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Preface

Books

There are many good books on solid state and condensed matter physics, but
the subject is rich and diverse enough that each of these contains both much
more and much less than the topics covered in this course. The two classic
textbooks are Kittel, and Ashcroft and Mermin. These are both at the correct
level of the course, and have the virtue of clear exposition, many examples,
and lots of experimental data. Slightly more concise, though in places a little
more formal is Ziman. Grosso and Parravicini has a somewhat wider coverage
of material, but much of it goes well beyond the level of detail required for
this course. Marder is at about the right level (though again with more detail
than we shall need), and has a nice blend of quantum properties with statistical
and classical properties. OUP have recently issued a series of short texts in
condensed matter physics. They are more detailed than needed for this course,
but are quite accessible and excellent for reference. The most relevant for this
course is Singleton.

• C.Kittel, Introduction to Solid State Physics, 7th edition, Wiley, NY, 1996.

• N.W.Ashcroft and N.D.Mermin, Solid State Physics, Holt-Saunders Inter-
national Editions, 1976.

• J.M.Ziman, Principles of the Theory of Solids, CUP, Cambridge, 1972.

• J. Singleton, Band Theory and the Electronic Properties of Solds, OUP
2001.

• M.P. Marder, Condensed Matter Physics, Wiley, NY, 2000. Covers both
quantum matter and mechanical properties.

• G.Grosso and G.P.Parravicini, Solid State Physics, AP, NY, 2000. A wide
coverage of material, very bandstructure oriented, very detailed.

• A very good book, though with a focus on statistical and “soft” condensed
matter that makes it not so relevant for this course, is
P.M.Chaikin and T.Lubensky, Principles of Condensed Matter Physics,
CUP, Cambridge, 1995.

These notes

These notes are designed as a complement to the lectures, and as a complement
to reference books. They are not to be memorised for examination: often they
include detailed derivations that are there to satisfy the curious, for complete-
ness, and for background. The lectures will be presented using more qualitative
and physical descriptions.



CONTENTS 7

In a few places, and particularly where I shall be discussing material that
is not easy to find collected in textbooks, the notes are much more lengthy.
Material which is explicitly non-examinable is placed in small type; but in gen-
eral, no detailed derivations will be required for examination. You may find it
worthwhile, however, to work through some of this at least once.

Problems are placed both within the text and at the ends of the chapters.
They vary from the straightforward to the complex, and especially mathematical
ones are given a warning asterisk. Problems of such type will not appear in the
examination.
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Chapter 1

Introduction

1.1 Theories and models in condensed matter

physics

Solid state physics is concerned with the abundance of properties that arise when
atoms are amalgamated together. Much of what we think of as “core physics”
is deliberately reductionist; we look for the very simplest unified description of
a basic phenomenon, and the progress of much of basic physics has always been
a progress toward grander unified theories, each of which is simpler (at least in
concept) than the previous generation.

Condensed matter physics is not like this. The Hamiltonian is not in doubt
- it is the Schrödinger equation for the many particle system:

Helec = −
∑

i

h̄2

2m
∇2

i +
∑

I

P 2
I

2MI
+

∑

i,I

ZIe
2

|ri − RI |
+

1
2

∑

i6=j

e2

|ri − rj|
+

1
2

∑

I 6=J

ZIZJ e
2

|Ri − Rj|
,

(1.1)
where the ri,RI label the coordinates of the electrons and the ions respectively,
ZI ,MI are the nuclear charge and mass. The terms in Eq. (1.1) represent, in
order, the kinetic energy of the electrons, the kinetic energy of the nuclei, and the
Coulomb interaction between electron and nucleus, electron and electron, and
between nucleus and nucleus. In some sense, a complete theory of solids would
be to solve the Schrodinger equation and then apply all the standard methods of
statistical physics to determine thermodynamic and physical properties. From
this point of view, there is no “fundamental” theory to be done, although the
calculations may indeed be complex (and in fact, impossible to perform exactly
for solids with macroscopic numbers of atoms). Because an exact solution for
a macroscopic number of atoms is impossible, we have to treat Eq. (1.1) by a
sequence of approximations (for example, perhaps fixing the ions in place, or
neglecting electron-electron interactions) that will make the problem tractable.
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10 CHAPTER 1. INTRODUCTION

This view of condensed matter physics as a series of approximations that is
widely held and severely incomplete. Suppose for a moment that we could solve
the full Hamiltonian, and we would then have a wavefunction describing some
1023 particles that contained all of the physics of solids. Writing the solution
down would be hard enough, but comprehending its meaning would be beyond
us. Condensed matter physics is about phenomena, from the mundane (why is
glass transparent), to the exotic (why does 3He become a superfluid). There
are a host of physical phenomena to be understood, and their explanation must
involve more than just detailed calculation.

Understanding a phenomenon involves building the simplest possible model
that explains it, but the models are more than just approximations to Eq.
(1.1). Models, and the theories which they give rise to, elucidate paradigms and
develop concepts that are obscured by the complexity of the full Hamiltonian.
The surprise about condensed matter physics is that there are so many different
theories that can arise from such an unprepossessing Hamiltonian as Eq. (1.1).

1.2 “The Properties of Matter”

A venerable route to condensed matter physics, and one followed by almost
all textbooks, is to find ways of making approximate calculations based on the
full Schrödinger equation for the solid. Making approximate, but quantitative
calculations of the physical properties of solids has been one of the enduring
agendas of condensed matter physics and the methods have acquired increasing
sophistication over the years. We would like to understand the cohesion of solids
– why it is, for example that mercury is a liquid at room temperature, while
tungsten is refractory. We wish to understand electrical and optical properties –
why graphite is a soft semi-metal but diamond a hard insulator, and why GaAs
is suitable for making a semiconductor laser, but Si is not. Why is it that some
materials are ferromagnetic, and indeed why is it that transition metals are of-
ten magnetic but simple s-p bonded metals never? We would like to understand
chemical trends in different classes of materials – how properties vary smoothly
(or not) across the periodic table. These, and many other physical properties
we now know how to calculate with considerable accuracy by sophisticated com-
putational techniques, but more importantly (and especially for the purposes of
this course) we can understand the behaviour straightforwardly, and describe
the physical properties in a natural fashion.

To get this understanding we need to develop the basic machinery of the
quantum mechanics of periodic structures, especially the concept of electronic
bandstructure describing the dispersion relation between the electron’s energy
and momentum. We also need to understand how the largest effects of inter-
actions between electrons can be subsumed into averaged effective interactions
between independent quasiparticles and the background medium. A large part
of this course will be to set up this fundamental machinery.
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This is a tidy scheme, but it will get us only part way to the goal. It will
generate for us a landscape upon which we can build new models and new
theories.

1.3 Collective phenomena and emergent prop-
erties

There is another view of condensed matter physics which we shall also explore,
that is less concerned with calculation and more concerned with phenomena
per se. The distinguishing character of solid state systems is that they exhibit
collective phenomena, that are properties of macroscopic systems and that exist
only on account of the many-degree-of-freedom nature of the system.

A familiar example is a phase transition (between liquid and solid, say) which
is a concept that can only apply to a macroscopic ensemble. We are so used to
phase transitions that we rarely wonder why when water is cooled down it does
not just get ”thicker” and more viscous (and this actually happens to a glass).

