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1 Introduction and scope

These notes are designed to accompany those lectures of the course covering
the physics of ferroelectrics. While there is a fair amount of algebra here and
there, none of it is terribly taxing — moreover, the algebra is here largely to
bolster arguments that can be made mostly in pictures, so if you are happy
with the pictures, you have probably got the point.

The notes divide into two parts. In the first, we are concerned with the
macroscopic description of ferroelectrics, namely the study of the electrical
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polarisation on length scales much longer than the separation between the
atoms. On this scale the polarisation of a solid can be regarded as a con-
tinuous degree of freedom, just as one would look at the density of a fluid if
one averaged over the short interatomic length scales. This view will enable
us to understand the onset of ferroelectricity as a phase transition like any
other, to discuss the types of phase transition, and to begin to address the
issues of domains, switching, and hysteresis.

The second chapter introduces the study of ferroelectricity from the per-
spective of atomic scale physics. The reason that a particular material hap-
pens to be ferroelectric is of course that the chemistry and physics on an
atomic scale favour a particular atomic rearrangement. As well as under-
standing the development of the macroscopic polarisation, we need also to
understand how the microscopic degrees of freedom arrange themselves. In
this chapter, we will particularly discuss how lattice vibrations (phonons)
give a signature of the transition, and are affected by it. Because the lat-
tice vibrations are directly observable by inelastic neutron scattering, and
in certain cases also by infra-red absorption or Raman scattering, there are
experimental probes that allow one access to details of the transition. Most
of this chapter actually consists of an introduction to lattice dynamics (in
a linear chain of atoms, which is all we shall need) for those who have not
come across it before.

For further references on the physics (as opposed to the technology or
the materials science) of ferroelectrics, one of the best books is an old one
(F.Jona and G.Shirane, Ferroelectric Crystals, Dover 1993 (republication of
Pergamon edition of 1962)). The first chapters of J.F.Scott , Ferroelectric
Memories, AP, 2000 also cover most of the material on macroscopic proper-
ties of ferroelectrics that you will need for this course. Phonons and lattice
dynamics are covered well in several solid state texts, for example C. Kit-
tel, Introduction to Solid State Physics, 7th Edition, Wiley, 1996. If you
can find it (not in print, but in some college libraries), I’d also recommend
W.Cochran, The Dynamics of Atoms in Crystals, Edward Arnold, 1973.

2 Macroscopic properties

2.1 What is a ferroelectric?

A ferroelectric material has a permanent electric dipole, and is named in
analogy to a ferromagnetic material (e.g. Fe) that has a permanent magnetic
dipole.

One way to understand how ferroelectricity can arise is to start by looking
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at small molecules. A molecule that is symmetric, such as methane (CH4)
has no dipole, but many simple molecules are not symmetric (e.g. H2O) and
have a dipole moment.

The formal definition of a dipole moment is

~p =

∫

dV ρ(~r)~r (1)

where ρ(~r) is the charge density in the molecule - which consists of both the
positive nuclear charge and the negative electronic charge density. Provided
the molecule is overall neutral, this definition is conveniently independent of
the choice of origin1

If the atoms can be treated as point charges Qi at positions ~Ri, then this
just becomes

~p =
∑

i

Qi
~Ri (2)

It is clear from thinking about examples that ferroelectricity is prohibited
if there is a centre of symmetry. If a centre of symmetry is not present, the
remaining crystal classes2 have one or more polar axes. Those that have a
unique polar axis are ferroelectric and have a spontaneous electrical polarisa-
tion. The others show the piezoelectric effect, wherein an electrical polarisa-
tion is induced by application of an elastic stress; extension or compression
will induce electrical polarisation of opposite signs.

A ferroelectric solid can be made up by adding together large numbers of
molecules with their dipoles aligned, so that the total dipole moment is then

~p =
∑

molecules

~pmolecule (3)

but now it is more convenient to define the polarisation ~P as the dipole
moment per unit volume

~P =
~p

Total volume

=
~pmolecule

V olume per molecule
(4)

=
Dipole moment per unit cell

V olume of unit cell

1There are some technical problems about extending this definition to an infinite solid,
that I won’t go into.

2Actually with one exception
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Figure 1: Crystal structure of NaN02. Atoms of the bent nitrite group are
joined by lines; the coordinates in the figure are the heights of the atoms
along the axis perpendicular to the page

2.1.1 Examples of ferroelectrics

One of the simplest examples of a ferroelectric is NaNO2 (Fig. 1), which (in
one of its several structures) can be viewed just as the prescription above as
an array of aligned dipoles.

