leaves all matrix elements – i.e. physical observables –
invariant. Notice that the Hamiltonian itself is unchanged by the trans-
formation. Instead of the Schrodinger equation, we can now computer the
time-dependence of the operators by differentiating Eq. (B.5) to yield

i
∂Â

∂t
= ÂH −HÂ = [Â,H] . (B.6)

The square bracket denotes the commutator, and Eq. (B.6) is the Heisenberg
equation of motion.

B.2 Second quantisation

The next trick we need is to find a concise way of writing down a many-
particle wavefunction. The complexity arises because we should use basis
states which are properly (anti)-symmetrised for bosons (fermions). It was
already clear from our attempts to use Slater determinants in the Hartree-
Fock theory that working out a theory based on combinations of single par-
ticle wavefunctions was quite cumbersome. The process of second quan-
tisation, based on the occupation number representation simplifies the
description. Here is a brief description of the scheme2.

We are already familiar with the idea of the Fermi sea, for noninteracting
particles, where we occupied the momentum states (with spin) for momenta
k < kF . We never wrote down the Schrodinger wavefunction for this, instead
we were actually implicitly using the occupation number representation,
where a state is described by a vector

|n1, n2, ...., nN > (B.7)

which means that it contains n1 particles in state 1, n2 in state 2, and so
on up to the state nN . In our noninteracting Fermi sea, the state labels
1, 2, ....N are the momenta (and spin) ki, σ i = (1, N), and we will have
nki = 1 if k < kF , and zero otherwise. (For fermions the occupancy is either
0 or 1, but for bosons it is unrestricted).

2For a full derivation, see either the appendix to Marder, or to Doniach and Sondheimer
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What we would like to have is some algebra that will start with a given
state, and add and subtract particles in a fashion that correctly preserves
the symmetry or antisymmetry of the wavefunction.

B.2.1 Operators for fermions

Let us define creation and annahilation operators ĉ†i , ĉi that create or
annahilate particles in the state i – which means just to change the number
occupation of that state by 1. They obey the following rules:

ĉi|n1n2...ni... > =

{

0 if ni = 0
|n1n2...0... > if ni = 1

(B.8)

ĉ†i |n1n2...ni... > =

{

0 if ni = 1
|n1n2...0... > if ni = 0

(B.9)

Notice that the rules clearly prevent double occupancy of a state, because
the creation operator applied to a singly-occupied state gives the null vector
0; similarly since the state can never be more than singly occupied, applying
the annahilation operator twice will always give 0. We must then have

ĉiĉi = ĉ†i ĉ
†
i = 0 (B.10)

One can easily check that the operation ĉiĉ
†
i + ĉ†i ĉi on an arbitrary number

state recovers the state itself: hence we have

ĉiĉ
†
i + ĉ†i ĉi = {ĉi, ĉ†i} = 1 (B.11)

where the curly brackets denote the anti-commutator. The operator ĉ†i ĉi =
n̂i is the number operator, and has eigenvalues 0 or 1.

Lastly we need to consider what happens when we create and/or destroy
particles in different states, i, j say. The operators carry a notion of ordering:
ĉ†i ĉ

†
j applied to the vacuum means to create the two particle state whose

Schrödinger representation is

∣

∣

∣

∣

φi(r1) φi(r2)
φj(r1) φj(r2)

∣

∣

∣

∣

(B.12)

The two operators applied in the opposite order must then create a state iso-
morphic to the determinant with the two rows interchanged, which changes
the sign and expresses the principle of antisymmetry. The fermionic book-
keeping then insists upon the rule {ĉ†i , ĉ

†
j} = 0. The full set of anticommu-

tation rules are

{ĉ†i , ĉ
†
j} = {ĉi, ĉj} = 0 , {ĉi, ĉ†j} = δij . (B.13)
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kp

U(k-p) k+q k

k’-q k’

V(q)

Figure B.1: Representation of potential scattering and particle-particle scat-
tering by diagrams. Notice that momentum is conserved at each vertex

B.2.2 Hamiltonians

We now need to rewrite the Hamiltonian – and operators in general – in
second quantised notation. The prescription is as follows. For a “single-
particle” term - i.e. one that operates on each particle in an identical fashion
we replace

Ô =
∑

j

Ô(rj) , (B.14)

by

Ô =
∑

kl

< k|Ô|l > ĉ†k ĉl . (B.15)

For example, a single particle Hamiltonian Eq. (2.12) represented in an
arbitrary basis φk(r) becomes

Ĥo =
∑

kl

< k|Ho|l > ĉ†k ĉl (B.16)

where

< k|Ho|l >=

∫

drφ∗
k(r)

[

− h̄2∇2

2m
+ U(r)