Condensed matter systems have collective modes that are a consequence of
their order; both a solid and a liquid support longitudinal sound waves, but
a solid that has a nonzero shear stiffness has also transverse sound modes. In
fact the existence of shear waves we might choose to define as the characteristic
feature distinguishing a solid from a liquid or gas. We can say that solidity
is a broken symmetry (with the symmetry being broken that of translational
invariance); because of the broken symmetry, there is a new collective mode (the
shear wave). Because of quantum mechanics, the waves are necessarily quantised
as phonons, and they are a true quantum particle, with Bose statistics, that
interact with each other (due to anharmonicity) and also with other excitations
in the solid. This idea, that a broken symmetry can generate new particles, is
one of the central notions of condensed matter physics – and of course of particle
physics too.

A different example is the behaviour of electrons in a semiconductor. If one
adds an electron into the conduction band of a semiconductor it behaves like
a particle of charge −|e|, but a mass different from the free electron mass due
to the interaction with the lattice of positively charge ions as well as all the
other electrons in the solid. But we know that if we remove an electron from
the valence band of the semiconductor, it acts as a hole of charge +|e|; the
hole is in fact a collective excitation of the remaining 1023 or so electrons in
the valence band, but it is a much more convenient and accurate description to
think of it as a new fermionic quasi-particle as an excitation about the ground
state of the solid. The electrons and holes, being oppositely charged, can even
bind together to form an exciton - the analog of the hydrogen atom (or more
directly positronium), which however has a binding energy considerably reduced
from hydrogen, because the Coulomb interaction is screened by the dielectric
constant of the solid, and the electron and hole masses are different from the
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electron and proton in free space.

The solid is a new “vacuum”, inhabited by quantum particles with properties
which may be renormalised from those in free space (e.g. photons, electrons) or
may be entirely new, as in the case of phonons, plasmons (longitudinal charge
oscillations), magnons (waves of spin excitation in a magnet), etc. In contrast
to the physical vacuum, there are different classes of condensed matter systems
which have different kinds of vacua, and different kinds of excitations. Many of
these new excitations arise because of some “broken” symmetry , for example,
magnetism implies the existence of spin waves, and solidity implies the existence
of shear waves. Some of these phenomena – superconductivity, superfluidity, and
the quantum Hall effect come to mind – are remarkable and hardly intuitive.
They were discovered by experiment; it seems unlikely that they would ever have
been uncovered by an exercise of pure cerebration starting with the Schrodinger
equation for 1020 particles.

Solid state systems consist of a hierarchy of processes, moving from high
energy to low; on the scale of electron volts per atom are determined the co-
hesive energy of the solid, (usually) the crystal structure, whether the material
is transparent or not to visible light, whether the electrons are (locally) mag-
netically polarised, and so on. But after this basic landscape is determined,
many further phenomena develop on energy scales measured in meV that cor-
respond to thermal energies at room temperature and below. The energy scales
that determine magnetism, superconductivity, etc. are usually several orders of
magnitude smaller than cohesive energies, and the accuracy required of an ab
initio calculation would be prohibitive to explain them. Although all condensed
matter phenomena are undoubtedly to be found within the Schrödinger equa-
tion, they are not transparently derived from it, and it is of course better to
start with specific models that incorporate the key physics; we shall see many of
them. These models will usually be simply of interactions between excitations
of the solid, with sets of parameters to describe them – parameters which are
usually estimated, or derived from experiment.



Chapter 2

The variety of condensed
matter

2.1 Types of solids

What holds a solid together? Cohesion is ultimately produced by the electro-
static interaction between the nuclei and the electrons, but depending on the
particular atomic structure the types of solids can be very different.

2.2 The binding of crystals

Inert gases

The inert gases have filled electron shells and large ionisation energies. Con-
sequently, the electronic configuration in the solid is close to that of separated
atoms. Since the atoms are neutral, the interaction between them is weak, and
the leading attractive force at large distances comes from the van der Waals
interaction, which gives an attractive potential proportional to 1/R6.

This form can be loosely derived by thinking of an atom as an oscillator,
with the electron cloud fluctuating around the nucleus as if on a spring.

The centre of the motion lies on top of the atom, but if the cloud is displaced,
there will be a small dipole induced, say p1. Such displacements happen as a
result of zero-point motion of the electron cloud in the potential of the nucleus.

A distance R away from the atom there is now an induced electric field
∝ p1/R

3. A second atom placed at this point will then have a dipole induced by
the electric field of the first: p2 ∝ αp1/R

3, where α is the atomic polarizability.

13
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The second dipole induces an electric field at the first, which is now

E1 ∝ p2/R
3 ∝ αp1/R

6. (2.1)

The energy of the system is then changed by an amount

∆U = 〈−p1 ·E1〉 ∝ −α
〈
p2
1

〉
/R6. (2.2)

Notice that it depends on the expectation value of the square of the dipole
moment < p2

1 >, which is non-zero, and not the square of the expectation value
< p1 >

2, which would be zero.

Figure 2.1: Two dipoles represent model atoms that are arranged along a line, with
the positive charges (+e) fixed at the positions 0, R, and the negative charges (-e)
at the points x1, R+ x2.

Qu.2.1 Interacting harmonic oscillators That van der Waals
forces are in fact a consequence of the change in zero-point energy of
coupled oscillators can be seen by the following toy example.

We assume R � x1, x2. The dipoles are connected by springs so
that the Hamiltonian of the independent atoms is

H0 =
1

2m
p̂2
1 +

mω2
0

2
x2

1 +
1

2m
p̂2
2 +

mω2
0

2
x2

2 (2.3)

where p̂i are the momenta, and ω0 the lowest eigenfrequency.

Show that the interaction Hamiltonian is approximately

H1 ≈ − e2

2πε0R3
x1x2 (2.4)

By making the transformation to symmetric and antisymmetric
normal modes, xs = (x1 + x2)/

√
2, xa = (x1 − x2)/

√
2 ps =

(p1 + p2)/
√

2, pa = (p1 − p2)/
√

2 show that the Hamiltonian can
be rewritten as

H = H0 +H1 ≈ 1
2m

p̂2
s +

mω2
s

2
x2

s +
1

2m
p̂2

a +
mω2

a

2
x2

a (2.5)

and determine ωs and ωa.
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Hence show that the zero point energy of the system is

U0 = h̄ω0

[
1 − 1

2

(
e2

4πεoR3mω2
0

)2

+ ...

]
(2.6)

If the atoms move together so that the electron charge distributions begin
to overlap, repulsive forces come into play. While there is of course a contri-
bution from the direct electrostatic repulsion of the electrons, more important
is the Pauli exclusion principle that prevents two electrons having their quan-
tum numbers equal. The effect of Pauli exclusion can be seen by an extreme
example, of overlapping two Hydrogen atoms entirely, with the electrons for
simplicity assumed to be in the same spin state. In this case, while two sepa-
rated atoms may be both in the 1S ground state, the combined molecule must
have a configuration 1s2s, and thus is higher by the promotion energy.

Calculations of the repulsive interaction are complex but the answer is clearly
short-ranged. They are often modelled empirically by an exponential form
e−R/Ro , or a power law with a large power. A commonly used empirical form
to fit experimental data on inert gases is the Lennard-Jones potential

U (R) = − A

R6
+

B

R12
(2.7)

with A and B atomic constants obtained from gas-phase data.

With the exception of He, the rare gases from close-packed (face-centered
cubic) solids with a small cohesive energy, and low melting temperatures. He-
lium is special because zero-point motion of these light atoms is substantial
enough that they do not solidify at zero pressure down to the absolute zero of
temperature. The quantum fluids 3He and 4He have a number of extraordinary
properties, including superfluidity.