Unlike in a molecule, where the dipole moment can be oriented in any
direction by rotating the molecule in free space, here the dipole moment
points along a special axis or axes, aligned with the crystal. This is called
the polar axis.

Usually there is more than one polar axis, and this is what makes fer-
roelectrics useful for devices, because on application of an electric field, the
polarisation can be switched from one direction into another. We will come
back to this in a moment.

The properties of ferroelectrics can be understood by reference to a (fic-
titious) one-dimensional crystal made up of two atoms of opposite charge
shown in Fig. 2. In this crystal, it is clear that we can orient the dipoles to
point all to the right, or all to the left. The two structures are completely
equivalent, except that they have an opposite sign to the dipole moment.
They must therefore have exactly the same energy.

We could transform one into the other by dragging one type of atom
toward the other. As we do this, the bulk polarisation will reduce in magni-
tude, and change sign at the point where the atoms are equally spaced and
finally switch to the opposite direction. Given that we know the crystal is
stable in either of the two polarised states, there must be an energy barrier
between the two states, and we can sketch a curve (Fig. 3) for the energy as
a function of the polarisation.
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Figure 2: Model (fictitous) crystal

How can we switch between the two states? In an electric field ~E the
two stable states no longer have the same energy because of the electric
polarisation energy −~P · ~E. The wells are tilted by the electric field. It is also
clear from this figure that a small field will not necessarily immediately switch
the polarisation from one direction to the other because there is a barrier to
be overcome. In an ideal (and fictitious) case where all the dipoles have to
be overturned together — as in the figure — there will now be hysteresis,
schematically demonstrated in Fig. 4. While this figure demonstrates the
origins of the hysteresis phenomenon seen in real ferroelectrics, it is much
too simple a description, because in a real material not all the microscopic
dipoles will uniformly switch together.

2.1.2 Ferroelectric phase transitions

The description above is limited to low temperatures. It is common to ob-
serve that as the temperature is raised, the bulk polarisation decreases and
vanishes abruptly at a temperature Tc. This is a phase transition, just as in

Figure 3: Schematic potential well
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Figure 4: Schematic picture of hysteresis in an idealised ferroelectric

a ferromagnet raised above its Curie temperature, or a solid raised above its
melting point.

It arises microscopically because as temperature is raised the thermal
vibrations of the atoms in the solid cause fluctuations which overcome the
potential barrier between the two (or more) wells. It is most easily under-
stood in a molecular crystal such as NaNO2, where one can imagine that
each molecule can fluctuate between two configurations. each of which has a
double potential well as in Fig. 3, and some interactions between the dipoles
that tend to align them. The detailed microscopic theory of how this happens
will be different from material to material, but the macroscopic properties of
the phase transition will be similar across many different classes of materi-
als. We will not discuss details of the chemistry and interactions, but instead
present a macroscopic theory that provides a very useful description of many
different ferroelectrics. This is the Landau theory of phase transitions.

2.2 Landau theory

Any crystal is in a thermodynamic equilibrium state that can be completely
specified by the values of a number of variables, for example temperature T ,
entropy S, electric field E, polarisation P , stress σ and strain s.

Usually we are in a situation where we are applying externally electric
fields E and elastic stresses σ, so we can regard the polarisation and strain
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Figure 5: Free energy as a function of polarisation for (a) a para-electric
material, and for (b) a ferroelectric material

as "internal" or dependent variables. A fundamental postulate of thermo-
dynamics is that the free energy F can be expressed as a function of the
ten variables (three components of polarisation, six components of the stress
tensor, and temperature), and our goal here is to write down an ansatz for
the free energy. The second important thermodynamic principle is that the
values of the dependent variables in thermal equilibrium are obtained at the
minimum of the free energy.

The approximation we make is just to expand the free energy in powers
of the dependent variables, with unknown coefficients (which can be fit to
experiment). If we are lucky, we may be able to truncate thus series with only
a few terms. To be specific, let us take a simple example where we expand
the free energy in terms of a single component of the polarisation, and ignore
the strain field. This might be appropriate for a uniaxial ferroelectric. We
shall choose the origin of energy for the free unpolarised, unstrained crystal
to be zero, and hence write

FP =
1

2
aP 2 +

1

4
bP 4 +

1

6
cP 6 + ...− EP . (5)

Here E is the electric field, and the unknown coefficients a, b, c, etc. are
in general temperature-dependent, and may have any sign. The equilibrium
configuration is determined by finding the minima of F , where we shall have

∂F
∂P

= 0 . (6)

If a, b, c are all positive, the free energy (for E = 0) has a minimum at
the origin (Fig. 5)

In this case we can ignore the higher order terms than quadratic to esti-
mate the polarisation induced by an electric field from

