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Appendix A

Interaction effects in the
electron gas

We have so far sidestepped entirely the effects of interactions between electrons,
by working in the independent electron approximation with a one body potential
U (r) which somehow incorporates the interaction effects at the one particle level.
Of course is is clear that the full many-body Schrodinger equation cannot be
described by a set of one-body equations. However, we can ask the question as
to what is the best single particle representation, and independently we can ask
how good it is. This will be the subject of this chapter.

If we fix the position of the ions, the electronic Hamiltonian is

Helec =
N∑

i=1

[
− h̄2

2m
∇2

i + Uion(ri)
]

+
1
2

∑

i6=j

e2

|ri − rj |
(A.1)

where the potential due to the ions is

Uion(r) =
∑

I

ZIe
2

|ri − RI |
(A.2)

where ZI is the nuclear charge and RI the nuclear positions. We look for the so-
lutions for the N-particle wavefunction Ψ(r1, σ1, ...., rN, σN ) of the Schrödinger
equation 1

HelecΨ = EΨ . (A.3)

A.1 Preamble: a model two-electron system

The fundamental difficulty with treating interacting electronic systems is that
we cannot expect to write a wavefunction that factorises into a product of

1ri, σi are the space and spin coordinates of electron i
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6 APPENDIX A. INTERACTION EFFECTS IN THE ELECTRON GAS

single electron wavefunctions. Such a factorisation is disallowed by the required
antisymmetry of wavefunctions for fermions, namely that

Ψ(r1, σ1..., ri, σi, ..., rj, σj, ...., rN, σN ) = −Ψ(r1, σ1..., rj, σj, ..., ri, σi, ...., rN, σN ) .
(A.4)

Here ri,σi are the position and spin of particle i, and fermion wavefunctions
change sign when the coordinates of any two electrons are interchanged.2

Almost everything that we shall do on the interacting system can be under-
stood in simple terms for a model of an atom (or a molecule) with two single
particle orbitals and two electrons. We shall assume that the (orthonormal)
single particle states ψ1,2(r) are unchanged by the interaction. There is an im-
portant simplification that arises also because the Coulomb interaction between
particles is independent of their spin state, which we shall denote by | ↑>, | ↓>
. In that case, we already know that the eigenstates of the two particle problem
should be labelled by the total spin S and its z-component Sz . There will be
four possible spin states

| ↑↑> Sz = 1
Triplet S = 1 (| ↑↓> +| ↓↑>)/

√
2 Sz = 0 (A.5)

| ↓↓> Sz = −1

Singlet S = 0 (| ↑↓> −| ↓↑>)/
√

2 Sz = 0 (A.6)

The notation is that | ↑↓>= | ↑1> | ↓2>, i.e. up spin for the electron labelled “1”
and down spin for “2”. The singlet state is odd under exchange of coordinates,
and the triplet states are even. Because the total wavefunction must be odd,
then the spatial wavefunctions that go along with these must be odd for the
triplet states, and even for the singlet states. Since we decided at the outset that
we are restricted to only two single particle states, we must have the following
wavefunctions

ΨT (r1, r2) = (ψ1(r1)ψ2(r2) − ψ2(r1)ψ1(r2))/
√

2

= (|12 > −|21 >)/
√

2 (A.7)

ΨS(r1, r2) = (ψ1(r1)ψ2(r2) + ψ2(r1)ψ1(r2))/
√

2

= (|12 > +|21 >)/
√

2 (A.8)

where again we have used the notation that |ij >= ψi(r1)ψj(r2), so particle
“1” is in the spatial wavefunction labelled by the state “i”, and particle “2” is
in state “j”. The subscripts S and T label singlet and triplet wavefunctions,
respectively.

Notice that the antiymmetry of the triplet wavefunction means that the
electrons keep further apart than they would if they were independent distin-
guishable particles; in the singlet (symmetric) state they are closer together.

2Notice that the space and spin labels must both be interchanged.
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This means that we expect that the triplet state is lower in energy than the
singlet state, given the Coulomb repulsion. This can be shown explicitly using
by evaluating the expectation value of the Hamiltonian using the two wavefunc-
tions, which is

< H >S,T = E1 + E2+ < 12|V |12 > ± < 21|V |12 > , (A.9)

where the +/− signs are for singlet/triplet respectively. E1,2 are the single
particle energies - i.e. the expectation value of T +Uion - and the last two terms
are matrix elements of the Coulomb interaction. The first of these is the direct,
or Hartree energy

< 12|V |12 >=
∫
drdr′|ψ1(r′)|2

e2

|r− r′| |ψ2(r)|2 (A.10)

which is just the interaction energy between the charge densities of the two
electronic single particle states. The second of these has no analogue classically,
and is called the exchange energy

< 21|V |12 >=
∫
drdr′ψ∗

2(r)ψ
∗
1(r′)

e2

|r− r′|ψ1(r)ψ2(r′) . (A.11)

Despite the fact that the electron-electron interaction is independent of the spin
of the electron, the requirement of antisymmetry of the wavefunction then pro-
duces a spin-dependent energy of the final state. This is the origin of magnetism
in solids.

A.2 Hartree approximation

Returning to the many electron problem, we can now repeat the calculation more
formally, but this time not restricting the single particle basis to predetermined
states. The most natural first approximation to the difficult interaction term
in Eq. (A.1) is to replace the interaction between the electrons by a set of
interactions between a single electron and the charge density made up from all
the other electrons, i.e. by a one-body potential for the ith electron

Ucoul(r) = −e
∫
dr′

ρ(r′)
r− r′

= e2
∑

j 6=i

∫
dr′

|ψj(r′)|2

r− r′
, (A.12)

where the summation is over all the occupied states ψi. This clearly takes
into account the averaged effect of the Coulomb repulsion due to all the other
electron, and corresponds to the term Eq. (A.10) above.

A.3 Hartree-Fock

One of the primary deficiencies of the Hartree approximation is that the wave-
functions violate the Pauli principle. This was precisely the physics that we
were at pains to incorporate in the model two-electron problem above.
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The simplest wavefunction that satisfies this requirement is the Slater de-
terminant

ΨHF =

∣∣∣∣∣∣∣

ψ1(r1, σ1) · · · ψ1(rN , σN )
...

...
ψN (r1, σ1) · · · ψN (rN , σN)

∣∣∣∣∣∣∣
. (A.13)

Hartree-Fock theory is formally defined as the best (in a variational sense) single
Slater determinant — i.e. which involves finding the “single particle” basis states ψi.
We won’t need this in order to do study a homogeneous system, because in that case
the states are determined by symmetry to be plane waves. But here is the general
analysis.

If one evaluates the energy in the form

< H >Ψ=
< Ψ|H |Ψ >

< Ψ|Ψ >

with the determinantalwavefunction of Eq. (A.13) using an orthonormal set of orbitals
ψi, one gets 3:

< H >Ψ=
∑

i

< i|(T + Uion|i > +
1

2

∑

ij

[
< ij|

e2

rij
|ij > − < ij|

e2

rij
|ji > δσiσj

]
. (A.14)

(This calculation is much trickier than it looks).

Then one can variationally minimise with respect to the ψ∗
i obtaining the Hartree-

Fock equations

[
−
h̄2

2m
∇2 + Uion(r) + Ucoul(r)

]
ψi(r)−

∑

j

∫
dr′

e2

|r − r′|
ψ∗

j (r′)ψi(r
′)ψj(r)δσiσj = εiψi(r)

(A.15)
After solving Eq. (A.15) to determine the wavefunctions and the energy eigenvalues
the total energy can be written 4

< H >Ψ=
∑

i

εi −
1

2

∑

ij

[
< ij|

e2

rij
|ij > − < ij|

e2

rij
|ji > δσiσj

]
. (A.16)

The equations are similar to the Hartree equations, but have an extra term, the
exchange term which is not only nonlinear in ψ but also non-local, and spin-dependent.
Such complexity makes them very difficult to solve in practice.

Thus when we draw a band-structure in the independent particle approximation,
at the Hartree-Fock level that corresponds to the variation energies εi, of Eq. (A.15);
the corresponding many-body wavefunction is then the Slater-determinant obtained
by entering the lowest energy eigenstates into the determinant Eq. (A.13). Notice that
if we have a system that is a paramagnet, there will be two degenerate eigenstates for
each spin. The exchange energy lowering (note the sign) only occurs between states
of the same spin (i.e. half the pairs in a paramagnet).

3We shall use the notation < i|f |j >=
∫
drφ∗i (r)f(r)φj(r) for one body matrix elements,

and < ij|f |mn >=
∫ ∫

dr dr′ φ∗i (r)φ∗j(r′)f(r,r′)φm(r)φn(r′) for two-body matrix elements.
4Notice that this is not equal to the sum of single-particle energies, because otherwise the

interaction terms would be counted twice
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A.4 The homogeneous electron gas

The one case where the Hartree-Fock equations can be solved straightforwardly
is the not uninteresting case of jellium: the periodic lattice potential is replaced
by a uniform positive background that neutralises the electronic charge. Owing
to translational symmetry, the single particle states in the Slater determinant
must be plane waves:

ψi(r) = (V )−
1
2 eiki·r × χspin (A.17)

where we occupy each wavevector |k| < kF twice (once for each spin compo-
nent). One can evaluate the Hartree-Fock energy without having to solve for
the wavefunctions, which is the hard bit in a problem on a lattice.

Units

It is useful at this point to introduce the electron gas density parameter rs.

• Since the energy scale is set by the Coulomb potential, it is convenient to
measure energies in units of the Rydberg:

1Rydberg =
h̄2

2ma2
B

=
e2

8πε0aB
, (A.18)

with aB the Bohr radius.

• Then we measure the density n in units of the Bohr radius by

4π(rsaB)3/3 = 1/n (A.19)

so rs is a dimensionless parameter, which is the average spacing between
electrons measured in units of the Bohr radius.

• In a medium where the electrons have an effective mass m∗, and there is
a background relative dielectric constant ε, then there is an effective Bohr
radius

a∗ = ε
m∗

m
aB (A.20)

and an effective rydberg

Ry∗ =
1
ε2
m∗

m
Ry (A.21)

For electrons in the semiconductor GaAs, m∗

m ≈ 0.1 and ε ≈ 13, so a∗ ≈
7 nm and Ry∗ ≈ 5 meV
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Evaluation of the exchange energy

The energy can be evaluated as follows. The direct Coulomb energy cancels exactly
with the ionic energy: UCoul +Uion = 0. We are left with only the kinetic energy and
the exchange energy. The kinetic energy term in Eq. (A.15) gives

−
h̄2

2m
∇2eiki ·r =

h̄2k2

2m
eik·r (A.22)

and the exchange term in Eq. (A.15) becomes

UexchV
− 1

2 eik·r = −
∑

|q|<kF

V − 1
2 eiq·r

∫
dr′ V− 1

2 e−iq·r′ e2

|r− r′|
V − 1

2 eik·r
′

= −(V )−
1
2 eik·r ×

1

V

∑

q<kF

∫
dr′e−i(k−q)·(r−r′ ) e2

|r− r′|

= −(V )−
1
2 eik·r ×

1

V

∑

q<kF

4πe2

|k − q|2
. (A.23)

Eq. (A.23) makes use of the familiar result that the Fourier transform of the Coulomb
potential 1/r is just 4π/q2 .