Ionic Crystals

Given the stability of the electronic configurations of a rare gas, atoms that are
close to a filled shell will have a tendency to lose or gain electrons to fill the
shell.

• The energy for the reaction M− > M+ + e− in the gas phase is called the
ionization energy I.

• The energy for the reaction X + e−− > X− in the gas phase is called the
electron affinity A.

• The cohesion of an ionic molecule can overcome the energy cost I +A by
the electrostatic attraction, e2/R
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• In a solid, the electrostatic interaction energy for a diatomic crystal1 is

Uelectrostatic =
1
2

∑

i

∑

j

Uij (2.8)

where Uij = ±q2/Rij is the sum of all Coulomb forces between ions. If
the system is on a regular lattice of lattice constant R, then we write the
sum

Uelectrostatic = −1
2
αMq

2

R
(2.9)

where αM is a dimensionless constant that depends only on the crystal
structure.

• The evaluation of αM is tricky, because the sum converges slowly. Three
common crystal structures are NaCl (αM = 1.7476), CsCl (1.7627), and
cubic ZnS or Zincblende (1.6381).

• To the attractive Madelung term must be added the repulsive short range
force, and we now have the added caveat that ions have different sizes,
explaining why NaCl has the rocksalt structure, despite the better elec-
trostatic energy of the CsCl structure.

Covalent crystals

The covalent bond is the electron pair or single bond of chemistry.

Model Hydrogen. Two overlapping atomic orbitals on identical neigh-
bouring atoms will hybridise. Because the Hamiltonian must be symmetric
about a point centered between the ions then the eigenstates must have either
even or odd parity about this center. If we have a simple system of two one elec-
tron atoms - model hydrogen - which can be approximated by a basis of atomic
states φ(r − R) (assumed real) centered on the nucleus R, then two states of
even and odd parity are

ψ±(r) = φ(r −R1) ± φ(r − R2) (2.10)

ψ+ has a substantial probability density between the atoms, where ψ− has
a node. Consequently, for an attractive potential E+ < E−, and the lower
(bonding) state will be filled with two electrons of opposite spin. The antibonding
state ψ− is separated by an energy gap Eg = E−−E+ and will be unfilled. The
cohesive energy is then approximately equal to the gap Eg

2

Covalent semiconductors. If we have only s-electrons, we clearly make
molecules first, and then a weakly bound molecular solid, as in H2. Using p,

1Beware the factor of 1/2, which avoids double counting the interaction energy. The energy
of a single ion i due to interaction with all the other ions is Ui =

∑
j 6=i

Uij; the total energy

is 1
2

∑
i
Ui

2Actually twice (two electrons) half the gap, if we assume that E± = Eatom ± 1
2
Eg
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Figure 2.2: Tetrahedral bonding in the diamond structure. The zincblende
structure is the same but with two different atoms per unit cell

d, orbitals, we may however make directed bonds, with the classic case being
the sp3 hybrid orbitals of C, Si, and Ge. These are constructed by hybrid
orbitals s+px +py +pz + 3 other equivalent combinations, to make new orbitals
that point in the four tetrahedral directions: (111), (1̄1̄1), (1̄11̄), (11̄1̄). These
directed orbitals make bonds with neighbours in these tetrahedral directions,
with each atom donating one electron. The open tetrahedral network is the
familiar diamond structure of C, Si and Ge.

Ionic semiconductors. In GaAs and cubic ZnS the total electron number
from the pair of atoms satisfies the ”octet” rule, and they have the identical
tetrahedral arrangement of diamond, but with the atoms alternating. This
is called the zinclende structure. The cohesion in these crystals is now part
ionic and part covalent. There is another locally tetrahedral arrangement called
wurtzite which has a hexagonal lattice, favoured for more ionic systems. With
increasing ionic components to the bonding, the structures change to reflect
the ionicity: group IV Ge (diamond), III-V GaAs (Zincblende), II-VI ZnS
(zincblende or wurtzite), II-VI CdSe (wurtzite), and I-VII NaCl (rocksalt).

Qu.2.2 Diatomic molecule This is a simple problem to illustrate
the physics of a diatomic molecule (See Fig. 2.3). It also provides
an elementary example of the Linear Combination of Atomic Orbitals
or LCAO method, which we shall be using later to describe extended
solids.

We restrict the basis of states to just the ground state of each atom
in isolation, whereas of course an accurate solution would require a
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complete set of states that of necessity would include all the excited
states of the atoms. The basis set consists of two states |1 > and
|2 > that satisfy

H1|1 > = E1|1 > (2.11)
H2|2 > = E2|2 > (2.12)

and we look for solutions

|ψ >= c1|1 > +c2|2 > (2.13)

Neglecting the direct matrix elements < 1|2 > for simplicity (these
are easily included if necessary), derive the matrix equation for the
wavefunctions and eigenvalues

(
H11 − E H12

H21 H22 − E

) (
c1
c2

)
= 0 (2.14)

where the matrix elements are of two kinds:
Onsite, or crystal field terms

H11 = 〈1 |T + V1 + V2|1〉 = E1 + 〈1 |V2|1〉 = Ẽ1 (2.15)

Offsite, or hopping terms3

H12 = 〈1 |T + V1 + V2| 2〉 = t (2.16)

Solve for the wavefunctions and eigenvalues, for t < 0.

Sketch the wavefunctions and charge densities for the lower and
upper states, in the cases of (a) identical atoms Ẽ1 = Ẽ2, and (b)
the strongly ionic limit Ẽ1 − Ẽ2 � |t|

3Note the sign of t depends on the symmetry of the orbitals: for s-states, with an attractive
potential Vi < 0, then t is negative; but for px states t is positive for atoms aligned along x.

Figure 2.3: A simple model of a diatomic molecule. The atomic hamiltonian is
Hi = T + Vi(r), with T the kinetic energy −h̄2∇2/2m and Vi the potential. We
keep just one energy level on each atom.
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Metals

Metals are generally characterised by a high electrical conductivity, arising be-
cause the electrons are relatively free to propagate through the solid.

Close packing. Simple metals (e.g. alkalis like Na, and s-p bonded metals
such as Mg and Al) usually are highly coordinated (i.e. fcc or hcp - 12 nearest
neighbours, sometimes bcc - 8 nearest neigbours), since the proximity of many
neighbouring atoms facilitates hopping between neighbours. Remember that
the fermi energy of a free electron gas (i.e. the average kinetic energy per
particle) is proportional to k2

F ∝ a−2 ∝ n2/3 (here a is the lattice constant and
n the density; the average coulomb interaction of an electron in a solid with
all the other electrons and the other ions is proportional to a−1 ∝ n1/3. Thus
the higher the density, the larger the kinetic energy relative to the potential
energy, and the more itinerant the electrons.4 By having a high coordination
number, one can have relatively large distances between neigbours - minimising
the kinetic energy cost - in comparison to a loose-packed structure of the same
density.

Screening. Early schooling teaches one that a metal is an equipotential (i.e.
no electric fields). We shall see later that this physics in fact extends down to
scales of the screening length λ ≈ 0.1nm, i.e. about the atomic spacing (though
it depends on density) - so that the effective interaction energy between two
atoms in a metal is not Z2/R (Z the charge, R the separation), but Z2e−R/λ/R
and the cohesion is weak.