∂F
∂P

= aP − E = 0 , (7)
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Figure 6: Second order phase transition. (a) Free energy as a function of the
polarisation at T > To, T = To, and T < To; (b) Spontaneous polarisation
Po(T ) as a function of temperature (c) Inverse of the susceptibility χ, where
χ = ∂P/∂E|Po is evaluated at the equilibrium polarisation Po(T )

and so we have a relationship between the polarisability and the field (in
linear response, for small electric field) which defines the dielectric suscepti-
bility

χ =
P

E
=

1

a
(8)

The dielectric susceptibility is proportional to the capacitance you would
measure by putting the (insulating) ferroelectric in an electrical circuit.

On the other hand, if the parameters are such that a < 0, while b, c > 0,
then the free energy will look like the second figure in Fig. 5, which has a
minimum at a finite polarisation P . Here, the ground state has a spontaneous
polarisation and is thus a ferroelectric.

The demarcation between these two curves comes if a changes continu-
ously with temperature, and changes sign at a temperature To. This sug-
gests a simple description of the ferroelectric transition might be obtained
by assuming that a(T ) varies linearly with temperature, say of the form
a′ × (T − To).

A little bit of thought (see also the question sheet) will then show that this
phenomenological description will predict the behaviour of the free energy,
polarisation, and susceptibility shown in Fig. 6

This is an example of a second-order, or continuous, phase transition
where the order parameter (here the spontaneous polarisation) vanishes con-
tinuously at the transition temperature Tc = To.
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Figure 7: First order phase transition. a) Free energy as a function of the po-
larisation at T > Tc, T = Tc, and T = To < Tc; (b) Spontaneous polarisation
Po(T ) as a function of temperature (c) Susceptibility χ.

Logically (and practically as it turns out), we should consider the case of
b < 0 (while c remains positive). This is sketched in Fig. 7. With the quartic
coefficient negative it should be clear that even if T > To (so the quadratic
coefficent is positive) the free energy may have a subsidiary minimum at
non-zero P . As a is reduced (the temperature lowered), this minimum will
drop in energy to below that of the unpolarised state, and so will be the
thermodynamically favoured configuration. The temperature at which this
happens is the Curie temperature Tc (by definition), which however now
exceeds To. At any temperature between Tc and To the unpolarised phase
exists as a local minimum of the free energy. The most important feature
of this phase transition is that the order parameter jumps discontinuously
to zero at Tc. This type of phase transition is usually called a first-order or
discontinuous transition. Other common examples of this type of transition
are solid- liquid transitions.

2.2.1 Coupling to strain

An important feature of ferroelectric materials is often their great sensitivity
to elastic stress. To understand why this happens we can again take recourse
to Landau theory, by adding in strain dependent terms to Eq. (5). For a
uniaxial ferroelectric, the leading order terms will be of the following form

Fs =
1

2
Ks2 + dsP 2 + ...− sσ , (9)
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Figure 8: Sketch of a volume strain, and two types of shear strain – that are
volume preserving

Here s is (a component of) the strain field, and the first term represents
Hooke’s law – that the elastic energy stored in a solid is quadratically depen-
dent on the distortion, so K is (one of) the elastic constant(s). The second
term is a coupling between the elastic strain and the polarisation; the fact
that this is linear in the strain and quadratic in the polarisation depends on
the special symmetry of the transition (see more below) 3.

I have chosen not to complicate things by introducing umpteen compo-
nents of the stress and strain tensors, but for completeness (though not for
examination) I will expand a bit on strain fields.

The strain in a solid is measured by how the displacement ~u of a point in
the solid varies with position ~r, and since this is the dependence of a vector
upon a vector, the answer is a tensor: the strain is usually defined as

sij =
1

2

(

∂ui

∂rj
+

∂uj

∂ri

)

. (10)

here i, j mean the x, y, z components of the vectors. s is therefore a 3x3
symmetric matrix, with six independent components. In materials that are
cubic, or nearly so, there will be three independent components to the strain
— the volume strain (uniform in all three directions, and two kinds of shear).
Rather than do the mathematics, these are best understood in pictures (Fig.
8)

In general, the polarisation will couple to one or more types of strain, and
which types can generally be seen by inspection. Consider a cubic crystal
(e.g.BaTiO3) that undergoes a ferroelectric phase transition to a state where
the polarisation can point along one of the six orthogonal cubic directions.
Now it is clear that there is a special axis (one of the six directions after