The energy can be evaluated in closed form

ε(k) =
h̄2k2

2m
−
∫

k′<kF

dk′

(2π)3
4πe2

|k − k′ |2

=
h̄2k2

2m
−

2e2kF

π
F (k/kF ) , (A.24)

where

F (x) =
1

2
+

1 − x2

4x
ln

∣∣∣1 + x

1 − x

∣∣∣ . (A.25)

The total energy can be performed by integration over k < kF It is 5

EHF
tot = 2

∑

k<kF

h̄2k2

2m
−

2e2kF

π

∑

k<kF

F (k/kF )

= N

[
3

5

h̄2k2
F

2m
−

3

4

e2kF

π

]
(A.26)

This result is conventionally written in rydberg units, using the electron gas
density parameter rs (Eq. (A.19)) as

EHF
tot /N = 2.21r−2

s − 0.916r−1
s (A.27)

For a typical metal rs is in the range of 2-4, and the second term is comparable
in size to the first.

The first term in Eq. (A.27) is from the kinetic energy, and the second
from the exchange interactions (the Hartree term is exactly cancelled by the

5Notice a factor of two for spin, and a factor of 1/2 (double-counting) in the second term
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interaction with the postive background). The kinetic energy term is the larger
at smaller rs, which means higher density - despite the electrons coming closer to
each other. This is of course precisely the opposite result that one would have
got for a classical gas (where the ”perfect gas” limit is the dilute limit. The
difference is because electrons are fermions, and as one goes to higher density,
the Fermi energy EF increases more rapidly than the interaction energy. High
density metals are free-electron like.

Eq. (A.27) looks like the first few terms in a series expansion starting from
the high density limit. The series continues6

Etot/N = 2.21r−2
s − 0.916r−1

s + 0.0622 ln(rs) − 0.096 + O(rs) + ... (A.28)

The difference in energy between the exact energy and the Hartree-Fock energy
is often termed the correlation energy.

Ferromagnetic liquid

Remember that the exchange energy lowering was only between parallel spins,
and therefore came in to only half the terms in the exchange energy. In a spin-
aligned (ferromagnetic) ground state wave-function, then the exchange energy
(lowering) will be larger - twice as many terms. However the kinetic energy
(positive) will also be larger because there will be a larger kF (by a factor of 21/3)
if only one spin subband is filled. The interaction terms become proportionately
more important at low densities (large rs) than the kinetic energy, so we may
expect that the dilute electron gas is ferromagnetic.

Qu.1.1 Ferromagnetism in the HF approximation

Consider a fully spin polarised state: the Hartree-Fock Slater de-
terminant corresponds to singly occupying each state in the Fermi
sphere. In analogy to Eq. (A.26), compute the total energy of the
spin polarised state, and show that this is lower in energy than the
unpolarised state if rs > 5.45 in the Hartree-Fock approximation. The
physics here is correct, but the numerical answer very wrong — the
paramagnetic state is believed to be stable up to rs ≈ 75.

Wigner crystal

Interactions become relatively more important as the density decreases, because
the kinetic energy penalty for keeping electrons apart is reduced. But we are still
describing the electrons as a fluid, albeit a quantum fluid; our experience tells
us that if repulsive interactions get large enough, the ground state of the system

6Gell-Mann and Brueckner, Phys. Rev. 106, 364 (1957).
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should not be a fluid but a solid. Quite some time ago, Wigner7 argued that
the electron gas must crystallise at low enough density. The argument is quite
simple, but quite beyond the reach of the independent electron approximation.

In an electron solid, each electron is assumed to be localised to a site on a
lattice, not spread out through the crystal as in the metallic state we have been
discussing hitherto. If the electrons are well localised and only weakly overlap
with each other, one can estimate the energy quite simply.

The Coulomb energy is just the energy of interacting charged particles - the
Hartree term. If you include the Jellium background, the interaction of with
the N-1 other electrons is approximately cancelled by their counterbalancing
background charge. What remains is the Coulomb energy of a single electron
that has a uniformly charged sphere of jellium around it. This is of order

− e2

2aBrs
(A.29)

(One can improve the estimate by doing the calculation summing over all the
charges; this multiplies the result by a factor of α, called a Madelung constant.
Generally α ≈ 1.7 depending on the crystal lattice structure).

The kinetic energy cost of localising the electron is just the zero point energy
of localising the electron inside the sphere which should be of order

h̄2

2ma2
Br

2
s

(A.30)

Thus we estimate
EWC

tot /N ≈ −1
2
αr−1

s + r−2
s Ryd. (A.31)

For large enough rs, the coulomb energy must always win – because asymp-
totically the dominant energy term is negative, and scales as r−1

s .8 Comparing
Eq. (A.31) with Eq. (A.28) suggests a transition near rs ≈ 5, whereas the best
calculations place it closer to 100.9

7E.P.Wigner, Phys. Rev. 46, 1002 (1934)
8Notice that Eq. (A.31) is an expansion in powers of (1/rs) about the low- density limit

(rs → ∞), whereas Eq. (A.28) is an expansion in powers of rs about the high-density limit
(rs → 0).

9The most reliable estimates come from quantum Monte Carlo calculations, see D.Ceperley
and B.J.Alder, Phys. Rev. Lett. 45, 566 (1980).



Appendix B

Charge Density Waves

The crystal structures of solids are much more complex than one might have
expected. Even if you take the elements, rather few form simple close-packed
structures. For example Ga metal has a complicated structure with 5 nearest
neighbours, Se crystallises in a structure that can be thought of as an array of
spiral chains with three atoms per unit cell, As, Sb and Bi have puckered sheets
where each atom has three near neighbours.

Of course, all of this reflects the production of chemical bonds inside the
solid, and a complicated balance of forces. But the fundamental principle of
bonding is that by placing the chemical potential in a gap, the occupied states
are lowered in energy (and the unoccupied states go up in energy). Getting the
chemical potential to lie in a gap involves making sure that the Brillouin zone
boundary lies ”in the right place”, i.e. at a momentum that will contain exactly
the correct number of states to account for all of the electrons in the solid.

B.1 The Peierls transition

As a concrete example we consider a one-dimensional chain of atoms, with lattice
constant a, and an electron density chosen such that the fermi wave-vector kF

falls somewhere in the middle of the band. It is a metal.

Notice that we could turn this metal into an insulator by applying an external
potential with a periodicity of 2π/Q where Q = 2kF : following the earlier
lectures, we know that a periodic potential Vo cos(Qx) produces Bragg scattering
at a wavevector Q/2 (hence a new Brillouin zone boundary). If Q/2 = kF then
there is a gap induced on the fermi surface.

Rather than applying an external potential, we could get the same effect by
making a periodic lattice distortion (PLD) with the same periodicity: namely

13
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Figure B.1: The Peierls transition. The upper figure shows the familiar one-
dimensional chain with lattice constant a and the corresponding lowest elec-
tronic band, plotted for momenta between 0 and π/a. In the lower figure (b)
a periodic lattice modulation is introduced, with u(r) of the form of Eq. (B.1).
The period is cunningly chosen to be exactly 2π/2kF , so that a band gap of
amplitude 2gQu0 is introduced exactly at the chemical potential.
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move the nth atom in the chain to a new position

Rn = na+ uocos(Qna) . (B.1)

We assume that the amplitude of the PLD is small, uo � a. [We have already
met this phenomenon in the diatomic chain, studied earlier, but where we con-
sidered the case of a half-filled band — in that case kF = π/2a and Q = π/a,
and the periodicity of the distorted lattice is twice that of the undistorted one.]

If the atoms have a PLD with period 2π/Q, they will produce a new potential
seen by the electrons with the same period. It is also evident that the amplitude
of the Fourier component VQ ∝ uo is linearly proportional to the displacement
(for small displacements). We may write VQ = gQuo, where the coefficient gQ

is the electron-phonon coupling constant.

Now remember that the energy gap on the zone boundary is |VQ|. That
means that an energy level at a momentum just below kF is lowered by an
energy proportional to the atomic displacement |uo|, (and the unoccupied one
just above kF is raised in energy by the same amount). So overall there is an
energy lowering as a result of the PLD. The magnitude of this can be computed
(see the problem below) by adding up all the energy changes of all occupied
states: the answer can be written as

Eelectronic = A(uo/a)2 ln |uo/a| (B.2)

in the limit uo/a � 1, and A is a constant (depending on gQ). Note the
logarithm — this varies faster than quadratically (just). It is negative - the
energy goes down with the distortion.

By an extension of the standard band structure result, it should be clear
that there is an electronic charge modulation accompanying the periodic lattice
distortion - this is usually called a charge density wave (CDW).

Eq. (B.2) is just the electronic contribution to the energy from those states
very close to the fermi surface. But as we have argued before, it is sensible to
model the other interactions between atoms just as springs, in which case we
should add an elastic energy that is of the form

Eelastic = K(uo/a)2 (B.3)

Adding the two terms together gives a potential of the form

E(x) = Ax2 ln |x|+Bx2 (B.4)

which always has a minimum at non-zero displacement. The system lowers its
energy by distorting to produce a PLD and accompanying CDW, with a period
that is determined by the fermi wave-vector, viz. 2π/2kF . Such a spontaneous
lattice distortion is a broken symmetry phase transition (see Fig. B.2), that
goes by the name of its discoverer, Peierls. It tells us that a one-dimensional
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metal is always unstable to the formation of a CDW, even if the electron-phonon
coupling is weak. 1

Qu.2.2 *Peierls transition in a one-dimensional electronic
band

Consider a one-dimensional system which is filled up to the first
Brillouin zone boundary at k = π/a, and assume that there is a small
gap produced by a single Fourier component of the lattice potential
U = UK=2π/a (small meaning that U/E0

1
2 K

� 1). Consider momenta

close to the zone boundary, show that a good approximation for the
energy dispersion of the bands is

E = E0

(
1 ±

√
U2

E2
0

+ 4κ2

)

where E0 = E0
1
2 K

and k = (π/a)(1 + κ), with κ � 1.

Show that the change in electronic energy

Eelec =
1
N

∑

k occupied

[E(k;UK) − E(k;UK = 0)]

can be written approximately as

Eelec = 2|U |
∫ 1

0

dx

[
x

α
− (1 +

x2

α2
)1/2

]
∝ h̄2π2

ma2
α2 log(α) ,

in the limit that the parameter α = ma2

h̄2π2 |U | is much smaller than
unity (i.e. the gap is small compared to the bandwidth.

Materials that are strongly anisotropic in their electronic structure are thus
prone to a spontaneous lattice distortion and accompanying charge density wave.
(The logarithmic singularity does not appear in dimensions greater than one —
although CDW’s indeed happen in higher dimension, they don’t necessarily
occur in weak coupling).

Commonly there will be a phase transition on lowering the temperature that
corresponds to the onset of order — one can monitor this by the appearance of
new Bragg peaks in the crystal structure, seen by electron, neutron, or X-ray
scattering (see Fig. B.3).

1There are of course other periodicities produced by beating of the spatial frequencies Q
with 2π/a. These need not concern us if the amplitude is small, because they will generally
occur at momenta different from kF , so the gap will lower and raise the energy of pairs of
states that are either both unoccupied or both occupied, cancelling in the total energy.
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Figure B.2: Sketch of Eq. (B.4) showing the double minimum of energy

More subtly, the onset of a CDW can be seen in the phonon spectrum.
Notice that by calculating the energy change as a result of a small lattice dis-
placement, we have in the coefficient of the quadratic term in the energy as
a function of displacement, the phonon stiffness for a mode of the wavevector
2kF . Consequently, the onset of a CDW is when the stiffness becomes zero (and
negative below the transition), so there is no restoring force associated with the
displacement. Then the phonon spectrum ω(q) (even in the high temperature
undistorted phase) will be expected to show a sharp minimum in the vicinity of
q = 2kF , as seen in Fig. B.4.