Trends across the periodic table. As an s-p shell is filled (e.g. Na,Mg,Al,Si)
the ion core potential seen by the electrons grows. This makes the density of the
metal tend to increase. Eventually, the preference on the right-hand side of the
periodic table is for covalent semiconductor (Si, S) or insulating molecular (P,
Cl) structures because the energy is lowered by making tightly bound directed
bonds.

Transition metals. Transition metals and their compounds involve both
the outer s-p electrons as well as inner d-electrons in the binding. The d-
electrons are more localised and often are spin-polarised in the 3d shell when
they have a strong atomic character (magnetism will be discussed later in the
course). For 4d and 5d transition metals, the d-orbitals are more strongly
overlapping from atom to atom and this produces the high binding energy of
metals like W (melting point 3700 K) in comparison to alkali metals like Cs
(melting point 300 K).

4Note the contrast to classical matter, where solids are stabilised at higher density, and
gases/liquids at lower density.
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2.3 Complex matter

Simple metals, semiconductors, and insulators formed of the elements or binary
compounds like GaAs are only the beginning of the study of materials. Periodic
solids include limitless possibilities of chemical arrangements of atoms in com-
pounds. Materials per se, are not perhaps so interesting to the physicist, but
the remarkable feature of condensed matter is the wealth of physical properties
that can be explored through novel arrangements of atoms.

Many new materials, often with special physical properties, are discovered
each year. Even for the element carbon, surely a familiar one, the fullerenes (e.g.
C60) and nanotubes (rolled up graphitic sheets) are recent discoveries. Transi-
tion metal oxides have been another rich source of discoveries (e.g. high temper-
ature superconductors based on La2CuO4, and ferromagnetic metals based on
LaMnO3). f−shell electron metals sometimes produce remarkable electronic
properties, with the electrons within them behaving as if their mass is 1000
times larger than the free electron mass. Such quantum fluid ground states
(metals, exotic superconductors, and superfluids) are now a rich source of re-
search activity. The study of artificial meta-materials becins in one sense with
doped semiconductors (and especially layered heterostructures grown by molec-
ular beam epitaxy or MBE), but this subject is expanding rapidly due to an
influx of new tools in nanomanipulation and biological materials.

Many materials are of course not crystalline and therefore not periodic. The
physical description of complex and soft matter requires a separate course.

Glasses

If one takes a high temperature liquid (e.g. of a metal) and quenches it rapidly,
one obtains a frozen structure that typically retains the structure of the high-
temperature liquid. Melt-quenched alloys of ferromagnets are often prepared
this way because it produces isotropic magnetic properties. For most materi-
als the amorphous phase is considerably higher in energy than the crystalline,
so the system has to be frozen rapidly, far from its equilibrium configuration.
A few materials make glassy states readily, and the most common example is
vitreous silica (SiO2). Crystalline forms of silica exist many of them!) and
all are network structures where each Si bonds to four oxygen neighbours (ap-
proximately tetrahedrally) and each O is bonded to two Si atoms. Since the
O2− ion is nearly isotropic, the orientation of one tetrahedral group respect to a
neighbouring group about the connecting Si−O−Si bond is not fixed, and this
allows for many possible crystalline structures, but especially for the entropic
stabilisation of the glass phase. Whatever the arrangement of atoms, all the
electrons are used up in the bonding, so glass is indeed a good insulator. The
characteristic feature of a strong or network glass is that on cooling the material
becomes increasingly viscous, often following the Vogel-Fulcher law,

η ∝ e
C

T−T0 (2.17)
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implying a divergence of the viscosity η at a temperature T0. Once η reaches
about 1012 Pa s, it is no longer possible to follow the equilibrium behaviour.
Consequently, debates still rage about whether or not the glass transition is a
“true” phase transition, or indeed whether or no the temperature T0 has physical
meaning.

Polymers

The classic polymers are based on carbon, relying on its remarkable ability to
adopt a variety of local chemical configurations. Polyethylene is built from re-
peating units of CH2, and more complex polymers are constructed out of more
complex subunits. Because the chains are long, and easily deformed or entan-
gled, most polymers are glassy in character, and therefore their physical proper-
ties are largely dominated by entropic considerations. The elasticity of rubber is
produced by the decrease in entropy upon stretching, not by the energetic cost
of stretching the atomic bonds. Many simple polymers are naturally insulating
(e.g. the alkanes) or semiconducting, but it is sometimes possible to ”dope”
these systems so that there are electronic states. They become interesting for
a number of reasons in technology and fundamental science. Because a simple
polymer chain can often be modelled as a one-dimensional wire, they provide
a laboratory for the often unusual properties of one-dimensional electronic sys-
tems. Because the tools of organic chemistry allow one to modify the physical
properties of polymers in a wide range of ways (for example, by adding different
side chains to the backbones), one can attempt to tune the electronic and optic
properties of heterogeneous polymer structures to make complex devices (so-
lar cells, light-emitting diodes, transistors) using a very different medium from
inorganic semiconductors.

Liquid crystals

Like a single atom, polymers are isotropic, because they are very long. Shorter
rod-shaped molecules however have an obvious orientational axis, and when
combined together to make a liquid crystal one can construct matter whose
properties are intermediate between liquid and solid.

Nematics. An array of rods whose centres are arranged randomly has
no long-range positional order (just like a liquid), but if the rods are oriented
parallel to each other has long-range orientational order, like a molecular crystal.
This is a nematic liquid crystal. The direction in space of the orientational order
is a vector n̂ called the director. The refractive index of the material will now
be different for light polarized parallel and perpendicular to the director.

Cholesterics. It turns out if the molecule is chiral then the director need
not point always in the same direction, and in a cholesteric liquid crystal the
direction of n̂ twists slowly in a helix along an axis that is perpendicular to it.
Usually the pitch of the twist is much longer than size of the rod, is a strong
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function of temperature, and frequently close to the wavelength of visible light.

Smectics. Smectics additionally have long-range positional order along one
direction, usually to be thought of as having layers of molecules. So called Smec-
tic A has the director parallel to the planes, whereas in Smectic C the director
is no longer perpendicular (and may indeed rotate as a function of position).
In Smectic B the molecules in the plane have a crystalline arrangement, but
different layers fall out of registry. This is a kind of quasi-2D solid.

Figure 2.4: Liquid crystal structures
Schematic representation of the position and orientation of anisotropic molecules
in: (a) the isotropic phase; (b) the nematic phase; (c) the smectic-A phase; and
(d) the smectic-C phase. [From Chaikin and Lubensky]



2.3. COMPLEX MATTER 23

Quasicrystals

As a last piece of exotica, the classic group theory of crystal structures proves
the impossibility of building a Bravais lattice with five-fold symmetry. Nature
is unaware of this, and a series of metallic alloys have been found that indeed
have crystals with axes of three, five, and ten-fold symmetry. These materials
are in fact physical representations of a mathematical problem introduced by
Penrose of tiling of a plane with (e.g.) two rhombus shaped tiles that have
corner angles of 2π/10 and 2π/5. A complete tiling of the plane is possible,
though the structure is not a periodic lattice (it never repeats).

Figure 2.5: Scanning tunnelling microscope image of a 10 nm2 quasicrystal of
AlPdMn with a Penrose tiling overlaid. [Ledieu et al Phys.Rev.B 66, 184207
(2002)]
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Chapter 3

The Fermi and Bose gases

Most of this is revision material.