]

φl(r) . (B.17)

It will be often the case that we will imagine we have diagonalised the single
particle Ho, and determined its eigenvalues εp and eigenstates φp; in that
case, the second quantised description of Ho is also diagonal

Ĥo =
∑

p

εpĉ
†
pĉp =

∑

p

εpn̂p (B.18)

The notion of a single-particle operator as destroying a particle in one
state, and creating it in another is just that of scattering. For example if
we represented a potential U(r) using a basis of plane waves eik·r, then the
matrix element < k|U |p >= U(p− k) is just the Fourier component of the
potential, that which scatters the wave from momentum p to k. Such an
operation is naturally represented graphically as shown in Fig. B.1.
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For an operator the acts on sums of pairs of particles (usually the
Coulomb interaction), the representation is a generalisation of the single
particle case. We replace

Ô =
∑

i6=j

Ôij (B.19)

by

Ô =
∑

klmn

ĉ†k ĉ
†
l ĉmĉn < k(1)l(2)|Ô12|m(2)n(1) > , (B.20)

where we have used the numerals 1, 2 to refer to the particle index - note
carefully the order of the operators in Eq. (B.20). For the common case of
the Coulomb interaction, this matrix element is

< k(1)l(2)|V̂12|m(2)n(1) > =

∫ ∫

dr1dr2φ
∗
k(r1)φ

∗
l (r2)

e2

|r1 − r2|
φm(r2)φn(r1),

(B.21)

Using a basis of plane waves, the integrals in Eq. (B.21) can be evaluated,
and the Coulomb interaction term is written

1

2

∑

kk′q

V (q)ĉ†kσ ĉ
†
k′σ′ ĉk′−qσ′ ĉk+qσ , (B.22)

where ĉ†kσ is the creation operator for a state of momentum k and spin σ.
Why is there only a summation over three momenta in Eq. (B.22), whereas
there are four states in Eq. (B.21)?

This interaction is often drawn as shown in Fig. B.1

B.3 Hartree-Fock revisited

I said that the reason for introducing the second quantised formulation is
that it makes calculations more straightforward. Earlier we studied the
Hartree-Fock theory using the cumbersome first quantised notation. Now
we will look at it again using our new technology.

The Hamiltonian for the electron gas consists of the kinetic energy term
plus the Coulomb interaction term of Eq. (B.22):

H =
∑

pσ

εpĉ
†
pσ ĉpσ +

1

2

∑

kk′qσσ′

V (q)ĉ†kσ ĉ
†
k′σ′ ĉk′−qσ′ ĉk+qσ . (B.23)

Hartree-Fock is an example of a mean-field theory; we will replace products
of pairs of operators by their expectation value in the fermi sea. The only
expectation values that exist are

< ĉ†kσ ĉk′σ′ >= nkδ(k− k′)δσσ′ , (B.24)
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where nk is the occupancy of the state of momentum k (i.e. a number which
is either 0 (k > kF ) or 1 (k < kF ))

3. Averages such as < ĉ† >, < ĉ†ĉ† > do
not conserve particle number and are zero for normal systems.

We will take the four fermion operators in the interaction term of Eq.
(B.23) and average them in four possible ways.

ĉ†kσ ĉ
†
k′σ′ ĉk′−qσ′ ĉk+qσ ≈ ĉ†kσ ĉk+qσ < ĉ†k′σ′ ĉk′−qσ′ >

− ĉ†kσ ĉk′−qσ′ < ĉ†k′σ′ ĉk+qσ > (B.25)

− ĉ†k′σ′ ĉk+qσ < ĉ†kσ ĉk′−qσ′ >

+ ĉ†k′σ′ ĉk′−qσ′ < ĉ†kσ ĉk+qσ >

In order to do the averages, we have to anticommute the operators so that
they lie next to each other, which produces the sign changes in Eq. (B.25).
The four terms above come from pairing: (a) the second and third operators;
(b)second and fourth; (c) first and third; (d) first and fourth.