B.2 Polyacetylene and solitons

One of the celebrated cases of such a CDW occurs in the polymer (CH)n, trans-
polyacetylene (Fig. B.5). Of the 4 valence electrons contributed by each carbon
atom, one is involved in a bonding band (non-dispersive) with the H, leaving 3
electrons per atom to be accommodated along the −C −C − C− chain. If the
C atoms were equally spaced, then there would be one full and one half-filled
band. This half-filled band is unstable to dimerisation by the Peierls mechanism
— doubling the lattice period, halves the Brillouin zone. It is often idealised as
an alternation of double and single bonds, viz. −C = C − C = C− .

The figure Fig. B.5 shows that there are two different but symmetry-related
ground states that can be formed by the dimerisation. One can readily imagine
that in a long chain, these two states might join up next to each other, and
that situation is visualised in Fig. B.6. The boundary between the two regions
cannot be locally “unwound”, because a large number of atoms will have to be
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Figure B.3: Electron diffraction image shows Bragg scattering from a CDW
formed in the compound La0.29Ca0.71MnO3. The real space image is at the top,
showing a short scale checkerboard that is the atomic lattice, with a periodic
modulation. The bottom figure is the fourier transform, so that the widely
spaced bright peaks come from the small unit cell (this compound is based on
a cubic perovskite, where the Mn atoms are on a simple cubic lattice), and the
less intense peaks in between are the CDW. The two periods (lattice and CDW)
are not related, because the CDW period is determined by the fermi surface size
and shape, which depends on the electron concentration. Here the presence of
an incommensurate ratio of trivalent La to divalent Ca means that the Mn
d-bands are only partially filled. [Image courtesy of J. Loudon, P.A. Midgley,
N.D. Mathur]
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Figure B.4: Phonon dispersion curves in the quasi- one-dimensional organic
compound TTF-TCNQ (tetrathiofulvalene tetracyanoquinone) along the direc-
tion of the chains in which there is a prominent soft phonon that turns into a
periodic lattice distortion at low temperature. (There are many non-dispersing
optical modes in the complicated unit cell. )[Mook and Watson, Phys. Rev.
Lett. 36, 801 (1976)]

Figure B.5: (a) shows a sketch of the atomic arrangement of polyacetylene, with
the C atoms as solid circles, and the H atoms as open circles. The C atoms
are not equally spaced, and the structure is often idealised as an alternation of
“double” and ”single” bonds, (b) and (c). The two isomers in (b) and (c) are
related by a mirror symmetry.



20 APPENDIX B. CHARGE DENSITY WAVES

Figure B.6: In (a) we create a region of dimerisation of the opposite sign in the
middle of another domain. The boundaries between the regions are “solitons”
(that are in practice several lattice constants wide), and one can see from the
schematic arrows that they are charged. (b) These are often described using a
phase degree of freedom, Eq. (B.5), which is sensible provided the variation is
slow (as it often is). The solitons act as potentials that can trap either electrons
or hole (c), producing new kinds of quasiparticles that have the spin of the
carrier but are electrically neutral.

displaced to do so. There is a topological distinction between the two states.

B.3 Semiclassical description

The solitons that form the boundaries are similar in character to a domain
wall in a magnet, (there separating a homogeneous region of spin-up from spin-
down). A convenient semiclassical description is to write the modulated CDW
as

ρ(r) = ρc + ρo cos(Q · r + φ(r)) , (B.5)

where the CDW is described by an amplitude ρo and a phase φ(r). ρc is the
(uniform) background density of the electron gas. If the phase is a constant, it
just defines the alignment of the density wave relative to the underlying lattice
- and in the case of polyacetylene, the two states (b) and (c) of Fig. B.5 are
described by phases different by exactly π.

In the solitonic domain wall, the phase is smoothly modulated between the
two minima - the CDW is expected to be elastic so that its period will not
change abruptly. In a coarse-grained semiclassical theory for the CDW, one
expects that the Hamiltonian density can be expressed to leading order just as
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a function of the phase alone, viz.

H =
∫
dx

[
1
2
K

(
∂φ

∂x

)2

− Vc cos(2φ)

]
, (B.6)

The first term in Eq. (B.6) is just the elastic energy cost of stretching or com-
pressing the CDW, and the second term is the commensurability energy, which
favours φ = 0, π as the two broken symmetry ground states.

We can extract from this the equation to describe a soliton from the varia-
tional minimisation of Eq. (B.6)

K
d2φ

dx2
= 2Vc sin(2φ) (B.7)

which integrates up to an elliptic integral. The width of the soliton is propor-
tional to (K/Vc)1/2, as can be seen using dimensional arguments from the above.
In polyacetylene, the soliton width is believed to be about 10 lattice constants,
large enough to justify the coarse-graining procedure above.

In the figure above, I indicated that the soliton boundary is charged, and
let us now make that argument a bit more solid. The CDW in equilibrium is
expected to have Q = 2kF to minimise the energy by putting a gap at the fermi
surface. However, suppose the wavevector shifted locally to Q+δQ, where using
Eq. (B.5) we have δQ = ∇φ(r).

Of course this puts a gap in “ the wrong place”, and if this were the case
everywhere in the solid, the chemical potential will lie in a band and the material
is a metal. But consider the situation where a local increase in δQ is balanced
elsewhere by a decrease. In some regions of the sample, the positive δQ makes
holes; elsewhere, a negative δQ generates electrons. This is a situation that is
not in equilibrium, because it would require a different chemical potential in
the different regions of the sample: after the potential has reached equilibrium,
there will be a net charge flow to make the chemical potential lie everywhere in
a gap (Fig. B.7). By counting the states that have been filled, one gets for a
physical charge density

ρ = − e

π
δQ = − e

π
∇φ (B.8)

The charge contained in the polyacetylene domain wall is exactly ±e, as adver-
tised.

This is no more than saying that when one compressed the CDW, one com-
presses not only the wave, but the whole of the electron density - see Fig. B.7.

B.4 Incommensurate density waves, sliding, and

nonlinear dynamics

Polyacetylene is a simple case where the CDW is commensurate with the under-
lying lattice - a doubling of periodicity. Here there are two inequivalent states,
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Figure B.7: In (a) the CDW is compressed (larger local wavevector) so the
gap occurs at a wavevector greater than kF . Elsewhere in the solid, it may
be extended, as in (b). In order to keep chemical equilibrium between these
two regimes, there is charge flow from one region to the other, and overall the
chemical potential stays in the energy gap. The arrangement of the charge
density in real space is shown in (a’) and (b’) below, stressing that the whole
charge density is modulated, including ρc.
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Figure B.8: Dark field image of the charge-density wave order in TaSe2. The
dark lines mark domain walls in the CDW; notice that they occasionally join
together in threes. See C. H. Chen, J. M. Gibson, and R. M. Fleming Phys. Rev.
B 26, 184-205 (1982), which also gives a detailed explanation of the methodology
of dark-field imaging of CDW. The origin of contrast here is in fact rather special
to the internal structure of the commensurate phase, but makes for some striking
pictures

and the charge on the domain wall is 2e/2. Fig. B.8 shows images of domain
walls in the two-dimensional material 2H−TaSe2, which is nearly period 3 (i.e.
Q = G/3, where G is a reciprocal lattice vector of the undistorted lattice). In
this case, there are three different (but identical in energy) topological states —
the domain walls have charge 2e/3 per unit cell — and the domain walls can
combine in three only at a vortex like defect.

Depending on the chemistry of the material, we may have CDW’s that are
entirely incommensurate with the underlying lattice, meaning that the periods
bear no rational relationship. Notice that this means that the broken symmetry
is now continuous - i.e. any value of the phase φ is equally good.

This is interesting — since ∇φ is a charge, φ itself is a polarisation. This
means that an electric field E will couple to the phase of the CDW, with an
energy P ·E = (e/π)φE, picking out the component of the electric field in the
direction of Q. An electric field therefore exerts a force on the CDW.

What is there to hold the CDW back? If the CDW is uniform, its energy
does not depend on where it sits, but in a real solid there are always defects
and impurities pin the CDW by locally deforming it. This means that a finite
field has to be applied before the CDW will move, but beyond this threshold
field the whole CDW slides through the lattice, reaching an equilibrium velocity
determined by the “frictional force” induced by the relative motion with the
underlying lattice. Because the CDW is rather stiff, it is not easy to pin, and
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Figure B.9: The inset shows the current induced in the cdw material TaS3, and
the main panel is the differential conductance σ = dI/dV . Below a threshold
voltage, the CDW is pinned, and the only contribution to the current is the
thermal activation of carriers across the CDW gap. Above VT , there is a large
contribution to the current that grows in a nonlinear fashion with increasing
voltage, which is the contribution of the sliding of the CDW.[From Gruner and
Gorkov,]

the electrical fields required to get it to move can be small - no more than V m−1

in some cases.

This physical system has turned out to be an interesting fruit fly to study
the nonlinear dynamics of extended, dissipative systems. We will just exhibit a
few examples of phenomena.

Non-linear I-V characteristics. Above a threshold field ET , the current
grows in a non-linear fashion, I ∝ (E − ET )ν . It turns out that this is a true
dynamic critical phenomenon - just as at a phase transition with temperature
an order parameter turns on in a non-analytic fashion, so here the CDW current
plays the role of the order parameter (Fig. B.9).

AC Noise. When the CDW is moving, at any point the CDW is sliding past
the pinning sites like a washboard. As it moves past, it undergoes a periodic
stick-slip motion, being periodically held back and then released. This means
that in consequence, the motion is not purely DC, but has an AC component
whose frequency is proportional to the DC current(Fig. B.10). If one applies
both an AC and a DC electric field, one can observe complex nonlinear dynamics
where the internal and external frequencies can be locked together (Fig. B.11).

Giant dielectric constant. Below threshold, while an electric field is not
enough to induce a steady current, it can produce a very large polarisation by
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Figure B.10: The output of a spectrum analyser of a sliding CDW system
shows peaks at frequencies (and their harmonics) that increase with increasing
cdw current. Measurements of the DC current show that the frequencies of the
narrow band noise peaks are consistent with the “washboard” motion: namely
ωnoise ≈ Qv, with v = jCDW /ne the CDW velocity, inferred from the measured
current jCDW and density n. The different curves are measured with increasing
dc current, from below threshold (e) - no sharp peaks - to the highest velocity
(a). [ From Gruner and Gorkov]
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Figure B.11: Here the CDW is driven by both a DC and and AC field V (t) =
V + VRF cos(ωRF t). Plotted is the resistance dV/dI for difference magnitudes
of VRF . The top curve is just the non-linear threshold behaviour, as seen above
(Fig. B.9), and the constant below threshold is just the resistivity of single
particles (it turns out that NbSe3 is a metal, so this is small. In the presence of
the RF field, new plateaus appear, corresponding to mode-locking of the CDW
when the washboard frequency is a rational multiple of the driving frequency -
often called a “devil’s staircase”.

deforming the CDW over large distances (Fig. B.12.)

Glassyness. The state below threshold is not unique, and is a model glass
which has barriers of varying sizes. This means that it has a distribution of
oscillation modes so that the response is not the Lorentzian of a single damped
oscillator, but has power law tails down to arbitrarilylow frequencies.

Avalanches. If you increase the field below threshold, larger and larger
pieces of the CDW try to break free, producing avalanches of increasing size as
threshold is approached. In fact CDW systems are nice models in the lab for
earthquake dynamics, and so-called “self-organized criticality” (Fig. B.13).