3.1 Free electron gas in three-dimensions

Consider a free electron gas, confined to a three-dimensional box of side L. The
free particle Schrodinger equation is

− h̄2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂y2

)
ψ(r) = εψ(r) (3.1)

which has the following eigenstates:

ψk(r) = N sin(kxx) sin(kyy) sin(kzz) (3.2)

with energy

εk =
h̄2|k|2

2m
(3.3)

Owing to the restriction to the box (0 < x < L, 0 < y < L, 0 < z < L)) the
allowed values of k are discrete.

k =
π

L
(nx, ny, nz) (3.4)

with nx, ny, nz positive integers.

It is more convenient to introduce wavefunctions that satisfy periodic bound-
ary conditions, namely

ψ(x+ L, y, z) = ψ(x, y, z) (3.5)

and similarly for y and z directions. These are of the form of a plane wave

ψk(r) = exp(ik · r) (3.6)

25
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where the eigen-energies are identical to Eq. (3.4) but the restriction on mo-
mentum being

k =
2π
L

(nx, ny, nz) (3.7)

with nx, ny, nz positive or negative integers.

Together with the spin quantum number m, the components of k are the
good quantum numbers of the problem.

Qu.3.3 Momentum operator

Show that the state ψk(r) = exp(ik · r) is an eigenstate of the

momentum operator p̂ = −ih̄~∇ and find the eigenvalue.

3.2 Fermi surface, and density of states

In the ground state at zero temperature, the fermi gas can then be represented
by filling up all the low energy states up to a maximum energy εF (the fermi
energy) corresponding to a sphere of radius the fermi momentum kF in k−space.

Each triplet of quantum numbers kx, ky, kz accounts for two states (spin
degeneracy) and occupies a volume (2π/L)3.

The total number of occupied states inside the fermi sphere is

N = 2 ·
4/3πk3

f

(2π/L)3
(3.8)

so that the fermi wave-vector is written in term of the electron density n = N/V
as

kf = (3π2n)1/3 (3.9)

We are often interested in the density of states, g(E), which is the number
of states per unit energy range. Calculate it by determining how many states
are enclosed by a thin shell of energy width dE, viz.

g(E)dE = 2 · Volume of shell in k − space
Volume of k − space per state

= 2 · 4πk2dk

(2π)3/V
, (3.10)

hence

g(E) = 2
V

(2π)3
4πk2 dk

dE
=

V

π2

m

h̄2

(
2mE
h̄2

) 1
2

. (3.11)

The factor of 2 is for spin degeneracy. Often, the density of states is given per
unit volume, so the factor of V disappears.
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Qu.3.4 Density of states for free electrons

(a) What is the fermi wavevector and fermi energy as a function
of particle density for a free electron gas in one and two dimensions
(define density appropriately)?

(b) Calculate the density of states in energy for free electrons in

one and two dimensions. [Answer:(2m/πh̄2) × (h̄2/2mE)
1
2 , (d=1);

(m/πh̄2), d=2; (m/π2h̄2) × (2mE/h̄2)
1
2 , d=3 .]

(c) Show how the 3D density of states can be re-written as

(3/2)(n/EF )(E/EF )
1
2

with n = N/V .

3.3 Thermal properties of the electron gas

The occupancy of states in thermal equilibrium in a fermi system is governed
by the fermi distribution

f(E) =
1

e(E−µ)/kBT + 1
(3.12)

where the chemical potential µ can be identified (at zero temperature) with the
fermi energy EF of the previous section.

The number density of particles is

n = N/V =
1
V

∑

i

f(Ei) =
2
V

∑

k

f(εk)

=
1

4π3

∫
dkf(εk)

=
∫
dE g(E)f(E) (3.13)

The internal energy density u = U/V can then be written in the same
fashion:

u =
∫
dE Eg(E)f(E) (3.14)

Eq. (3.14) will be used to derive the electronic specific heat cv = ∂u/∂T |v
at constant volume. The estimation is made much simpler by realising that in
almost all cases of interest, the energy scale set by temperature kBT (≈ 0.025
eV at room temperature) is much less than the fermi energy EF (a few eV in
most metals).
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From Eq. (3.14)

cv =
∫
dE Eg(E)

∂f(E)
∂T

(3.15)

Notice that the fermi function is very nearly a step-function, so that the temperature-
derivative is a function that is sharply-peaked for energies near the chemical po-
tential. The contribution to the specific heat then comes only from states within
kBT of the chemical potential and is much less than the 3/2kB per particle from
classical distinguishable particles. From such an argument, one guesses that the
specific heat per unit volume is of order

cv ≈ N

V

kBT

EF
kB (3.16)

Doing the algebra is a little tricky, because it is important to keep the number
density to stay fixed (Eq. (3.13)) — which requires the chemical potential to shift
(a little) with temperature since the density of states is not constant. A careful
calculation is given by Ashcroft and Mermin.

But to the extent that we can take the density of states to be a constant, we can
remove the factors g(E) from inside the integrals. Notice that with the change of
variable x = (E − µ)/kBT

df

dT
=

ex

(ex + 1)2
×

[
x

T
+

1

kBT

dµ

dT

]
(3.17)

The number of particles is conserved, so we can write

dn

dT
= 0 = g(EF )

∫
dE

∂f(E)

∂T
(3.18)

which on using Eq. (3.17) becomes

0 = g(EF )kBT

∫ ∞

−∞
dx

ex

(ex + 1)2
×

[
x

T
+

1

kBT

dµ

dT

]
. (3.19)

The limits can be safely extended to infinity: the factor ex

(ex+1)2
is even, and hence at

this level of approximation dµ/dT = 0.

To the same level of accuracy, we have

cv = g(EF )

∫
dE E

∂f(E)

∂T

= g(EF )kBT

∫ ∞

−∞
dx (µ+ kBT x)

ex

(ex + 1)2
x

T

= g(EF )k2
BT

∫ ∞

−∞
dx

x2ex

(ex + 1)2

=
π2

3
k2

BTg(EF ) (3.20)

The last result is best understood when rewritten as

cv =
π2

2

kBT

EF
nkB (3.21)

confirming the simple argument given earlier and providing a numerical prefactor.
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The calculation given here is just the leading order of an expansion in pow-
ers of (kBT/EF )2. To next order, one finds that the chemical potential is indeed
temperature-dependent:

µ = EF

[
1−

1

3
(
πkBT

2EF
)2 + O(kBT/EF )4

]
(3.22)

but this shift is small in a dense metal at room temperature, and may usually be
neglected.

Qu.3.5 Thermodynamic properties of a free electron metal

Derive the free electron formula for the fermi energy EF , the fermi
wavevector kF and the density of states at the fermi level g(EF ).

Within the free electron model at zero temperature:

Show that the total energy for N electrons is Ē = 3
5NEF .

Calculate the pressure, p, using p = −dĒ
dΩ , where Ω is the volume.

Calculate the bulk modulus B = −Ω dp
dΩ .

Potassium is monovalent and has an atomic concentration of 1.402×
1028m−3. Compare the bulk modulus calculated above with the ex-
perimental value of 3.7× 109 Pa.

Estimate g(EF ) for magnesium, which has a valence of 2 and
an atomic concentration of 4.3 × 1028 m−3. Use this value to esti-
mate the asymptotic low temperature specific heat, compared to the
experimental value of cv/T = 1.3mJ mol−1K−2.