3While this is the leading term in pseudocubic materials, there are other materials
(e.g. KH2PO4) where the symmetry is lower, and the coupling can be of the form sP –
linear in both strain and polarisation. Materials with a linear relation between stress and
polarisation are called piezoelectric
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Figure 9: Strain in a polarised crystal: the spontaneous polarisation chooses
an axis, and distorts the crystal from cubic to tetragonal. By symmetry, if
the polarisation is reversed, the strain stays the same, so the allowed coupling
term must be quadratic in the polarisation

the symmetry has been broken) and so it would no longer be expected that
the crystal as a whole will remain cubic — one expects a distortion into a
tetragonal crystal, which can be described by a tetragonal strain st. The fact
that the lowest order coupling allowed in this case is of the form sP 2 (and
not, for example, sP or s2P ) can be seen by a thought experiment based on
Fig. 9.

Returning to the free energy, which now consists of the terms in Eq. (5)
and Eq. (9), F = FP + Fs. we should now determine the properties in
equilibrium by minimising with respect to both P and s, viz

∂F(P, s)

∂P
=

∂F(P, s)

∂s
= 0 (11)

Let us take the second of these equations first:

∂F(P, s)

∂s
= Ks+ dP 2 − σ (12)

There are a few different limits to look at. Firstly, note that if the polar-
isation is zero, we get Hooke’s law s = σ/K.

The second – apparently trivial case – is when a stress is applied to
force the strain to be exactly zero at all times. This is not as absurd as
it seems, because often crystals can be considered to be clamped by their
surroundings so that no strain is allowed at all. One common situation is of
a thin epitaxial film which is forced to have the lattice constants matched to
the substrate, and is free to relax only in the third direction. In the case of
perfect “clampingÔ s = 0, and the free energy is just as before.

The third case to consider is when no external stresses are applied (σ = 0),
and we then have

s = −dP 2/K (13)
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Figure 10: Surface charge density generated by a bulk polarisation at an
interface

so that a spontaneous (tetragonal strain) occurs proportional to the square
of the polarisation. Notice now that we can substitute for the strain as a
function of polarisation, and we have a free energy

F(P, s(P )) =
1

2
aP 2 +

1

4
(b− 2d2/K)P 4 +

1

6
cP 6 + ...− EP . (14)

In comparison with the clamped system, the only change is to reduce the
quartic coefficient (notice that the result is independent of the sign of d).
This means that in the case of an already first-order transition (b < 0) the
transition is driven even more strongly first order, and Tc is raised. It is also
possible to have 2d2/K > b > 0, in which case a second-order transition in a
clamped system becomes first-order when the strain is allowed to relax.

2.3 Domains

So far we have pretended that the polarisation in a ferroelectric can be treated
as entirely uniform, and this is far from the case. There are many reasons for
the existence of domains, including non-uniform strain, microscopic defects,
and the thermal and electrical history of the sample. But even in an ideal
crystal, domains are to be expected for energetic reasons.

The macroscopic bulk polarisation is produced by a displacement of pos-
itive charge relative to negative charge; at the surface of the sample there
must then be a net charge density of opposite signs on the opposite sides of
the crystal (Fig. 10). With a little geometry, the surface charge density (per
unit area) can be seen to be

σ = ~P · Ýn (15)

where Ýn is the vector normal to the boundary. These surface charges them-
selves now generate electric fields, both internal, and external to the sample,
and the fields themselves store energy - just as in a capacitor.
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Figure 11: Ideal domain configuration in a single crystal of cubic ferroelectric
material, where the coupling to strain is negligible. On the right is the
configuration adopted when strain effects are important.

The system will minimise its energy by abolishing – as far as is possible –
the surface charges, and in a thin film for example this makes clear that the
preferred orientation of the polarisation will be “lying downÔ in the plane of
the film, rather than pointing perpendicular to the film. If one has crystal
that is thick in all dimensions, another situation is preferable – to introduce
domains where the polarisation is oriented to be always parallel to the crystal
surface. Such a situation can of course only be achieved by introducing
domain walls into the bulk, and this will produce polarisation charges unless
the walls are appropriately oriented.

The interface charge density between two neighbouring domains is, by
extension of the formula at a free surface

σ = (~P1 − ~P2) · Ýn (16)

where ~P1, ~P2 are the polarisations of the two domains, and Ýn is a unit vector
normal to the interface. The two cases when the surface charge will exactly
vanish are when the polarisations are antiparallel to each other, and parallel
to the domain wall (called a 180◦ domain wall), or when the domain wall
bisects the angle between two domains pointing “head to tailÔ. Because we
are often dealing with nearly cubic crystals where the possible polarisations
are at 90◦ to each other, the latter is often termed a 90◦ domain wall. Both
these types of wall are illustrated in the sketch Fig. 11, which is the ideal
configuration of the polarisation in a “ barÔ of ferroelectric single crystal —
and which bears obvious comparison to the ideal magnetic configuration in
a single crystal bar magnet, that may be familiar to some.