Further reading

G. Gruner, “Density Waves in Solids”, Addison-Wesley Publishing Company,
1994.



B.4. INCOMMENSURATE DENSITY WAVES, SLIDING, AND NONLINEAR DYNAMICS27

Figure B.12: Real and imaginary parts of the dielectric response function ε(ω)
of the material K0.3MoO3, which has a charge density wave below 180 K. A
typical dielectric material like a semiconductor has a dielectric constant of order
10 at most; and the frequency dependence occurs on the scale of the electronic
transitions. A CDW behaves like a sluggish (frequency dependence on the kHz
to MHz scales) and highly polarisable (static dielectric constants up to 107)
medium. [Cava et al. Phys. Rev. B 30, 3228 (1984)]

Figure B.13: Real part of the dielectric response function ε(ω) in K0.3MoO3,
as a function of d.c. bias. As the electric field increases towards threshold,
the medium becomes more an more polarisable, until at threshold the linear
response diverges. The resonant features above threshold occur when the driving
frequency matches the internal “washboard” of the moving CDW. [ Cava et al.
ibid]
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Appendix C

The Quantum Hall Effects

C.1 Basic transport phenomena

The quantum Hall effects are a set of phenomena observed at low temperatures
in very high mobility electron gases in two dimensions, in the presence of a
perpendicular magnetic field.

The basic phenomena are the discovery that the Hall conductance of the sys-
tem has integer quantisation in terms of the fundamental unit e2/h ≈ (26 kΩ)−1

by von Klitzing, Dorda and Pepper in 1980. In 1982 Tsui, Stormer and Gossard
found that at lower temperatures in samples that have higher mobilities, the
Hall conductance can be a rational fraction of e2/h.

Heterostructures and the 2D electron gas.

We discussed earlier the technique of modulation doping to produce a two-
dimensional electron gas in a semiconductor heterostructure (see Fig. C.1). This
method yields electron gases of very high mobility — exceeding 107cm2/V s —
and a mean free path of many microns. These are amongst the most perfect
conductors known.

In our discussion of semiclassics, we discussed the measurement of the Hall
effect, and its classical analysis. Remember that in a magnetic field, a voltage
develops perpendicular to the direction of current flow — the Hall voltage VH

— which must counterbalance the Lorenz force on the moving charges. The
magnitude of this voltage is expected to be proportional to the current flowing
between longitudinal contacts, and also linearly proportional to the magnetic
field.

In general, we relate the current density to the electric field by

Eα = ραβjβ (C.1)

29
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Figure C.1: Diagram of modulation-doped heterostucture [R.L.Willett, PhD
Thesis, MIT 1988)]
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or the inverse
jα = σαβEβ (C.2)

In an isotropic two dimensional system, we shall have σxx = σyy and σxy =
−σyx. Note that σ and ρ are inverse matrices, so that

ρxx =
σxx

σ2
xx + σ2

xy

(C.3)

ρxy = − σxy

σ2
xx + σ2

xy

(C.4)

Classically, the Hall resistance is

ρxy = RHB = − B

ne
(C.5)

As noted above, it is linear in field.

Integer and fractional quantized Hall conductance

At high temperature, and low magnetic fields, linearity of the Hall resistance
with magnetic field is always seen. But in high mobility samples, at low temper-
atures, and in large magnetic fields, a remarkable phenomena was discovered, as
shown in Fig. C.2. The Hall resistance develops plateaux at rational fractions
of the quantum of resistance

ρxy =
h

e2
q

p
(C.6)

where q and p are integers. The case where q = 1 is called the integer quantum
Hall effect (IQHE) and was discovered first. The general rational fraction is
called the fractional quantum Hall effect (FQHE) and was discovered a little
later, in samples with higher mobility. Corresponding to the plateaux in ρxy

there are deep minima in ρxx. Note that the minima in ρxx correspond also to
minima in σxx since when ρxy � ρxx, we have

ρxy → 1/σxy (C.7)

and
ρxx → σxx/σ

2
xy . (C.8)

As far as one can tell, the quantisation is exact — good to at least 1 part in
107 — and is now a laboratory resistance standard.

C.2 Landau level quantization

The orbital dynamics of an electron in two dimensions in a perpendicular mag-
netic field, in the absence of interactions and assuming a uniform potential are
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Figure C.2: Transport data for the Hall effect of a 2D electron gas as a function
of magnetic field. The top curve shows the integer Hall effect, and the lower
curve, in a higher mobility sample, the fractional quantum Hall effect. The
Hall resistance shows plateaux at ρxy = (h/e2) × (1/i) for the integer QHE,
and ρxy = (h/e2) × (q/p) for the FQHE. A fully developed plateau in ρxy is
accompanied by a deep minimum in ρxx [D.C.Tsui, Physica B 164 59 (1990)]
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described by the Hamiltonian

H =
h̄2

2m
(−i∇− e

h̄
A)2 (C.9)

where A is the vector potential so that the magnetic field is B = ∇∧A.

The wavefunctions will depend on the gauge, and here we take the Landau
gauge

Ax = −By , Ay = 0 (C.10)

so the Schr odinger equation is

h̄2

2m

([
−i

∂

∂x
−
eB

h̄
y

]2

−
∂2

∂y2

)
ψ = Eψ (C.11)

Separating variables, we can take ψ = eikxφ(y), yielding

h̄ωc

2

(
−l2

∂2

∂y2
+
[y
l
− kl

]2)
φ = Eφ (C.12)

which defines for us an energy scale (cyclotron frequency)

h̄ωc =
h̄eB

m
(C.13)

and a length scale (magnetic length)

l2 =
h̄

eB
(C.14)

The schrodinger equation describes a displaced harmonic oscillator, where the
y-origin (kl2) is proportional to the x-momentum k. The energy of the levels is
independent of k, the usual ladder of eigenvalues

Enk = h̄ωc(n+
1
2
) (C.15)

and corresponding wave-functions

φnk(y) ∝ Hn(y/l − kl) × exp [−(y − kl2)2/2l2] (C.16)

where Hn is a Hermite polynomial.

There is a large degeneracy in each Landau level, which is determined by
counting states. If we take L to be the length of the sample in the x−direction,
and W the width in the y−direction, then k = 2πs/L, with s an integer. But
since the centre of the level must lie in the sample 0 < kl2 < W , the total
number of states in the Landau level is

N =
LW

2πl2
(C.17)
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or more conveniently, that the number of states per unit area of a full Landau
level is

nB =
1

2πl2
=
eB

h
= B/φ0 (C.18)

where φ0 is the flux quantum.

It is then convenient to measure electron densities in units of nB , and we
define the Landau level filling

ν = n/nB (C.19)

Notice that we chose states that are extended in the x-direction, despite that
there is nothing in the problem to single out the x-direction over the y. Since
there is a massive degeneracy of states, we can in fact choose linear combinations
of these states to produce eigenstates localised along y (or any other direction,
for that matter.) It turns out not to be possible to produced eigenstates that
are delocalised in all directions, and this is important.

Angular momentum eigenstates. The particular eigenstates above came
out most easily because of our choice of gauge.1 It is sometimes convenient to
work with complex coordinates in 2D: z = x + iy; z̄ = x − iy; ∂ = ∂/∂x −
i∂/∂y ; ∂̄ = ∂/∂x + i∂/∂y. In the symmetric gauge, A = 1

2
B(1,−1), then the

Hamiltonian becomes

H =
h̄2

m

[
−2(∂ − z̄

4l2
)(∂̄ − z

4l2
) +

1
2l2

]
, (C.20)

We can now work with eigenstates of both Lz = h̄(z∂ − z̄∂̄) and H,

ψnm(zz̄) ∝
(

z√
2l

)m

Lm
n (

zz̄

2l2
)e−zz̄/4l2 (C.21)

Here the Lm
n are Laguerre polynomials, n = 0, 1, 2, ... labels the Landau level,

and m = −n,−n + 1, ... is the eigenvalue of the angular momentum. We shall
later focus on the lowest Landau level, n = 0, when the Laguerre polynomial is
a constant. In that case, the eigenstates all have the form

ψ0m ∝ (x+ iy)me−(x2+y2)/4l2 (C.22)

The eigenstates have a probability density that lies on a ring of radius rm ≈√
2ml , with a width of order l . Whereas the x-directed states are “tubes” strung

along a line, these are rings.

Lastly, it should be evident from Eq. (C.22) that any wavefunction with the
property that it lies in the lowest Landau level has the character f(z)e−zz̄/4l2,
where f(z) is an holomorphic or entire analytic function of z.

Spin. We shall suppress the discussion of spin, which at this level is sub-
sumed by adding in the Zeeman energy of the electron ±1/2gµBB, for the up

1Remember of course that if we make a gauge transformation A = A+ ∇χ, where χ is an
arbitrary scalar field, then the wavefunction transforms to ψ → ψeieχh̄.
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Figure C.3: Density of states of a 2D uniform electron gas in a magnetic field.
The flat density of states in zero field (light gray) is confined to sharp Landau
levels at equal spacing h̄ωc. The levels here are shown broadened, as produced
by weak disorder — in a perfectly clean sample the states are δ−functions. The
number of states in each level accounts for the area between the dashed lines at
zero magnetic field.
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and down polarised spin-half electron states. Each Landau level then splits into
two. In GaAs, it turns out that the Zeeman splitting is about 60 times smaller
than the cylcotron energy.

Disorder. Once we add any space dependent potential to the Hamiltonian,
the infinite degeneracy of each Landau level will be broken, and the density of
states will be broadened, as suggested by Fig. C.3. Almost all of the eigenstates
are localised, though it turns out that there must be at least one that can carry
a current from one side of the sample to another. One useful limit to visualise
the states is in a smooth random potential, varying only on length scales much
bigger than l .

If the potential is smooth, it is natural to expect that the wavefunctions
corresponding to eigenstates in the tails of the density of states are localised
either near the bottom of valleys, or the tops of hills, depending on whether
the state is well below or well above the middle of the band. Remember that
classically the orbits of an electron in a magnetic field move round equipotentials,
one can expect that in this limit the eigenstates are tubes of width l that follow
the equipotential contours. The orbital quantisation will be given by the Bohr-
Somerfeld rule, that the phase accumulated around the orbit be a multiple of
2π. (Note that the wavefunctions of Eq. (C.22) are proportional to rmeimφ, and
approximately enclose an “area” 2πml2, which contains m quanta of magnetic
flux.)

In two dimensions, equipotentials are like contours on a map. Those at low
energies, circulate round valleys, and at high energies, around hills. These are
all localised wavefunctions — only a single contour constitutes and extended
state. Note that in a magnetic field, the electron orbits in the opposite sense
around a hill to a valley, and this topological change occurs at the percolation
threshold.

C.3 Integer QHE

We are now in a position to go back and look at the transport data. It turns
out that the IQHE can be largely understood in a picture where interactions
are neglected.

Note that the number of states in each Landau level is proportional to the
magnetic field. In Fig. C.4, we sketch how the chemical potential must adjust in
the ideal system as the magnetic field increases. There are abrupt fields where
the chemical potential drops from one Landau level into the next. These critical
fields correspond to integer filling. These values of magnetic field line up nicely
with the centres of the plateaux in the upper panel of Fig. C.2.

Now focus on the resistivity ρxx or equivalently σxx. The regimes of field
where σxx is appreciable must be precisely when the chemical potential is passing
through the middle of the Landau level and through the extended states. When
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Figure C.4: The energies of the Landau levels spread out as a fan with increasing
magnetic field. The chemical potential (thick solid line) adjusts to keep the total
number of occupied states conserved, and repeatedly jumps between levels - at
fields corresponding to integer filling ν = n2πl2, i.e. B ∝ 1/integer.

the fermi level is within the regime of localised states, the diagonal conductivity
is zero, and the Hall conductance cannot change — it must lie on a plateau.
Note that both ρxx and σxx vanish together.