3.4 Lattice dynamics and phonons

One-dimensional monatomic chain

Our model consists of identical atoms connected by springs, shown in Fig. 3.1

In equilibrium, the atoms are uniformly spaced at a distance a, and we now
look for oscillations about the equilibrium position. We assume the crystal
is harmonic, so that the spring restoring force is linearly dependent upon the
extension. Then if we take the displacement of the nth atom (which is at the
point rn = na) to be un, its equation of motion is

m
∂2un

∂t2
= K(un+1 − un) +K(un−1 − un) (3.23)

We guess that the solution is a wave, of the form

un(t) = uocos(qrn − ω(q)t) (3.24)
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Figure 3.1: A one-dimensional linear chain. The atoms are shown in their
equally spaced equilibrium conditions in the top row, and with a periodic dis-
tortion below. The bottom figure plots the displacments un as arrows, and the
curve shows how this is a sine-wave of period 6a, in this case.

Here the wavelength of the wave is λ = 2π/q, and the period is T = 2π/ω(q);
to check that this is a solution, and to determine the frequency we substitute
in the equation of motion. To do this is left as an exercise, and a few lines of
algebra will show that the solution Eq. (3.24) exists provided that

mω2(q) = 2K(1 − cos(qa)) = 4K sin2(
qa

2
) (3.25)

so that
ω(q) = 2(K/m)1/2 sin(

qa

2
) (3.26)

Eq. (3.25) is called a dispersion relation — the relation between the frequency
of the mode and its wavevector, or equivalently the relationship between the
wavelength and the period.

Qu.3.6 Acoustic phonon dispersion in the monatomic chain
By substituting Eq. (3.24) in Eq. (3.23) derive the dispersion relation
Eq. (3.25) for the one-dimensional monatomic chain.

The wavevector q is inversely related to the wavelength; note that for long
wavelength modes (i.e. q → 0), the relationship is linear, viz

ω(q) = (K/m)1/2(qa) (3.27)

which is the same as for a wire with tension Ka and density m/a. In the long
wavelength limit, we have compressive sound waves that travel with a velocity
v = a(K/m)1/2. Because this kind of wave behaves like a sound wave, it is
generally called an acoustic mode.
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Figure 3.2: Dispersion relation between frequency and wavevector for a one-
dimensional monatomic chain

The dispersion is not linear for larger values of q, and is in fact periodic
(Fig. 3.2). The periodicity can easily be understood by reference to Eq. (3.24).
Suppose we choose q = 2π/a. Note then that

qrn =
2π
a

× na = 2πn (3.28)

so that all the atoms displace together, just as if q = 0. In general it is straight-
forward to show that if one replaces q by q+integer×2πa, then the displacements
are unchanged – so we may simplify our discussion by using only q vectors in
the range

−π
a
≤ q ≤ π

a
. (3.29)

This is called the first Brillouin zone.

One-dimensional diatomic chain

The monatomic chain contains only acoustic modes, but the phonon spectrum
becomes more complex if there are more atoms per unit cell. As an illustration,
we look at the diatomic chain.

For simplicity, we use again a phenomenological model of balls and springs,
but now with two different atoms in the unit cell, two different masses and two
different spring constants (see Fig. 3.3). We can now write down two equations
of motion, one for each type of atom:

mA
∂2unA

∂t2
= K(unB − unA) +K ′(un−1,B − unA)

mB
∂2unB

∂t2
= K ′(un+1A − unB) +K(un,A − unB) (3.30)
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Figure 3.3: Diatomic chain

The solution of this is a little more complicated than before, but we can
now intuitively see that there ought to be a new type of phonon mode by
considering a particular limit of the parameters. Suppose the two atoms are
quite strongly bound together in pairs, as sketched in the figure above: then
we might expect that K � K ′, and to a first approximation the pairs can be
treated as independent molecules. (We will also simplify the analysis by taking
mA = mB = m.) Then every molecule will have a vibrational mode where the
two atoms oscillate out of phase with each other with a frequency

ω2
o = 2K/m . (3.31)

The corresponding coodinate which undergoes this oscillation is

uopt(q = 0) = uA − uB (3.32)

where I have explicitly remarked that this is at q = 0 if each molecule undergoes
the oscillation in phase with the next.

We can of course make a wavelike solution by choosing the correct phase
relationship from one unit cell to the next — as sketched in Fig. 3.4, but if
K ′ � K this will hardly change the restoring force at all, and so the frequency
of this so-called optical phonon mode will be almost independent of q.

Figure 3.4: Dispersion of the optical and acoustic phonon branches in a diatomic
chain, and a schematic picture of the atomic displacements in the optical mode
at q=0

There are now two branches of the dispersion curve, along one of which the
frequency vanishes linearly with wavevector, and where the other mode has a
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finite frequency as q → 0(see Fig. 3.5). The name “optical” arises because at
these long wavelengths the optical phonons can interact (either by absorption,
or scattering) with light, and are therefore prominent features in the absorption
and Raman spectra of solids in the infrared spectrum.

Figure 3.5: Pattern of atomic displacements for an acoustic and an optical
phonon of the same wavevector.

Qu.3.7 * Acoustic and optic phonons in the diatomic chain

This question involves somewhat messy algebra to derive the dis-
persion relation for the diatomic chain.

In the diatomic chain, we take the unit cell to be of length a, and
take xA and xB to be the coordinates of the A and B atoms within
the unit cell. Hence, in the nth cell,

rn,A = na+ xA; rn,B = na+ xB . (3.33)

In the equations of motionEq. (3.30), look for solutions of the form

un,α = eα(q) exp i(qrn,α − ω(q)t) + e∗α(q) exp i(−qrn,α + ω(q)t) (3.34)

where α = A or B, and eα are complex numbers that give the ampli-
tude and phase of the oscillation of the two atoms.

Separating out the terms that have the same time dependence,
show that (for equal masses, mA = mB = m)

mω2(q)eA(q) = DAA(q)eA(q) +DAB(q)eB(q)
mω2(q)eB(q) = DBA(q)eA(q) +DBB (q)eB(q) (3.35)

where
DAA(q) = DBB (q) = K +K ′ , (3.36)

−DAB (q) = K exp iq(rn,B − rn,A) +K ′ exp iq(rn−1,B − rn,A)
−DBA(q) = K exp iq(rn,A − rn,B) +K ′ exp iq(rn+1,A − rn,B) (3.37)
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Check that DAB = D∗
BA.

The 2x2 matrix equation can have a non-trivial solution if the
determinant vanishes:

∣∣∣∣
DAA(q) −mω2(q) DAB(q)

DBA(q) DBB(q) −mω2(q)

∣∣∣∣ = 0 (3.38)

Hence show that the frequencies of the modes are given by

mω2(q) = K +K ′ ± [(K +K ′)2 − 2KK ′ sin2(
qa

2
)]1/2 . (3.39)

Sketch the dispersion relations when K/K ′ = 2.

Discuss what happens if K = K ′.

Phonons in three-dimensional solids

The descriptions above are not too hard to generalise to three- dimensional
solids, although the algebra gets overloaded with suffices.

Rather than a one-dimensional wavevector k corresponding to the direction
of the 1D chain, there is now a three-dimensional dispersion relation ω(~k), de-
scribing waves propagating in different directions.

Also, there are not just compressional waves, but also transverse, or shear
waves, that will have different dispersion from the longitudinal (compressional)
waves. (These exist in a crystal in any dimension, including our 1D chain,
where they can be imagined to involve displacements perpendicular to the chain
direction.) Quite generally, for each atom in the unit cell, one expects to find
three branches of phonons (two transverse, and one longitudinal); always there
are three acoustic branches, so a solid that has m atoms in its unit cell will have
3(m − 1) optical modes. And again, each optical modes will be separated into
two transverse branches and one longitudinal branch.1

Density of states

Just as for the electron gas problem we need to write down the density of states
for phonons. First, we need to count how many modes we have and understand
their distribution in momentum space.