The presence of domain walls involves other energy costs. Firstly, the
domain wall is microscopically different from the bulk, and the energy gain of
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forming the polarised ground state has been lost. Secondly, the polarisation is
coupled to elastic strain – as we saw above – and we must also make sure that
the strain fields are compatible. There is no difficulty with a 180◦ domain
wall, but a 90◦ domain wall produces problems, and the “idealÔ configuration
of Fig. 11 is by no means ideal in terms of the strain fields. The existence of
domains in a sample automatically generates inhomogeneities in the strain
which interact in complex ways.

There is another feature of ferroelectric domain walls which is not shared
by magnetic domains. As far as we are aware, magnetic monopoles do not
exist, and therefore the (fictitious) magnetic charges that are generated on
magnetic boundaries cannot be screened. In ferroelectrics, the surface po-
larisation charges can be, and are, screened by real electrical charges – from
impurities, defects, and migrating ions for example. The motion of charged
species (on a fairly slow time scale) to domain walls then provides a mech-
anism for memory, “imprintingÔ, and “fatigueÔ – topics which will recur in
later lectures.

Domains, their motion, pinning and switching are fascinating phenomena
in their own right, and the complexities of domain motion in practical ma-
terials are at the heart of understanding device performance. The brief and
idealised discussion above is only the most superficial of introductions to the
topic.

3 Microscopic properties

3.1 Phonons

This section is an introduction to lattice vibrations — phonons — from a
simple microscopic point of view. The basic principles can be set out within
a model of a one-dimensional crystal.

3.1.1 One-dimensional monatomic chain

Our model consists of identical atoms connected by springs, shown in Fig.
12

In equilibrium, the atoms are uniformly spaced at a distance a, and we
now look for oscillations about the equilibrium position. We assume the
crystal is harmonic, so that the spring restoring force is linearly dependent
upon the extension. Then if we take the displacement of the nth atom (which
is at the point rn = na) to be un, its equation of motion is

m
∂2un

∂t2
= K(un+1 − un) +K(un−1 − un) (17)
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Figure 12: A one-dimensional linear chain. The atoms are shown in their
equally spaced equilibrium conditions in the top row, and with a periodic
distortion below. The bottom figure plots the displacments un as arrows,
and the curve shows how this is a sine-wave of period 6a, in this case.

We guess that the solution is a wave, of the form

un(t) = uocos(qrn − ω(q)t) (18)

Here the wavelength of the wave is λ = 2π/q, and the period is T = 2π/ω(q);
to check that this is a solution, and to determine the frequency we substitute
in the equation of motion. To do this is left as an exercise, and a few lines
of algebra will show that the solution Eq. (18) exists provided that

mω2(q) = 2K(1− cos(qa)) = 4K sin2(
qa

2
) (19)

so that
ω(q) = 2(K/m)1/2 sin(

qa

2
) (20)

Eq. (19) is called a dispersion relation — the relation between the frequency
of the mode and its wavevector, or equivalently the relationship between the
wavelength and the period.

The wavevector q is inversely related to the wavelength; note that for
long wavelength modes (i.e. q → 0), the relationship is linear, viz

ω(q) = (K/m)1/2(qa) (21)

which is the same as for a wire with tension Ka and density m/a. In the
long wavelength limit, we have compressive sound waves that travel with a
velocity v = a(K/m)1/2. Because this kind of wave behaves like a sound
wave, it is generally called an acoustic mode.

15



Figure 13: Dispersion relation between frequency and wavevector for a one-
dimensional monatomic chain

The dispersion is not linear for larger values of q, and is in fact periodic
(Fig. 13). The periodicity can easily be understood by reference to Eq. (18).
Suppose we choose q = 2π/a. Note then that

qrn =
2π

a
× na = 2πn (22)

so that all the atoms displace together, just as if q = 0. In general it is
straightforward to show that if one replaces q by q+ integer× 2πa, then the
displacements are unchanged – so we may simplify our discussion by using
only q vectors in the range

−π

a
≤ q ≤ π

a
. (23)

This is called the first Brillouin zone.

3.1.2 One-dimensional diatomic chain

A one dimensional chain establishes the basic principles of the dispersion of
lattice vibrations in solids, but of course a monatomic chain cannot be turned
into a ferroelectric. To explain the microscopic physics behind ferroelectricity
we need at least two atoms in a unit cell, and we will briefly sketch the general
principloes of the diatomic chain.