What about the exact quantisation? It can be constructed from a gauge
argument. To simplify the story, we shall turn our sample into a Corbino ring
(see Fig. C.5, where we assume that there is a current flowing around the ring,
and therefore a Hall voltage VH between the inner and outer edges. Now we
imagine that we adiabatically thread a flux Φ into the central hole, so that
eventually a whole flux quantum Φ0 has been introduced. Note that states that
do not extend around the hole cannot tell about the flux, but those that do pick
up an Aharonov-Bohm phase

∫

C

A · dr = 2πΦ/Φ0 (C.23)

Now when the flux introduced is an integral number of flux quanta, the Hamil-
tonian, and hence the spectrum, is the same as before — the only thing that
may change is the occupancy of the states. For the angular momentum states
above, the process boosts the angular momentum quantum number from m to
m+ 1. All the particles move out, and effectively one electron is shifted overall
from the inside to the outside. In this case the work done is ∆U = eVH . If
p electrons were to move (one from each occupied Landau level) the work is p
times as large.
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Figure C.5: Corbino disk geometry.

Separately, one may show quite generally (see your favourite QM text) that
the induced current around the disk is related to the work done by

I =
∂U

∂Φ
=

∆U
Φ0

= p
e2

h
VH (C.24)

The point is that the only possible effect of the flux introduction is that an
integer number of electrons are shifted from the inside to the outside of the ring
— and that integer determines the Hall conductance.

C.4 Fractional QHE

This argument does not seem to allow for fractional quantisation. Suppose,
however, that the system had a more complex set of eigenstates, and that in
fact q flux quanta had to be introduced in order to return the system to itself.
Then the argument would comfortably yield σxy = p

q
e2

h .

Such a result would also be straightforward if the excitations had not charge
e, but charge e/q — and this is essentially the correct result. Such a state occurs
because of the repulsive Coulomb interactions between electrons.

We will intuit our way to this result following the path trodden by Laughlin.
We assume that we are at fields in the lowest Landau level, so that we will
restrict ourselves to use single particle states of the form Eq. (C.22). We need
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to construct many-body wavefunctions where the particles keep away from each
other, and also to satisfy antisymmetry.

The simplest antisymmetric state is a Slater determinant. The problem here
is to choose which single particle states enter the Slater determinant – earlier
we chose a set of single particle states that had the lowest kinetic energy, i.e.
|k| < kf . But the angular momentum eigenstates all have the same energy.

The only case that is simple is if we occupy all the states. Then the deter-
minantal wavefunction will be

ψ1 =
N∏

i<j

(zi − zj) × exp

[
−

N∑

k=1

zk z̄k/4l2
]

(C.25)

This state has a density that corresponds to a filled Landau level, and is homo-
geneous in space.2 Notice that antisymmetry is satisfied by having a node in
the wavefunction sited on every particle. The state is unique — no other state
can be constructed of the maximum density ν = 1 while keeping to the lowest
Landau level basis.

Now consider the states

ψ1/m =
∏

i<j

(zi − zj)m × exp

[
−

N∑

k=1

zk z̄k/4l2
]

(C.26)

which are clearly special in the same way the filled Landau level is special. In
order to satisfy antisymmetry, m must be an odd integer. This state should
be of low energy because the nodes are “deep”. And a little manipulation
shows that this state has a density ν = 1/m. (This can be seen approximately
by noting that the maximum angular momentum for a single particle state is
mN , corresponding to a radius

√
2mN l .) These “Laughlin fractions”, ν =

1/3, 1/5, ... correspond to the most visible plateaux in experiment. Notice that
even denominators do not appear in experiment.

Of course to understand transport in a many-body system, one needs not
the ground state but the excitation spectra. Laughlin guessed an approximate
wavefunction for a quasi-hole at position Z0, by the argument of threading
through a flux quantum at that point - whereby each single particle state gets
an angular momentum boost by 1, viz.

ψhole =
∏

(zi − Z0)ψ1/m (C.27)

Note that since each single particle state has an occupation probability of 1/m,
only a fraction 1/m of an electron is transported away from the hole — the
charge is in effect e/m! One can solidify this result and take it further, to show
that in fact these quasiparticles obey fractional statistics.

2Some trickery to convert the determinant where the columns are 1, z, z2 , z3 , ... to the
product is also needed.
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This is only a taster of a very rich subject. One very productive way to
view the FQHE states is the binding of multiple zeros of the wavefunction
to individual particles, and it is this topological construct (rather than the
accuracy of any particular form of the wavefunction — Eq. (C.26) is not exact)
that enforces the exact statistics of the quasiparticles. The many higher states
can be built up by hierarchical approaches, simply the 1/3 is the most robust.

Further reading

The Quantum Hall Effect, ed. R.E.Prange and S.M. Girvin, 2nd edition, Springer,
1990.



Appendix D

Magnetism

Magnetism is a phenomenon produced by interactions between electrons. Al-
though the interactions in the Hamiltonian are independent of the electron spin,
the effects of Pauli exclusion are such that the total energy depends on the
spin configuration. Magnetic phenomena include not just the familiar ferro-
magnetism, but also anti-ferromagnets with more complicated magnetic order
where the spins are ordered but not parallel, so there is no net magnetic mo-
ment. There are complementary views of magnetism as originating either from
the alignment of local moments or from a spontaneous spin polarisation of itin-
erant electrons. We begin with the former.

D.1 Spin paramagnetism in metals

We first review the theory of Pauli paramagnetism. We consider a fermi gas
with energy dispersion εk in a magnetic field H. Because of the energy of the
spin in a magnetic field, the spin-up and spin-down bands will be split (see Fig.
D.1), and have energies

εk↑ = εk + µBH ,

εk↓ = εk − µBH . (D.1)

Since the chemical potential must be the same for both spins, there must be a
transfer of carriers from the minority spin band to the majority

n↑ − n↓ = µBHg(µ) (D.2)

41
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Figure D.1: Spin-split bands in the Stoner approximation

where g(µ) is the density of states at the Fermi level1. The magnetisation is
M = µB(n↑ − n↓) which then gives us the static spin susceptibility

M

H
= χσ = µ2

Bg(µ) . (D.3)

D.2 Ferromagnetism in the Stoner-Hubbard model

Now let us include in a very simple fashion the effect of interactions. Remember
how in the Hartree-Fock theory of the electron gas we found that the effect of
exchange was to lower the energy of the fully spin-polarised state with respect
to the paramagnet. (See A.4). In the Stoner-Hubbard model we postulate an
effective interaction U between up and down spin densities

Ĥint = Un↑n↓ , (D.4)

The energies of the two spin bands are now (see Fig. D.1)

εk↑ = εk + Un↓ + µBH

εk↓ = εk + Un↑ − µBH (D.5)

With the same approximation as before - that the density of states can be
taken to be a constant, we can then self-consistently determine the average spin
density

n↑ − n↓ = [U (n↑ − n↓) + 2µBH]
1
2
g(µ) . (D.6)

1Obviously, we must assume that the splitting is small enough that the density of states
can be taken to be a constant. We define g(µ) to be the density of states for both spins.
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The magnetisation is M = µB(n↑ − n↓) which then gives us the static spin
susceptibility

χσ =
µ2

Bg(µ)

1 − Ug(µ)
2

. (D.7)

In comparison to the non-interacting case, the magnetic susceptibility is
enhanced, and will diverge if U is large enough that the Stoner criterion is
satisfied

Ug(µ)
2

> 1 , (D.8)

which marks the onset of ferromagnetism in this model.

D.3 The origin of local magnetic moments

Strongly-bound core states in atoms acquire magnetic moments because of inter-
actions between electrons. The general rule is that many-particle wavefunctions
that are built out of orthogonal orbitals have a tendency to spin-alignment. This
is one of the Hund’s rules, and can be understood easily within the Hartree Fock
approximation.

As a simple example, consider a model atom with two orbitals of single-
particle energies EA,B in which we wish to accommodate two electrons (Fig.
D.2). Often they will be of similar, or identical energies, but for definiteness,
let’s take EA < EB . Within Hartree-Fock (see Eq. (A.15)) in this simple model,

2E +QA AA
E + QA ABE +B E + Q -JA AB ABE +B

A

B

Figure D.2: Possible low energy configurations of two electrons in a two-level
atom

there are the following interaction terms: the direct (Hartree) terms

QAA = < AA| e
2

r12
|AA >

QAB = < AB| e
2

r12
|AB > (D.9)

QBB = < BB| e
2

r12
|BB >
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and the exchange energy

JAB =< AB| e
2

r12
|BA > (D.10)

that operates only betgween configurations where the single particle states are
occupied with identical spin. Since the orbitals are assumed orthogonal, then
QAA ≈ QBB � QAB ≈ JAB

The three configurations have the energy shown in Fig. D.2; two are singlets,
and the last is a triplet. The triplet configuration will have the lowest energy if

QAA − QAB + JAB > EB − EA (D.11)

which is very commonly the case when QAA is large.

This simple example reflects a general phenomenon, seen clearly with wave-
functions that can be factorised into a product of orbital and spin components.
Because the total wavefunction must be antisymmetric, if we choose the spin
wavefunction to be symmetric under exchange of coordinates (which here en-
forces a triplet: one of | ↑↑>; | ↓↓>; 2−1/2(| ↑↓> +| ↓↑>))then the spatial part
of the wavefunction is anti- symmetric. The singlet state 2−1/2(| ↑↓> −| ↓↑>)
is antisymmetric in spin space, and therefore the real space wavefunction must
be symmetric. An antisymmetric wavefunction must have nodes whenever two
spatial coordinates are equal: ψ(...., ri = r, ...rj = r, ...) = 0. So it is then clear
that the particles stay farther apart in an antisymmetrised state than in a sym-
metric state, and because of the Pauli principle an antisymmetric wavefunction
(which will generally have high spin) has lower energy.

The physical reason for the existence of local moments on atoms is then a
combination of the Pauli principle together with repulsive interactions between
ions. If we consider, say, d-levels in an ion, since the d-states are degenerate, we
shall always get high spin configurations. However, in the environment of a solid,
the d-levels are split because the atom is no longer in a potential of spherical
symmetry. If this crystal field splitting is large enough, then the condition of
Eq. (D.11) will not be satisfied, and the orbitals will be filled one after another
- and generally the atom will have low spin.

D.4 Types of magnetic interactions

The existence of magnetic moments locally on atoms is only part of the story of
magnetism, because to obtain an ordered magnetic ground state, the moments
between neighbouring atoms must be coupled. There are a number of different
ways that these couplings can arise. The net effect of the couplings between
neighbours can in the end usually be parametrised quite simply, just in terms
of pairwise interactions between spins on neighbouring sites, viz.

Hspin = −
∑

ij

JijSi ·Sj (D.12)
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This is the Heisenberg model, which now couples the total spin on an atom
(which will be determined by the solution of the atomic problem ) to that of its
neighbours. Notice that the coupling only depends on the relative orientation
of the spins, and not on their absolute direction relative to the crystal lattice.
When the angular momentum of the ion contains an orbital part as well as a
spin part, then the spin Hamiltonian will include a piece that depends on the
absolute spin direction.