In the 1D monatomic chain containing N atoms (assume N very large), there
are just N degrees of freedom (for the longitudinal vibration) and therefore N

1The separation between longitudinal and transverse is only rigorously true along lines of
symmetry in ~k-space.
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modes. This tells us (and we can see explicitly by looking at boundary conditions
for an N-particle chain) that the allowed k-points are discrete, viz

kn =
2π
L
n ; n = (−N

2
,−N − 1

2
, ...,

N

2
] , (3.40)

so that k runs from −π/a to π/a, with a = N/L, the lattice constant. Notice this
is the same spacing of k-states for the electron problem, and the only difference
is that because the atoms are discrete, there is a maximum momentum (on the
Brillouin zone boundary) allowed by counting degrees of freedom.

By extension, in three dimensions, each branch of the phonon spectrum still
contains N states in total, but now N = L3/Ωcell with Ωcell the volume of the
unit cell, and L3 = V the volume of the crystal. The volume associated with
each allowed k-point is then

∆k =
(2π)3

L3
(3.41)

There are 3 acoustic branches, and 3(m − 1) optical branches.

It is convenient to start with a simple description of the optical branch(es),
the Einstein model, which approximates the branch as having a completely flat
dispersion ω(k) = ω0. In that case, the density of states in frequency is simply

DE(ω) = Nδ(ω − ω0) . (3.42)

We have a different results for the acoustic modes, which disperse linearly
with momentum as ω → 0. Using a dispersion ω = vk, and following the earlier
argument used for electrons, we get the Debye model

DD(ω) =
4πk2

(2π/L)3
dk

dω
=
V ω2

2πv3
. (3.43)

Of course this result cannot apply once the dispersion curves towards, the zone
boundary, and there must be an upper limit to the spectrum. In the Debye
model, we cut off the spectrum at a frequency ωD, which is determined so that
the total number of states (N ) is correctly counted, i.e. by choosing

∫ ωD

0

dωDD(ω) = N (3.44)

which yields

ω3
D =

6π2v3N

V
. (3.45)

Notice that this corresponds to replacing the correct cutoff in momentum space
(determined by intersecting Brillouin zone planes) with a sphere of radius

kD = ωD/v . (3.46)
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Figure 3.6: Comparison of Debye density of states (a) with that of a real material
(b).

3.5 Lattice specific heat

Phonons obey Bose-Einstein statistics, but their number is not conserved and
so the chemical potential is zero, leading to the Planck distribution

n(ω) =
1

exp(h̄ω/kBT ) − 1
. (3.47)

The internal energy is

U =
∫

dωD(ω)n(ω)h̄ω (3.48)

For the Einstein model

UE =
Nh̄ωo

eh̄ωo/kBT − 1
(3.49)

and the heat capacity

CV =
(
∂U

∂T

)

V

= Nkb

(
h̄ωo

kBT

)2
eh̄ωo/kBT

(eh̄ωo/kBT − 1)2
. (3.50)

At low temperatures, this grows as exp−h̄ωo/kBT and is very small, but it
saturates at a value of NkB (the Dulong and Petit law) above the characteristic
temperature θE = h̄ωo/kB.2

At low temperature, the contribution of optical modes is small, and the
Debye spectrum is appropriate. This gives

UD =
∫ ωD

0

dω
V ω2

2π2v3

h̄ω

eh̄ω/kBT − 1
. (3.51)

2This is per branch of the spectrum, so gets multiplied by 3 in three dimensions
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Power counting shows that the internal energy then scales with temperature as
T 4 and the specific heat as T 3 at low temperatures. The explicit formula can
be obtained as

CV = 9NkB

(
T

θD

)3 ∫ θD/T

0

dx
x4ex

(ex − 1)2
, (3.52)

where the Debye temperature is θD = h̄ω/kB. We have multiplied by 3 to
account for the three acoustic branches.

Qu.3.8 Lattice specific heat

From Eq. (3.51) derive the formula for the Debye specific heat Eq.
(3.52).

Evaluate the integral at high temperature T � θD , and therefore
determine the high temperature behaviour of the specific heat.

Using the formula
∫∞
0

dx x4ex

(ex−1)2 = 4π4

15 , determine the low tem-

perature behaviour of the Debye specific heat.

Sketch the heat capacity formulae from the Debye and Einstein
models and compare them.
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Chapter 4

Periodic solids and
diffraction

4.1 The description of periodic solids

An ideal crystal is constructed from the infinite repetitition of identical struc-
tural units in space. The repeating structure is called the lattice, and the group
of atoms which is repeated is called the basis. The basis may be as simple
as a single atom, or as complicated as a polymer or protein molecule. This
section discusses briefly some important definitions and concepts. For a more
complete description with examples, see any of the textbooks recommended in
the introduction.

Lattice. The lattice is defined by three fundamental (called primitive )
translation vectors ai, i = 1, 2, 3. The atomic arrangement looks the same from
equivalent points in the unit cell:

r′ = r +
∑

i

niai ∀ integer ni . (4.1)

Primitive unit cell. The primitive unit cell is the parallelipiped formed
by the primitive translation vectors ai, and an arbitrary lattice translation op-
eration can be written as

T =
∑

i

niai (4.2)

There are many ways of choosing a primitive unit cell, but the lattice so formed
is called a Bravais lattice.

Wigner-Seitz cell A most convenient primitive unit cell to use is the
Wigner-Seitz cell, constructed as follows: Draw lines to connect a given lat-
tice point to all of its near neighbours. Then draw planes normal to each of
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Figure 4.1: . The Wigner-Seitz cell for the BCC and FCC lattices

these lines from the midpoints of the lines. The smallest volume enclosed in
this way is the Wigner-Seitz primitive unit cell.

Point group. The are other symmetry operations that can be performed
on a lattice, for example rotations and reflections. The collection of symmetry
operations, which applied about a lattice point, map the lattice onto itself is
the lattice point group. This includes reflections and rotations; for example a
2D square lattice is invariant under reflections about the x and y axes, as well
as through axes at an angle of π/4 to the x and y axes, and rotations through
any multiple of π/2. Remember that adding a basis to a primitive lattice may
destroy some of the point group symmetry operations. There are five distinct
lattice types in two dimensions, and 14 in three dimensions.

Space group. The translational symmetry and the point group symmetries
are subgroups of the full symmetry of the lattice which is the space group.
Every operation in the space group consists of a rotation, reflection, or inversion
followed by a translation. However, the space group is not necessarily just the
sum of the translational symmetries and the point symmetries, because there
can be space group symmetries that are the sum of a proper rotation and a
translation, neither of which are independently symmetries of the lattice.

The number of possible lattices is large. In three dimensions there are 32
distinct point groups, and 230 possible lattices with bases. Two of the important
lattices that we shall meet later are the body-centred and face-centred cubic
lattices, shown in Fig. 4.1.