For simplicity, we use again a phenomenological model of balls and springs,
but now with two different atoms in the unit cell, two different masses and
two different spring constants (notice that for the latter to be true we would
need to have the atoms unequally spaced)(see Fig. 14). We can now write
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Figure 14: Diatomic chain

down two equations of motion, one for each type of atom:

mA
∂2unA

∂t2
= K(unB − unA) +K ′(un−1,B − unA)

mB
∂2unB

∂t2
= K ′(un+1A − unB) +K(un,A − unB) (24)

The solution of this is a little more complicated than before (left as an
optional problem on the question sheet), but we can now intuitively see that
there ought to be a new type of phonon mode by considering a particular
limit of the parameters. Suppose the two atoms are quite strongly bound
together in pairs, as sketched in the figure above: then we might expect
that K ½ K ′, and to a first approximation the pairs can be treated as
independent molecules. (We will also simplify the analysis by taking mA =
mB = m.) Then every molecule will have a vibrational mode where the two
atoms oscillate out of phase with each other with a frequency

ω2
o = 2K/m . (25)

The corresponding coodinate which undergoes this oscillation is

uopt(q = 0) = uA − uB (26)

where I have explicitly remarked that this is at q = 0 if each molecule un-
dergoes the oscillation in phase with the next.

We can of course make a wavelike solution by choosing the correct phase
relationship from one unit cell to the next — as sketched in Fig. 15, but
if K ′ ¼ K this will hardly change the restoring force at all, and so the
frequency of this so-called optical phonon mode will be almost independent
of q.

There are now two branches of the dispersion curve, along one of which
the frequency vanishes linearly with wavevector, and where the other mode
has a finite frequency as q → 0(see Fig. 16). The name “opticalÔ arises
because at these long wavelengths the optical phonons can interact (either
by absorption, or scattering) with light, and are therefore prominent features
in the absorption and Raman spectra of solids in the infrared spectrum.
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Figure 15: Dispersion of the optical and acoustic phonon branches in a di-
atomic chain, and a schematic picture of the atomic displacements in the
optical mode at q=0

Figure 16: Pattern of atomic displacements for an acoustic and an optical
phonon of the same wavevector.

3.1.3 Phonons in three-dimensional solids

The descriptions above are not too hard to generalise to three- dimensional
solids, although the algebra gets overloaded with suffices.

Rather than a one-dimensional wavevector k corresponding to the direc-
tion of the 1D chain, there is now a three-dimensional dispersion relation
ω(~k), describing waves propagating in different directions.

Also, there are not just compressional waves, but also transverse, or shear
waves, that will have different dispersion from the longitudinal (compres-
sional) waves. (These exist in a crystal in any dimension, including our 1D
chain, where they can be imagined to involve displacements perpendicular
to the chain direction.) Quite generally, for each atom in the unit cell, one
expects to find three branches of phonons (two transverse, and one longitu-
dinal); always there are three acoustic branches, so a solid that has N atoms
in its unit cell will have 3(N − 1) optical modes. And again, each optical
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modes will be separated into two transverse branches and one longitudinal
branch.4

3.2 Soft modes

After this lengthy introduction to the theory of lattice vibrations, we will get
back to our simple description of the ferroelectric phase transition, by refer-
ence say to Fig. 3. We imagine that we are lowering the temperature through
the point where the transition happens, and the free energy is developing a
double minimum. What should happen to the phonons?

Remember that the phonon modes we calculated were in the harmonic
approximation; i.e. we assume that the amplitude of the vibrations are always
so small that we can expand the potential about the minimum of the energy.
The spring constants K above come from the fact that one assumes that the
elastic energy stored in a spring (bond) follows Hooke’s law, viz

U(x) = 1

2
Kx2 (27)

Suppose we can replace the internal energy of this formula by the free energy
modelled in the Landau theory shown earlier, then the relevant stiffness
constant for the q = 0 optic phonon above Tc is easily related to the coefficient
a(T ) in the Landau theory.

It should be intuitively clear the the polarisation P must be related di-
rectly to the amplitude of the corresponding lattice displacement. Conse-
quently, the free energy expansion of Eq. (5) could equally well have been
written as a function of the lattice displacement u. For the diatomic chain,
the relevant coordinate is exactly the coordinate of the optical phonon am-
plitude, viz

uopt = uA − uB (28)

and furthermore there is a relationship between the optical phonon amplitude
and the polarisation

P =
1

Vcell

(e∗Tuopt +O(u3
opt)) . (29)

The quantity e∗T is called the “transverse effective chargeÔ 5; its name reflects
the fact that for rigid ions of charge ±Ze, the dipole moment would just be

4The distinction between longitudinal and transverse is only rigorous along lines of
symmetry in ~k-space.