Dipolar Interaction

The first idea might just be that the moments could couple via through the mag-
netic fields they generate. However, this is very small: the energy of interaction
of two magnetic dipoles of strength m at a distance r is of order µom

2/4πr3.
Putting in a magnetic moment of order a Bohr magneton, we get

Udipolar ≈ µo

4π
(
eh̄

2m
)2

1
r3

≈ πα2(
aBohr

r
)3Ryd. (D.13)

where α ≈ 1/137 is the fine structure constant. At typical atomic separations
of 2nm, this is about 4 × 10−5 eV, or less than a degree Kelvin. As always,
magnetic interactions are over-ruled by charge interactions, and such energy
scales are rarely important. 2

Dipolar terms do play an important role in the domain structure of magnets,
once the spins have already been aligned by other means.

Direct exchange

The intra-atomic exchange interaction we discussed in Sec. D.3 is an example
of direct exchange, because it comes from interactions between overlapping or-
bitals. When the orbitals concerned are orthogonal, J is positive in sign, i.e.
the lowest energy state is a triplet. However, if the overlapping orbitals are not
orthogonal – as will happen between two orbitals between neighbouring atoms
– the interaction may be of a negative sign, so the lowest energy is a singlet.

Qu.4.3 Covalent bonds are singlets How is it that electrons in a
covalent bond - e.g. H2 - are almost invariably in singlet states? The
two atomic states that make up the wavefunction are not orthogonal,
and so the charge density is not independent of the spin-state of the
ions. The singlet state will lead to a charge density that is more
favourable for strong bonds than the triplet.

Consider single-particle wavefunctions on two neighbouring identi-
cal atoms ψA, ψB , which may be assumed real. These are to be used

2Interactions between electrical dipoles – as occurs in a ferroelectric – are not negligible.
Here we get the same expression but without the factor of α2
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as the basis for a two-electron state. Show that the charge density in
a singlet (triplet) state made out of the two orbitals is given by

ρ(r) = |ψA(r)|2 + |ψB(r)|2 ± 2 < ψA|ψB > ψA(r)ψB(r) . (D.14)

By reference to Fig. D.3, explain why the singlet state will usually be
lower in energy.
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Figure D.3: A sketch of the charge density for the wavefunctions in a singlet
state (solid line) and a triplet state(dotted line) for two overlapping gaussian
orbitals in Eq. (D.14)

Indirect exchange in metals

In a d- or f-band metal, such as Fe, there are both localised electrons with a
moment derived from the tightly bound orbitals, and itinerant electrons derived
from the s-p bands. The itinerant bands are weakly, if at all, spin-polarised by
themselves because the exchange interactions are small and the kinetic energy
large. However, the itinerant carrier acquires an induced spin polarisation due to
its interaction with the core spin on one atom. This spin polarisation can then
be transmitted to a neigbouring ion, where it attempts to align the neighbouring
spin. There is then an interaction, often ferromagnetic in character, produced
by this mediated interaction, often called RKKY ( for Ruderman-Kittel-Kasuya-
Yoshida).

A more detailed view of this process can be given. If we have an ion of spin S
embedded in the conduction electrons, one would expect that the local direct exchange
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Figure D.4: . In metals, a local moment will polarise the conduction electron
spins, producing a spin density that decays away and oscillates in sign with
period 1/2kF . The interaction of the induced spin density with a neighbouring
local moment produces the RKKY interaction

will give rise to a contact interaction of the form

Hint = −JS · sδ(r) , (D.15)

with s the conduction electron spin density, and J a direct exchange interaction. The
spin density is not otherwise polarised, but the perturbation will induce a weak spin
density modulation in the conduction cloud, which will of course decay away to zero
at large distance from the ion. The induced spin density is just

s(r) = Jχσ(r)S (D.16)

where we have introduced the spin susceptibilityχσ. (Above we considered the average
spin susceptibility to a uniform field, this is a generalisation to non-uniform fields).

At a nearby lattice site (say R), the induced spin density caused by the polarisation
of one atom interacts with the spin of another, and the energy is then

−JS(R) · s(R) = J2χσ(R)S(R) · S(0) , (D.17)

Summing over all pairs of sites in the crystal we obtain

HRKKY = −
∑

ij

J2χσ(Rij)S(Ri) · S(Rj) . (D.18)

If we could replace χσ(Rij) by its average (say Eq. (D.3)) then one would predict
a long range ferromagnetic interaction, which is not far from the truth for many
materials. Of course, in a more accurate theory, χ decays as a function of distance.
A careful analysis shows in fact that χ oscillates, changing sign as it decays, with a
wavelength π/kF . The origin of these Friedel oscillations is the fermi sea itself. Since
the electron gas occupies states of momenta smaller than kF , it is not possible for it to
respond to a spatial frequency faster than 2kF , and there is a sharp kink in χ̃(q) 3 at
the momentum q = 2kF . Sharp features in momentum space give rise to oscillations
in real space for the fourier-transformed χ(r), appearing as oscillations visualised in
Fig. D.4.

We saw that χo is of order g(µ), the density of states per unit energy, so the the
Heisenberg interatomic exchange parameter is of order J2N(µ) which can be large -
up to fractions of an eV .

Superexchange and insulating antiferromagnets

When there is strong overlap between the orbitals as in a typical covalent bond,
the energy lowering of the singlet state is subtantial, and the system has no

3Here χ̃(q) =
∫
dr exp(iq · r)χ(r) is defined in fourier space
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magnetic character. However, a special class of much weaker interactions can
be important when two magnetic moments are separated by a non-magnetic ion
(often O2−) in an insulator. There is a small overlap of the magnetic orbitals
occurring on the mediating non-magnetic ion, and the system lowers its energy
by having some increased density on the this ion. Just as in H2, this overlap is
favoured in a singlet state.

In this insulating situation, the electronic structure is ionic, not covalent, so
it is not possible to form a complete singlet ground state (crudely, each atom
will have several neighbours, and cannot choose a single neighbour to pair with).
An alternative state has the spins anti-aligned,

|↑↓〉 (D.19)

rather than in a total singlet,
|↑↓〉 − |↓↑〉 (D.20)

When extended throughout the solid, Eq. (D.19) describes an antiferro-
magnet, where alternate sites have antiparallel spins (see Fig. D.5). On more
complicated lattices, very complex arrangements of spins can result.

The magnitude of this interaction is often quite small, in the range of a few
to a few hundred degrees Kelvin. Consequently, these systems will often exhibit
phase transitions from a magnetically ordered to a disordered paramagnetic
state at room temperature or below.

D.5 Collective magnetic properties

D.5.1 Magnetic phase transitions

The Heisenberg model, however complicated the mechanisms that generate the
interactions, provides a very good description of the low energy spin dynamics
of many magnetic materials.

For most purposes, and especially to describe phenomena at finite tempera-
tures, it turns out that the spins can be treated classically and so the analysis
of magnetic ground states and magnetic ordering becomes a topic in classical
statistical physics, that is somewhat removed from the agenda of this course.
Because the interaction J is usually small in comparison to other electronic
energies in the problem, we need to include the thermal fluctuations only of
the spins at low temperatures, because other degrees of freedom are compara-
tively stiff, so produce only small changes to the free energy at the temperatures
where macroscopic magnetic phenomena are seen. The transition temperature
of a magnet is determined by a competition between the energetics of the inter-
action between spins – favouring ordering – and the entropy, which is larger in
a disordered state. Only in rare cases do we need to go beyond simple classical
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Figure D.5: . Schematic picture of the ground state of a ferromagnet and
an antiferromagnet. The order parameter for the ferromagnet is the uniform
magnetisation, and for an antiferromagnet it is the < S(Q) >, where Q is the
wavevector corresponding to the period of the order

models of interacting moments to understand the magnetic behaviour of real
materials.

Depending on the sign of J , the ground state will be ferromagnetic (aligned
spins) or anti-ferromagnetic (anti-aligned spins on neighbouring sites); more
complicated magnetic states can arise if we have different magnetic ions in the
unit cell, and also on taking account of magnetic anisotropy.

While it is straightforward to measure the magnetisation in a ferromagnet,
measuring the order parameter of an antiferromagnet is more tricky because it
corresponds to spins ordering with a finite wavevector. Such order can, however,
be cleanly observed by elastic neutron scattering (see Fig. D.8).

D.5.2 Spin waves

We learned earlier that a consequence of having a periodic lattice is that small
amplitude dynamical modes exist - phonons, or sound waves. In a solid with
magnetic order, the analogous modes are small oscillations of the spin magnitude
and direction, known as spin waves.

In the magnetically ordered state, the picture is different, and we will con-
sider here the case of a ferromagnet, starting from the nearest neighbour Heisen-
berg Hamiltonian

HHeis = −J
∑

i,j=n.n

Ŝi · Ŝj (D.21)

The spin variables are angular momenta, and as such they satisfy the commu-
tation relations for angular momenta

[Ŝα, Ŝβ] = ih̄εαβγ Ŝγ , (D.22)

where the subscripts in Eq. (D.22) refer to the cartesian axes (x, y, z), whereas
those in Eq. (D.21) are the site labels.
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Figure D.6: The top figure shows the classical picture of a spin wave generated
by an array of precessing spins; the bottom figure shows the same viewed from
the top.

We can use these two equations to obtain the Heisenberg equation of motion
for a spin at a single site

˙̂Sn = − i

h̄
[Ŝn,HHeis] =

2J
h̄

∑

j=n.n. of n

Ŝn ∧ Ŝj (D.23)

To derive this, we need to assume (correctly) that spin operators on different
sites commute. The factor of two in this equation comes about because HHeis

contains a sum over all pairs i, j, and the commutator will pick out terms with
both i = n and j = n.

Notice that the form of this equation is that it describes precession of the
spin at site n about the effective exchange field J

∑
j Ŝj of the nearest neighbour

spins. While this is a fully quantum mechanical problem, we can gain insight
(and the correct answer when the magnitude of the spin is large) by treating
this in a semiclassical approximation. 4

We can assume that in the ordered state there is a uniform ferromagnetic
moment < S >= Sẑ, which we have chosen to point in the z-direction. We
shall now look for the collective modes of small amplitude spin fluctuations
about the magnetically ordered ground state. One can guess the form of the
solutions by considering a single spin tilted from its axis by a small angle, while
the neighbouring spins are held fixed - in this case the spin will simply precess
in a circle about the ẑ-axis. But of course the motion of one spin will affect
the others, so the precession of a single spin will not be an eigenstate; but if
all of the spins precess in such a way as to keep the relative angles between
neighbours constant, then we can have a wave with uniform precessional rate.
This is shown pictorially for a one-dimensional chain in Fig. D.6

To get the dispersion relation for the spin wave mode, we write

Ŝn = Sẑ + δSn (D.24)

4The quantum mechanical case is not much more difficult, but involves making a different
representation for the quantisation of the spins; see Marder pp 753-757 .
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Figure D.7:

where δSn is a vector lying in the x−y plane. Substituting this into Eq. (D.23)
we get

˙δSn =
2JS
h̄

∑

j=n.n. of n

(δSn − δSj) ∧ ẑ (D.25)

The equation in now classical – all the operators have been approximated by
classical vectors.

By considering two neighbours of the nth spin, as in Fig. D.7, each at relative
angles θ, one can show that the rate of precession according to Eq. (D.25) is

ω =
4JS
h̄

(1 − cos θ) . (D.26)

Thus for a spin wave of wavevector q, the dispersion is

h̄ω = 4JS(1 − cos(qa)) . (D.27)

The generalisation to a three-dimensional lattice is quite straightforward:

h̄ωSW (q) = 2ZSJ(1 −
1
Z

∑

R=n.n.

eiq·R) , (D.28)

where Z is the number of nearest neighbours. Notice that as q → 0, ω ∝ q2.