Now we use Eq. (B.24) to evaluate the averages, and the four terms in
order become

+ ĉ†kσ ĉk+qσnk′δ(q)

− ĉ†kσ ĉk′−qσ′nk′δ(k′ − k− q)δσσ′ (B.26)

− ĉ†k′σ′ ĉk+qσnkδ(k− k′ + q)δσσ′

+ ĉ†k′σ′ ĉk′−qσ′nkδ(q)

At this point, notice that if we make the permutation of variables k → k′,
k′ → k, together with q → −q then the first term equals the fourth, and
the second term equals the third. Because all these variables are summed
over in Eq. (B.23), and V (q) = V (−q) there are only two distinct terms.
Putting everything back into the interaction term in the Hamiltonian, the
two terms are

V (0)
∑

kσ

ĉ†kσ ĉkσ
∑

k′σ′

nk′ = NV (0)
∑

kσ

ĉ†kσ ĉkσ , (B.27)

and
∑

q

V (q)
∑

kσ

nk−qĉ
†
kσ ĉkσ =

∑

kσ

εHF (k)ĉ
†
kσ ĉkσ (B.28)

where

εHF (k) =
∑

q

V (q)nk−q =
∑

|k′|<kF

V (k− k′) . (B.29)

3At finite temperatures, one will have by obvious extension that nk = f(εk) with f the
fermi function.
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k k
q=0

k’

k

k

q k-q

Figure B.2: Diagrammatic representation of the direct and exchange energies
corresponding to Eq. (B.27) and Eq. (B.28).

Eq. (B.27) gives the Hartree term, formally infinite – but of course can-
celled exactly by the uniform positive background charge that we must in-
troduce to keep the system neutral. Eq. (B.28) is the exchange self-energy
that we calculated earlier in Sec. 2.2.

The algebra is still a little messy, but one of the nice advantages of this
scheme is that it can all be represented graphically in Feynman diagrams.
After a while, one learns to think in terms of these diagrams, and their ubiq-
uity in research is one of the reasons for exposing this topic in an advanced
course.

Notice that the principal effect of the averaging done in Eq. (B.24) is
to fix the momenta and spin degrees of freedom. The scattering diagram
of Fig. B.1 is easily visualised as a collision between two incident particles
of momenta k + q and k′ − q, transferring momentum q between them
so that the outgoing particles have momenta k and k′. However, because
this is a many-body system there is no sense in which the incoming and
outgoing particles are the same. The creation and annahilation operators do
the book-keeping, by destroying particles in the initial states, and creating
particles in the final states. When we perform a mean-field theory, we
wish to represent the two-particle scattering by an effective one-particle
potential; that means we should focus just on one incoming and one outgoing
particle, and average over the configurations of the other. On average, there
is no net momentum transfer, which is why the final result is diagonal in k.
The two terms Eq. (B.27) and Eq. (B.28) come from the two topologically
distinct choices for the identity of the incoming and outgoing particles; the
averaging procedure can be represented by joining together the internal lines,
conserving (as before) momentum and energy at each vertex, associating an
internal electron line or closed loop with the factor nk, and integrating over
all the remaining variables. This process is shown diagrammatically in Fig.
B.2. These diagrams are not just pictures, but they can be turned into rules
for identifying and evaluating terms in many-body perturbation theory.
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B.4 Particles and quasiparticles

The concept of a single electron in a many-body system is not a clear one,
but we can ask much more precise questions about single-electron-like exci-
tations. One of the quantities we should be interested in is the probability
that a particle can be transported from place to place, and so we introduce
the notion of the Green’s function.

B.4.1 The Green’s function

Let us imagine that we insert a particle into some state p at time t = 0,
and remove a particle from a state p′ at a later time t. The probability that
a particle can propagate from one configuration to the other clearly related
to the following expectation value

G(p′, t;p, 0) = −i < ΨG|T [ĉp′(t)ĉ†p(0)]|ψG > , (B.30)

where ΨG is the many-body ground state wavefunction, and the graphical
description of Eq. (B.30) is shown in Fig. B.3. T is a time-ordering oper-
ator, which is here to preserve causality - we shall see why in a moment. It
does the following

T [ĉ(t)ĉ†(t′)] = ĉ(t)ĉ†(t′) (t > t′) ,

= −ĉ†(t′)ĉ(t) (t′ > t) , (B.31)

i.e. it reverses the order (changing the sign for anticommutation) depending
on the order of the two times. The particle creation and annahiliation
operators are in the Heisenberg representation, so

ĉ(t) = eiHtĉe−iHt . (B.32)

where we have chosen the arbitrary zero of time to be t = 0, and we write
ĉ(0) = ĉ.

Let us now work this out for a single free particle.
Using the Hamiltonian Eq. (B.18), and the Heisenberg equation of mo-

tion Eq. (B.6) the Heisenberg operator ĉ(t) satisfies the following equation
of motion

i
∂

∂t
ĉp(t) = εpĉp(t) , (B.33)

and has the solution
ĉp(t) = ĉpe

−iεpt . (B.34)

What is the corresponding solution for the creation operator?
Now substitute the solution into the formula for the free particle Green’s

function:
Go(p

′, t;p, 0) = −i < 0|T [ĉp′(t)ĉ†p(0)]|0 > , (B.35)
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p,0 p’,t