5The ‘transverse’ in the name comes from the fact that e∗T is responsible for the shift
between the transverse and longitudinal optical phonons
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Figure 17: Comparison of the temperature-dependence of the square of an
optic phonon frequency with the inverse of the dielectric susceptibility in
SrT iO3 (Cowley, Phys.Rev.Lett. 9 159 [1962])

Zeuopt. Now without rewriting the formulae, it is clear that in the harmonic
approximation, the frequency of the q = 0 optical phonon must vanish as the
transition is approached. This is because

m
∂2uopt

∂t2
= − ∂F

∂uopt

∝ −a(T )uopt (30)

and thus

ω(q = 0)2 ∝ 1

χ
. (31)

The relationship of Eq. (31) holds quite well in many materials with an
example given in Fig. 17

The Landau theory only discussed uniform components of the polarisa-
tion, and thus can only be a guide for q = 0. Of course if we wanted to
model our ferroelectric material by a harmonic chain of balls and springs,
we would have to infer that K → 0 at the transition temperature — and so
all the phonons (optical and acoustic) at all momenta would soften to zero
frequency at the transition. This seems unreasonable, and it is of course not
correct.
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Figure 18: Phonon dispersion relations for SrT iO3 measured at different
temperatures for those modes where a considerable change with temperature
is seen. Note that there is both softening of the optical phonon near q = 0
as well as a zone boundary phonon (q = (π/a)(111)).(Stirling, J.Phys.C 5,
2711 [1972])

The typical situation is shown in Fig. 18 which shows the phonon spectra
of SrT iO3. Notice that the lowest optical phonon branch is soft near the
origin, but rapidly stiffens as q increases. Only the long wavelength compo-
nents of the optical phonon mode go soft, and only over a small part of the
zone are the modes strongly temperature dependent. Note in Fig. 18 that
there is a softening mode not just at the zone centre, but also an acoustic
phonon mode softening at the zone edge. It is this latter mode that goes soft
in SrT iO3, which is not quite a ferroelectric — even though the dielectric
constant becomes very large. Instead, the zone boundary mode — which
has a periodicity of exactly two lattice constants in each of the x-,y-, and
z- directions – corresponds to a soft mode where the articulated octahedra
rotate alternately in opposite directions, just like an array of cog wheels.6

6This kind of situation is often termed “anti-ferroelectricity”, as in the alternating spin
order of an antiferromagnet.
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3.3 A microscopic mean field theory

We close this overview of microscopics with a simple mean field theory of
what is sometimes called the “polarisation catastropheÔ for the onset of fer-
roelectricity. This theory plays the same role in ferroelectricity as the Weiss
theory of ferromagnetism. The basic physical idea is that ions in solids are
themselves polarisable in an electric field, so that on top of any polarisation
generated by the rigid displacement of the ions from their lattice sites, there
is an electronic polarisation generated by electric fields inside the solid.

Let’s go back to our simple diatomic solid, which in the paraelectric phase
has the ions equally spaced, and then make a small displacement of the ions
relative to each other by an amount u, the same in each unit cell. If the ions
have charges ±Ze(Z is the ionic charge), the induced polarisation will be

P =
1

Ωo

[Zeu+ αEloc] . (32)

Here Ωo is the unit cell volume, and α the ionic polarisability. Eloc is the local
electric field – i.e. that electric field at the site of the atom that is produced
by the dipoles throughout the rest of the solid.

The calculation of the local field is not a simple matter in general – we
should sum up the contribution of all the dipolar fields generated by all
the cells throughout the solid. But there is a simple way to estimate it,
sometimes called the cavity method. The atomic dipoles far away from the
site where we want to calculate the field are treated as a continuum with
uniform polarisation P and we cut out a small sphere around the site. We
learned earlier that when the bulk polarisation has a discontinuity (at a
surface), the discontinuity is equivalent to a surface charge density σ = P · Ýn,
where Ýn is the surface normal. Hence we will have a (non-uniform) charge
density on the surface of our imaginary sphere (see Fig. 19). This charge
density produces a field - which by reference to the figure can be seen to be
in the same direction of the polarisation.

By an elementary electrostatic calculation — which I will not do here, but
can be found in any textbook on electromagnetism, the electric field inside
the sphere can be calculated and it is found to be uniform, given by

Eloc = P/(3εo) (33)

(εo ≈ 9 × 10−12Fm−1 is the permittivity of free space). Substituting in Eq.
(32), and solving for P, we get

P =
Zeu/Ωo

[1− α/(3εoΩo)]
=

Z∗eu

Ωo

. (34)
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Figure 19: Local electric field in a cavity inside a ferroelectric.