We are of course not surprised to find the mode frequency vanishing in the
long-wavelength limit, because at q = 0, this mode would be a uniform tilting
of all the spins in the whole lattice. The Heisenberg model knows only about
relative directions of spins, so this must have zero energy; our choice of the
z-direction for the ordered moment was completely arbitrary. However, the
quadratic - rather than linear, as for phonons - behaviour is a consequence of a
further conservation law – the total spin

∑
i Ŝi commutes with the Hamiltonian

Eq. (D.21). In the case of the Ferromagnet this means the order parameter is
conserved and the quadratic dependence is a characteristic of ferromagnetic spin
waves; spin waves exist also in antiferromagnetically ordered states, but their
momentum dependence is indeed linear in that case.
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D.5.3 Neutron scattering

Neutron scattering is an ideal probe for the observation of typical magnetic
fluctuations in solids, because the characteristic energy and momentum range of
spin fluctuations is comparable to the energy-momentum dispersion of neutrons
available either from reactor or “spallation” sources. Neutrons have a magnetic
moment, and therefore interact with magnetic electronic fluctuations, as well as
directly with the nucleus.

Reactor sources of neutrons operate continuously, and the energy range of
the neutrons is determined by thermalising with a surrounding moderator. This
produces beams with a broad band of wavelengths. In a spallation source, neu-
trons are produced by the bombardment of a heavy metal target with energetic
particles from an accelerator. Specific wavelengths can be separated out by
scattering from a single crystal monochromator – that operates in essentially
the same way as a diffraction grating for light – or by a “chopper” spectrometer
that selects the velocity directly.

The neutron-nucleus interaction makes neutron scattering a useful probe
for crystal structure determination (elastic) and determining phonon dispersion
relations (inelastic). The magnetic interaction allows neutrons to be used as a
probe to determine the magnetic ordering of magnetic ground states (by elastic
scattering), and to determine the magnetic fluctuation spectrum by inelastic
scattering.

Its value is best displayed by showing some data. Fig. D.8 shows elastic
magnetic scattering determining the existence of an antiferromagnetic ordered
phase5. and Fig. D.9 shows how inelastic neutron scattering can be used to
determine the dispersion relations of spin waves in a ferromagnet6.

5R.Plumier, data quoted by Kittel, p 698
6T.G. Perring et al., Physical Review Letters 77, 711 (1996)
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Figure D.8: Elastic neutron scattering onMnV2O4, which is an antiferromagnet
with a transition temperature of TN = 56K. The angular scan measures the
angle of diffraction of the neutrons, and two magnetic peaks can be seen, that
decrease in intensity as the temperature is raised.
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Figure D.9: Inelastic neutron scattering from the ferromagnet La0.7Pb0.3MnO3,
which is well described as a Heisenberg ferromagnet, at 10K. The upper figure
shows a slice of the spectrum at a constant energy transfer of approximately 7
meV, as a function of momentum near the (100) reciprocal lattice point. The
two peaks correspond to excitation of spin waves of well-defined momentum,
with the width of the peaks in the figure given entirely by the experimental
resolution. The lower figure maps out the full dispersion relation of the spin
waves in the major symmetry directions, using multiple scans of the type shown
above (the material is a cubic perovskite, and the magnetic Mn ions lie on an
f.c.c. lattice). The solid line is a fit of the dispersion curve to a nearest neighbour
Heisenberg model, with an exchange constant 2JS = 9 meV ; the dotted line
corresponds to a slightly different theoretical model – whose distinction from
the Heisenberg model is of no consequence to our discussions.
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Heavy fermions

E.1 The electron as a collective excitation

The title of this section seems rather perverse, because we surely know that an
electron is a fundamental particle. But in a solid, the an individual electron
cannot be separated from the rest of the interacting quantum liquid, so the
existence of individual particles is moot. Instead, we should think of the kind
of experiments we might do to study “electron-like” excitations.

In a non-interacting system, the electrons go into band eigenstates. If we
include the electron-electron interactions in an average fashion - e.g. Hartree or
Hartree-Fock theory - then we still have the concept of bands (whose energy is
changed by the interactions) that are discrete eigenstates with a single-particle
like index. But this is clearly an approximation, and what can in fact survive
beyond this?

In a real experiment, we do not measure the ground state properties but the
excitations. One simple excitation is the addition or removal of an electron to
the system: e.g. via tunnelling or photoemission. If we put a particle into a
single-particle eigenstate of the Hamiltonian labelled by its momentum k, then
the wavefunction will evolve in time following the Schrödinger prescription

ψk(r, t) = ψk(r)e−iεkt . (E.1)

Here ψk is the Bloch wavefunction satisfying the time-independent Schrödinger
equation, and the time-dependent solution oscillates in time with a single fre-
quency ω = εk, the band energy.

What about an interacting system? If we add a particle, it will collide,
interact, and exchange with all the other particles in the system, but supposing
the interactions are weak (though they aren’t) one might imagine that something
similar to the particle will survive.

First, if we fix the momentum k of the excitation, that cannot change be-

55
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cause the two-particle interactions conserve momentum. Of course, some of the
character of the original particle will now be shared with a “cloud” of electrons
screening it.

Second, since we can see that in a metal there is a continuum of excita-
tions, we should expect it to decay with a finite lifetime - say 1/Γk. The time-
dependence of the state will now become e(iεk−Γk)t.

Third, there is no reason that the dispersion relation should be the same as
for the free particle: we should replace εk by a renormalised ε̃k. This latter is
often referres to as a mass renormalisation: m∗/m = εk/ε̃k.

This propagating (and decaying) object we call a quasi-particle. If Γk is
small, then the quasiparticles are long-lived and have some real meaning. They
also have charge e and spin 1

2
; we will not mess with Fermi statistics here.

The Fermi liquid

Why is it that Γ can be small in a metal where the typical separation between
electrons is only an Angstrom or so? The answer is provided by Fermi statis-
tics, and is codified in Landau’s theory of the Fermi liquid. In short, the fact
that Fermi statistics exclude double occupancy of the same quasiparticle state
guarantees that

Γ ∝ (ω − µ)2 . (E.2)

So for excitations close to the fermi surface, the lifetime becomes very long.
Furthermore the quasiparticle states are in one-to-one correspondence with the
states of the non-interacting system - which means that the volume of the fermi
surface is unchanged.

This is an extraordinarily important result for metals. It explains why it
is that the mean free path in, e.g. copper, is very long at low temperatures if
the material is pure enough, despite the fact that the characteristic separation
between electrons is of order a lattice constant and their interaction energy is
of order a few eV. The electrical current is carried by a quasiparticle excitation
that is a collective mode of the fermi system. In the language of perturbation
theory, the quasi-particle is a “dressed” excitation, that involves a correlated
motion of the added electron together with the many-body background.

Here is a sketch of how to obtain that result. Let us assume that quasiparticles
exist, and estimate the effect of the interactions between them. So in Fig. E.1 we show
the Fermi sea, with a test particle (1) added – of course it has to be placed above the
chemical potential because the states below are filled. Now consider the interaction
of this particle with a particle (2) (which must be inside the Fermi sea). The result
of the collision will be scattering to final states labelled (1′, 2′). The final states must
have initially been empty (Fermi statistics), so both 1′ and 2′ must lie at energies
above the chemical potential µ. But we also have to satisfy energy (and momentum)
conservation

ω1 + ω2 = ω1′ + ω2′ , (E.3)

which means that
ω1 + ω2 > 2µ . (E.4)
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Figure E.1: Collision between two quasiparticles near the Fermi surface. The
initial and final states are marked by open and filled circles.

We can rewrite this as
µ− ω2 < ω1 − µ . (E.5)

We see that the only particles which are allowed to scatter from the test particle 1 are
those whose energy is closer to the Fermi energy than particle 1 itself. So if ω1 → µ,
there are no scattering processes allowed, and the quasiparticle is long-lived.

There is a further constraint according to momentum conservation. The momen-
tum transfer in the scattering process takes particle 1 from state p to p + ∆p, with
exactly the same momentum transfer in reverse for particle 2. We can separate the
components of the momentum transfer perpendicular and parallel to the Fermi sur-
face, and it is clear that ∆p⊥ < vF (ω1 − µ), where vF is the Fermi velocity. In
order to calculate the overall scattering rate, we need to integrate over all the possible
final states, and over all the possible states of particle 2. What is important in what
follows is that two of these integrals are constrained: the energy of particle 2, and the
momentum transfer perpendicular to the FS. We can now estimate that the scattering
rate must be of order

Γ(ω1) ∝
∫ µ

2µ−ω1

dω2

∫ vF (ω1−µ)

0

d∆p⊥

∫
d(other momenta)W (1, 2; 1′, 2′)

∝ W (ω1 − µ)2 (E.6)

where W is the scattering matrix element, which we replace by its average value
near the Fermi surface. So Γ → 0 for quasiparticles whose energy lies exactly on
the Fermi surface, and our assumption that quasiparticles exist and are long-lived is
self-consistent. Moreover, it can be shown that the quasiparticles are in a one-to-one
correspondence with the particles of the noninteracting theory.1

This is an existence proof of the quasiparticle concept, but of course it does
not guarantee that the Fermi liquid state always exists. It can be shown that
turning on the interaction between particles adiabatically from zero then the
free particles smoothly transform into quasiparticles, and the volume contained

1The proof is formidable, and is known as Luttinger’s theorem : J.M.Luttinger and
J.C.Ward, Physical Review 118, 1417 (1960); ibid. 119, 1153 (1960). See also the book
by A.A.Abrikosov, L.P.Gor’kov, and I.E.Dyalozhinski, Methods of Quantum Field Theory in
Statistical Physics , Dover Edition, 1975
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within the Fermi surface is unchanged (this is the Luttinger theorem). However,
this does not preclude a phase transition, where the Fermi liquid character
abruptly disappears. The conditions under which fermi liquids exist or not is
an active field of both experimental and theoretical research.

d- and f-band metals

Fermi liquid theory is inexorable, and provided there is not a phase transition2,
the fermi surface of a non-interacting system evolves continuously and smoothly
into the fermi surface of an interacting system. The volume of the fermi sea
cannot change, because there are as many quasiparticles as real particles. This
is true even in the case when the interactions become very large.

So an interesting place to look is at metals made up out of d- and especially
f-electron bands. Particularly in the latter case, we have tightly bound orbitals
that overlap very weakly with the neighbours, and we expect the bandwidth
(which measures the average kinetic energy) to be very small. However, the
Coulomb repulsion between two electrons on the same site is big.

In intermetallic compounds such at UPt3 and CeCu6, band structure cal-
culations would tell us to expect that s, p, and d electrons from the transition
metal as well as f electron wavefunctions from the actinide or rare earth con-
tribute to states at the fermi surface. But one might expect that the f-orbitals
are so localised that they are part of the atomic “core”, so the band-theory
result looks dubious. However, we shall see that their hybridisation with the
more extended s-electron states derived from the transition metal leads in the
end to their complete metallic character, as predicted by the fermi liquid theory.

E.2 Local moments and the Kondo effect

Before thinking about dense arrays of f-orbitals embedded in a metal, we con-
sider the case of a single isolated local level in a metal. This seems straightfor-
ward, but produces a surprise.