Figure B.3: Schematic picture of the Greens function G(p′, t;p, 0) for the
injection of a particle in the state p at t = 0 and its removal from the state p′

at time t. One can think of this as the propagation of a quasiparticle between
the two states. The hatching represents the Fermi sea – as a reminder that
the particle injected and the particle removed will not be the same in a
many-body system

where now the ground state is the vacuum |0 >. For t > 0, we get

Go(p
′, t;p, 0) = −ie−iεpt < 0|ĉp′ ĉ†p|0 >

= −ie−iεpt < 0|(1− ĉ†pĉp)|0 > δp′p

= −ie−iεptδp′p , (B.36)

while for t < 0, the annahilation operator is to the right Go = 0. Now we
see the role of the time-ordering operator T - it is just to enforce causal-
ity. (This is a physical constraint, not built in to quantum mechanics which
will run as well backwards as forwards in time). We also note that be-
cause of conservation of momentum, the particle only propagates within
the same momentum eigenstate p. Eq. (B.36) is precisely equivalent to the
Schrodinger representation of the time-dependence of the wavefunction

ψS(t) = e−iεptψS(0) (B.37)

We shall often be interested in the Fourier transform of G

G(p, ω) =

∫ ∞

−∞
G(p, t)eiωt dt ,G(p, t) =

1

2π

∫ ∞

−∞
G(p, ω)e−iωt dω .

(B.38)
and we have therefore for the free particle propagator

Go(p, ω) ==
1

ω − εp + iη
(B.39)

where η is an infinitesimal positive constant.

The factor η sneaked into Eq. (B.39) is there for a good reason - causality
again. Go is a retarded response function, and the factor η makes clear that
the pole belongs below the axis. There are two ways to look at this. One is
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in the Fourier tranform

Go(p, ω) = −i

∫ ∞

0
dt ei(ω−εp)t

= − 1

ω − εp
ei(ω−εp)t

∣

∣

∣

∞

0
(B.40)

where you will notice that we have a problem with the upper limit of the
integral. If we make the change ω → ω + iη, with η = 0+, then the contri-
bution of the upper limit vanishes as t → ∞. We get back to Eq. (B.39).
The other way is to look at the inverse Fourier transform, which makes the
result look less like a trick and reminds one of the general principle that led
to the Kramers-Krönig relations.

B.4.2 Spectral function

Returning to our discussion of the Green’s function, notice that we can
separate the free-particle Green’s function into its real and imaginary parts

Go(p, ω) = ℘
1

ω − εp
− iπδ(ω − εp) (B.41)

The imaginary part of the Green’s function is called the spectral function:

A(p, ω) = − 1

π
=G(p, ω) , (B.42)

and for non-interacting particles

Ao(p, ω) = δ(ω − εp) . (B.43)

A has a straightforward interpretation: It is the probability of finding a
quasiparticle excitation of momentum p and energy ω; for noninteracting
particles we just find excitations at the band-structure energy.

What about interacting systems? Obviously the Green’s function must
be different, but if the effects of interactions are somehow weak, we may
expect the full Green’s function to be not so different from that for free
particles. One can guess what the answer ought to look like. We know that
if we have a single level (our injected particle) interacting with a continuum
of levels (the Fermi sea), elementary quantum mechanics tells us that the
state should decay. In first quantised notation we would expect to find a
wavefunction, which at long times should look like

ΨS(t) ∝ eiεpte−Γ(p)t (B.44)

where Γ is the decay rate for the particle. Provided Γ ¼ εp, we would say
that the particle is still well-defined. Correspondingly, we might expect for
the Green’s function

G(p, t) = −iZpe
iεpte−Γ(p)tθ(t) (B.45)
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(here θ(t) = 1 for t > 0 and θ(t) = 0 for t < 0). which in frequency space is

G(p, ω) =
Zp

ω − εp + iΓ(p)
. (B.46)

Zp is an amplitude for the quasiparticle to survive to long times, and so
Zp ≤ 1, in general.

The corresponding spectral function is

A(p, ω) =
1

π

ZpΓ(p)

(ω − εp)2 + Γ(p)2
(B.47)

which is a Lorentzian (see Fig. 4.6) that has a total weight

∫ ∞

−∞
A(p, ω)dω = Zp (B.48)

hence the factor Zp is called the spectral weight. It turns out that one can
show rigorously that the integral in Eq. (B.48) should be exactly unity; the
spectral function that we have written down is valid only for long times (i.e.
low frequencies) and there must be a high frequency piece that has been
neglected. Eq. (B.47) defines the properties of a quasiparticle, which has a
well-defined energy (that will however be different from the non-interacting
energy), a lifetime 1/Γ, a spectral weight Z, and satisfies Fermi statistics.