Because of the polarisability of the ions, the effective charge Z∗ is larger
than the bare charge, and if α is large enough, the denominator may vanish,
and the induced polarisation will diverge. Within this theory, this divergence
marks the onset of the ferroelectric instability.
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QUESTIONS7

1. Which of these molecules possesses a static electrical dipole moment:
O2, CH4, H2O, NO2, N2O4,CO, CO2 ?

2. Write notes comparing and contrasting the macroscopic aspects of fer-
romagnetism and ferroelectricity.

3. Use the following Landau theory for the Free energy density (per unit
volume)

F =
1

2
aP 2 +

1

4
bP 4 +

1

6
cP 6 + ... (35)

where the coefficient a = a′ × (T − Tc) is temperature dependent, and
all the other coefficients are constant. Although the polarisation P is
of course a vector, we assume that it can point only in a symmetry
direction of the crystal, and so it is replaced by a scalar.

(a) Assume that b > 0 and c = 0. Use Eq. (35) to determine the form
for the equilibrium P (T ).

(b) Including in F the energy of the polarisation coupled to an exter-
nal electric field E, determine the dielectric susceptibility χ = ∂P

∂E

both above and below the critical temperature.

(c) Sketch curves for P (T ), χ−1(T ), and χ(T ).

(d) The electric field E is increased slowly from zero to large positive
values, reversed to large negative values, ind then increased back
to zero again. Sketch the form of the hysteresis loop in the P,E
plane for T < To.

(e) In a different material, the free energy is described by a similar
form to Eq. (35), but with b < 0 and c > 0. By sketching F at
different temperatures, discuss the behaviour of the equilibrium
polarisation and the linear susceptibility, contrasting the results
with those found in (c).

(f) Using the model in (e) sketch the P-E hysteresis curves in three
cases: T < To, Tc > T > To, and T > Tc, where Tc is the
equilibrium transition temperature at zero electric field.

4. In a piezoelectric crystal, an elastic strain is linearly coupled to the
polarization — i.e. P = αs. If such a piezoelectric material under-
goes a phase transition to a ferroelectric state on cooling, suggest a

7Questions with an asterisk go beyond the requirements of the course
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form for the Landau free energy as an expansion in both the polarisa-
tion and strain (use a simple scalar theory with one component of the
polarisation, and one component of the strain).

Compare the two situations of “clampingÔ (s=0) and equilibrium re-
laxation of the strain.

5. By substituting Eq. (18) in Eq. (17) derive the dispersion relation Eq.
(19) for the one-dimensional monatomic chain.

6. Write brief notes explaining the concept of a “soft modeÔ near a ferro-
electric phase transition.

7. ** This question involves somewhat messy algebra to derive the dis-
persion relation for the diatomic chain.

In the diatomic chain, we take the unit cell to be of length a, and take
xA and xB to be the coordinates of the A and B atoms within the unit
cell. Hence, in the nth cell,

rn,A = na+ xA; rn,B = na+ xB . (36)

In the equations of motionEq. (24), look for solutions of the form

un,α = eα(q) exp i(qrn,α − ω(q)t) + e∗α(q) exp i(−qrn,α + ω(q)t) (37)

where α = A or B, and eα are complex numbers that give the amplitude
and phase of the oscillation of the two atoms.

Separating out the terms that have the same time dependence, show
that (for equal masses, mA = mB = m)

mω2(q)eA(q) = DAA(q)eA(q) +DAB(q)eB(q)

mω2(q)eB(q) = DBA(q)eA(q) +DBB(q)eB(q) (38)

where
DAA(q) = DBB(q) = K +K ′ , (39)

−DAB(q) = K exp iq(rn,B − rn,A) +K ′ exp iq(rn−1,B − rn,A)

−DBA(q) = K exp iq(rn,A − rn,B) +K ′ exp iq(rn+1,A − rn,B)(40)

Check that DAB = D∗
BA.
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The 2x2 matrix equation can have a non-trivial solution if the deter-
minant vanishes:

∣

∣

∣

∣

DAA(q)−mω2(q) DAB(q)
DBA(q) DBB(q)−mω2(q)

∣

∣

∣

∣

= 0 (41)

Hence show that the frequencies of the modes are given by

mω2(q) = K +K ′ ± [(K +K ′)2 − 2KK ′ sin2(
qa

2
)]1/2 . (42)

Sketch the dispersion relations when K/K ′ = 2.

Discuss what happens if K = K ′.
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