We discussed earlier the idea of ”local moments”, that arise because the
Coulomb repulsion on a site favours the alignment of spins of the local eigen-
states. We now ask what happens when a local moment is put into a metal.
Indeed, it is often that case that a magnetic impurity (say Fe) added into a
normal metal (say Cu) keeps its magnetic moment. Let us assume that we are
in the extreme correlated limit, so the charge in the localised state is fixed and
the only remaining degree of freedom is a spin S. Here we consider S = 1

2
. The

2For example, magnetism or a charge-density wave instability introduce new long-range
order and therefore change the topology of the fermi surface
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interaction term is then just exchange

HKondo = J
∑

i

S · σi (E.7)

where the sum is over all the electrons in the metal, which is adequately de-
scribed by free electrons, with a density of states g(µ) at the chemical potential.
Electrons in the fermi sea can then collide with the local moment, flipping its
spin (and also losing momentum in the process) — consequently this scattering
contributes to the resistivity of the metal. Perhaps puzzling however, is that if
J is positive (anti-ferromagnetic coupling), the scattering grows as the temper-
ature is lowered (so the resistivity increases), an effect first explained by Kondo
(see Fig. E.2).

Figure E.2: . Kondo effect. The resistance of a metal with dilute magnetic
impurities increases as temperature is lowered, with a theoretical form (solid
line) ρ = −ρo log(T/TK) [J. Kondo, 1964, Prog. Theor. Phys. 32, 37]. Data
from MacDonald et al (see Kittel)].

It turns out that below a temperature called the Kondo temperature

TK =
1

kB ḡ(µ)
e−1/(ḡ(µ)J) (E.8)

the strong scattering resolves itself as the local moment binds into a singlet
state with electrons taken from the fermi sea3. The overall moment disappears
as the local spin is “dressed” by a cloud from the fermi sea; at the same time

3Here we define g(µ) = N
V
ḡ(µ), so that ḡ has dimensions of (energy)−1 and a value ap-

proximately equal to the inverse of the bandwidth.
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the resistivity grows as the dynamical scattering of the electrons in the fermi
sea with the local moment increases.

E.3 Experimental properties of heavy fermion

systems

In f-band metals like UPt3, the f-electrons are not dilute, so even when the
Kondo effect has been operative, the “dressed” singlets can hop between sites,
forming an itinerant band. The band-width turns out to be extremely small,
and the coherent metallic behaviour then appears only at low temperatures. We
briefly discuss the experimental signatures of this crossover in heavy fermion
systems.

Magnetic susceptibility

Moments lead to a magnetic response, and if there was a set of free spins, then
we should see a Curie law.

χ =
∂M

∂H
=
N

V

(gLµB)2

3
J(J + 1)
kBT

(E.9)

for a set of ions of angular momentum J, and gL the Landé g-factor.

Qu.5.4 Curie Law An exercise in statistical physics that you may
well have seen before.

Using

M = − 1
V

∂F

∂H
, (E.10)

and the partition function

Z = e−βF =
J∑

Jz=−J

e−βgLµBHJz β = 1/kBT , (E.11)

derive the Curie law Eq. (E.9), and the conditions for its validity.

Fig. E.3 shows the magnetic susceptibility of UBe13 which shows a large
moment at high temperatures, but rather than continuing to follow a Curie law
to low tempratures — or ordering magnetically — the susceptibility saturates
at large values in a metallic state.
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Figure E.3: . Inverse magnetic susceptibility of UBe13 showing a Curie law at
high temperatures and a large local moment. At low temperatures, the suscep-
tibility saturates to a constant, without the appearance of magnetic order.[Ott
et al, in Local Moment Formation in Solids, ed W.J.L.Buyers, (Plenum NY)
1984, p 305.]

Electronic specific heat

A revealing view of this class of materials comes from the specific heat. The
general form of specific heat that we should see in a metal at low enough tem-
perature is

C = γT + αT 3 (E.12)

where the first term is the electronic contribution and the second comes from
the lattice The electronic contribution depends on the density of states geff (µ)
at the fermi energy, viz.

γ =
π2

3
k2

Bgeff (µ) (E.13)

For a conventional metal, one usually finds γ ≈ few mJ/moleK2, whereas here
(Fig. E.4) the number is much larger. If these are truly electronic quasiparticles,
they have a very large density of states at the fermi surface, or indeed a very
heavy mass — hence the name heavy fermions.

Perhaps the most convincing macroscopic evidence that indeed there are
heavy electrons in heavy fermion compounds comes from those materials that
become superconducting. In a superconductor, there is a gap in the electronic
spectrum at the fermi surface, and so the electronic specific heat disappears.
Exactly that phenomenon is seen in experiment (Fig. E.5), so one can see that
essentially all the low temperature specific heat is to be assigned to the carriers.

If one is confident that one has a metal, one can revisit the interpretation of
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Figure E.4: . Specific heat of Y bCuAl plotted in the form C/T vs. T 2, which
allows the electronic contribution to be read off by the asymptote.[Mattens et
al , Comm. Phys. 2, 147 (1977)]

Figure E.5: . Specific heat of UBe13 at low temperatures. The normal state
contribution is extrapolated through the superconducting transition at 0.9 K,
and one can see that it is suppressed at low temperatures.[Ott et al., Phys. Rev.
Lett. 50, 1595 (1983)]
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Figure E.6: . Resistivity of two heavy fermion compounds, CeAl3 and CeCu6.
Note the sudden drop in resistivity at low temperatures as the systems become
good metals. [Figure from G.R.Stewart, Rev.Mod.Phys. 56, 755 (1984).]

the magnetic susceptibility. Pauli paramagnetism (Eq. (D.3)) gives

χσ = µ2
Bgeff (µ) . (E.14)

Only if the mass is large, and density of states very high, can this be comparable
to a Curie like term — remember that for a free electron gas

geff (µ) =
N

V

3
2EF

(E.15)

The pauli paramagnetism seen in metallic UPt3 is as if the metal had a band-
width of only tens of degrees K.

Resistivity

Nevertheless, it really is a metal. The resistivity in fact rises very slowly as the
temperature is lowered, and the large resistivity reflects the fact that there is
a high density of fluctuating spins to provide scattering; very abruptly at low
temperatures, the resistivity drops as the susceptibility reaches its maximum.
At low temperatures, the resistivity follows a T 2 law, ρ = ρo + AT 2, reflecting
the fact that electron-electron scattering is growing rapidly with temperature
on the scale of the very narrow bandwidth (see Fig. E.6). The T 2 power law
reflects the lifetime of the quasiparticle near the fermi surface — according to
fermi liquid theory 1/τ = Γ ∝ max(ω2, T 2).
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Figure E.7: . Fermi surface of UPt3 as determined by fitting de Haas-Van
Alphen measurements to a model bandstructure calculation. The observed
bands match those described by both d- and f-electrons, and the effective masses
for some bands are found to be very large. If it is assumed that the electrons
are part of the core, the data does not match the band structure calculation.
[Courtesy C. Bergemann et al.]

Fermi surface

The most convincing demonstration of the low temperature metal comes from
the measurement of the fermi surface(s). Photoemission is not so easy to employ
on such a narrow band system, because the energy resolution needed is extreme.
A different approach is to make use of the behaviour of electrons in magnetic
fields We have seen that the motion of a wavepacket is h̄k̇ = −evk ∧B, namely
the particle moves along an energy contour. If the fermi surface is closed, it will
return to the same point periodically. Since electrons are quantum mechanical
objects, we may guess that these orbits will be quantised, and the simple Bohr
quantisation rule would say that the phase accumulated around the loop should
be a multiple of 2π. The quantisation in a magnetic field will then give rise to
magneto-oscillation phenomena, where physical properties oscillate as a function
of 1/B with a prefactor that gives the area of the orbit, and can be used to
determine cross-sections of the fermi surface perpendicular to the direction of
magnetic field. When the measured quantity is the magnetisation, this is the de
Haas-van Alphen effect, and an example of a fermi surface structure fit to dHvA
experiments is shown in Fig. E.7.4 Analysis of the temperature dependence of
the oscillations can be used to derive the effective masses.

4This important experimental method will not be discussed here, but can be found in any
major textbook. See Kittel, ch. 9 for example.
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Recap of physical properties

Because this is real physics, the details vary somewhat from material to material,
and there is some extra physics to describe on top of the basic scenario, but very
roughly

Local moments. At high temperatures, there are seen to be dense local
moments that give a Curie law in the susceptibility, Eq. (E.9).

Kondo temperature and coherence temperature. Around a temper-
ature TK ≈ 1

kBḡ exp (−1/ḡJ) the local moment from the f-level binds with the
itinerant sea formed from the other lighter mass bands to make a non-magnetic
singlet band. At this point the resistivity drops, the magnetic susceptibility
saturates, and the specific heat becomes linear in T .

Heavy electrons. The metallic phase is described by a metal, with a
susceptibility

χ ≈ N

V

µ2
B

kBTK
, (E.16)

and specific heat

Cel ≈
N

V

kBT

TK
. (E.17)

This is just like a normal metal with a density of states

geff =
N

V

1
kBTK

(E.18)

Equivalently, this is an effective mass enhancement

m∗

m
=
geff (µ)
g(µ)

≈ bandwidth
kBTK

(E.19)

that may be up to 103.

Fermi surface. The fermi surface is as predicted by the bandstructure (i.e.
including f-electrons as itinerant, not in the core), but the effective mass of the
band is determined by Eq. (E.19), i.e. by the many-body hybridisation of the
f-electron with the s-p-d bands — not by direct overlap of the orbitals.

Further properties.

This is far from the end of this subject, which remains an active field of research,
and where there are many interesting unsolved issues.

Magnetic and/or orbitally ordered ground states. Although there
was an implication that the magnetism entirely disappeared, this is not always
the case, and many heavy fermion systems show weak (small moment) mag-
netic order at low temperatures - e.g. UGe2 is a ferromagnet, CePd2Si2 is an
antiferromagnet. In URu2Si2 a phase transition is seen at low temperatures
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Figure E.8: (Phase diagram of UGe2 under pressure. As the ferromagnetism
disappears, there is a small window of superconductivity, surprisingly on the
ferromagnetic side of the phase boundary. This is not understood - but conven-
tional superconductors are made of singlet electron pairs and abhor magnetism.
[Saxena et al. Nature 406, 587, (2000)]

that opens a gap in the electronic spectrum, but where the form of the broken
symmetry is not yet determined.

Unconventional superconductivity. Superconductivity is also often ob-
served at low temperatures, and in several (possibly all) cases it is clear that
the paired state is not the conventional s−wave symmetry of phonon-mediated
superconductivity, but in general something more complex.

Quantum critical phenomena, and the breakdown of fermi liquid.
Since the band-width is narrow, and the fermi energy is small, it is easy to
apply external “fields” (e.g. magnetic field, pressure) that are energetically
comparable to the fermi energy itself. These fields can often be enough to
destroy one broken symmetry phase, and potentially reveal another. In the
vicinity of the “critical point” (where the order parameter vanishes) there are
soft, low energy quantum fluctuations that modify the physical properties of the
metal, leading to anomalous — so-called “non-fermi liquid” behaviour. There is
also much speculation that the soft magnetic fluctuations near the ferromagnetic
transition are responsible for mediating superconductivity, for example.

Further reading

G.R.Stewart, Heavy Fermion Systems, Rev. Mod. Phys. 56, 756 (1984).
G.R.Stewart, Non-fermi liquid behavior in d- and f- electron metals, Rev. Mod.
Phys. 73, 797 (2001).
A.C.Hewson, The Kondo problem to heavy fermions,(CUP, Cambridge, 1993).
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Figure E.9: (Top) Intensity plot of the magnetic susceptibility of URu2Si2
measured in magnetic fields up to 40 T. The peaks mark phase transitions to
states labelled ’HO’ for “ hidden order” and ‘RHO’ for “ re-entrant hidden
order”, which indicates fairly accurately the current state of understanding of
the underlying phases. (Bottom) Contour plot of the resistivity of the same
material, suggesting even more complexity. [Kim et al, Phys. Rev. Lett. 91,
256401 (2003)]
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