Index system for crystal planes

If you know the coordinates of three points (not collinear), this defines a plane.
Suppose you chose each point to lie along a different crystal axis, the plane is
then specified by giving the coordinates of the points as

xa1 + ya2 + za3 (4.3)
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Figure 4.2: Illustration of Bragg scattering from a crystal

Of course the triad (xyz) need not be integers. However, one can always find a
plane parallel to this one by finding a set of three integers (hkl) where x/h =
y/k = z/l. (hkl) is called the index of the plane. When we want to refer
to a set of planes that are equivalent by symmetry, we will use a notation of
curly brackets: so {100} for a cubic crystal denotes the six equivalent symmetry
planes (100), (010), (001), (1̄00), (01̄0), (001̄), with the overbar used to denote
negation.

4.2 The reciprocal lattice and diffraction

The reciprocal lattice as a concept arises from the theory of the scattering of
waves by crystals. You should be familiar with the diffraction of light by a
2-dimensional periodic object - a diffraction grating. Here an incident plane
wave is diffracted into a set of different directions in a Fraunhofer pattern. An
infinite periodic structure produces outgoing waves at particular angles, which
are determined by the periodicity of the grating. What we discuss now is the
generalisation to scattering by a three-dimensional periodic lattice.

First calculate the scattering of a single atom (or more generally the basis
that forms the unit cell) by an incoming plane wave, which should be familiar
from elementary quantum mechanics. An incoming plane wave of wavevector
ko is incident on a potential centred at the point R. At large distances the
scattered wave take the form of a circular wave. (See figure Fig. 4.2) The total
field (here taken as a scalar) is then

ψ ∝ eiko·(r−R) + cf(r̂)
eiko|r−R|

|r− R|
(4.4)

All the details of the scattering is in the form factor f(r̂) which is a function of
the scattering angle, the arrangement and type of atom, etc. The total scattered
intensity is just set by c and we will assume it is small (for this reason we do
not consider multiple scattering by the crystal)
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For sufficiently large distance from the scatterer, we can write

ko|r−R| ≈ kor − ko
r ·R
r

(4.5)

Define the scattered wavevector

k = ko
r
r

(4.6)

and the momentum transfer
q = ko − k (4.7)

we then have for the waveform

ψ ∝ eiko·r
[
1 + cf(r̂)

eiq·R

r

]
. (4.8)

Now sum over all the identical sites in the lattice, and the final formula is

ψ ∝ eiko·r

[
1 + c

∑

i

fi(r̂)
eiq·Ri

r

]
. (4.9)

Away from the forward scattering direction, the incoming beam does not
contribute, and we need only look at the summation term. We are adding
together terms with different phases q ·Ri, and these will lead to a cancellation
unless the Bragg condition is satisfied

q ·R = 2πm (4.10)

for all R in the lattice, and with m an integer (that depends on R). The special
values of q ≡ G that satisfy this requirement lie on a lattice, which is called the
reciprocal lattice. 1

One can check that the following prescription for the reciprocal lattice will
satisfy the Bragg condition. The primitive vectors bi of the reciprocal lattice
are given by

b1 = 2π
a2 ∧ a3

a1 · a2 ∧ a3
and cyclic permutations . (4.11)

Qu.4.9 BCC and FCC lattices Show that the reciprocal lattice
of a body centred cubic lattice (BCC) of spacing a is a face centred
cubic (FCC) lattice of spacing 4π/a; and that the reciprocal lattice of
a FCC lattice of spacing a is a BCC lattice of spacing 4π/a.

1We can be sure that they are on a lattice, because if we have found any two vectors that
satisfy Eq. (4.10), then their sum also satisfies the Bragg condition.
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Qu.4.10 Reciprocal lattice cell volume Show that the volume
of the primitive unit cell of the reciprocal lattice is (2π)3/Ωcell, where
Ωcell is the volume of the primitive unit cell of the crystal.

4.3 Diffraction conditions and Brillouin zones

For elastic scattering, there are two conditions relating incident and outgoing
momenta. Conservation of energy requires that the magnitudes of ko and k are
equal, and the Bragg condition requires their difference to be a reciprocal lattice
vector k− ko = G. The combination of the two can be rewritten as

k · G
2

= (
G

2
)2 . (4.12)

Eq. (4.12) defines a plane constructed perpendicular to the vector G and in-
tersecting this vector at its midpoint. The set of all such planes defines those
incident wavevectors that satisfy the conditions for diffraction (see Fig. 4.3).

Figure 4.3: Ewald construction. The points are the reciprocal lattice of the
crystal. k0 is the incident wavevector, with the origin chosen so that it termi-
nates on a reciprocal lattice point. A sphere of radius |k0| is drawn about the
origin, and a diffracted beam will be formed if this sphere intersects any other
point in the reciprocal lattice. The angle θ is the Bragg angle of Eq. (4.13)

This condition is familiar as Bragg’s Law.
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Qu.4.11 Bragg’s law (a) Show that the reciprocal lattice vector
G = hb1+kb2+lb2 is perpendicular to the (hkl) plane of the crystal
lattice.
(b) Show that the distance between two adjacent (hkl) planes is
2π/|G|.
(c) Show that the condition Eq. (4.12) may be written as

2π
λ

sin θ =
π

d
(4.13)

where λ = 2π/k, and θ is the angle between the incident beam and
the crystal plane.

Since the indices that define an actual crystal plane may contain a common
factor n, whereas the definition used earlier for a set of planes removed it, we
should generalise Eq. (4.13) to define d to be the spacing between adjacent
parallel planes with indices h/n, k/n, l/n. Then we have

2d sin θ = nλ (4.14)

which is the conventional statement of Bragg’s Law.

To recap:

• The set of planes that satisfy the Bragg condition can be constructed by
finding those planes that are perpendicular bisectors of every reciprocal
lattice vector G. A wave whose wavevector drawn from the origin termi-
nates in any of these planes satisifies the condition for elastic diffraction.

• The planes divide reciprocal space up into cells. The one closest to the
origin is called the first Brillouin zone. The nth Brillouin zone consists
of all the fragments exterior to the (n − 1)th plane (measured from the
origin) but interior to the nth plane.

• The first Brillouin zone is the Wigner-Seitz cell of the reciprocal lattice.
This will play an important role in the discussion of electronic states in a
periodic potential.

• The volume of each Brillouin zone (adding up the fragments) is equal
to the volume of the primitive unit cell of the reciprocal lattice, which
is (2π)3/Ωcell where Ωcell is the volume of the primitive unit cell of the
crystal.



Chapter 5

Electronic structure from
local orbitals

5.1 Tight binding: Linear combination of atomic

orbitals

Perhaps the most natural view of a solid is to think about it as a collection
of interacting atoms, and to build up the wavefunctions in the solid from the
wavefunctions of the individual atoms. This is the linear combination of atomic
orbital (LCAO) or tight-binding method.

5.2 Diatomic molecule revisited

Remember the model problem question 2.2 where we worked with a highly re-
stricted basis on one orbital per atom. For identical atoms, the full Hamiltonian
consists of

H = H1 +H2 = T + V1 + V2 (5.1)

with T the kinetic energy and V1, V2 the (identical potentials) on the two atoms.
The basis set consists of two states |1 > and |2 > that satisfy

H1|1 > = E0|1 > (5.2)
H2|2 > = E0|2 > (5.3)

so that E0 is the eigenenergy of the atomic state, and we look for solutions

|ψ >= c1|1 > +c2|2 > (5.4)

We solve this in the usual way: Project H|ψ >= E|ψ > onto < 1| and < 2
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to get the simultaneous equations
(
Ẽ0 − E t

t∗ Ẽ1 −E

)(
c1
c2

)
= 0 (5.5)

neglecting the overlap elements < 1|2 >.

Here
Ẽ0 = H11 = 〈1 |T + V1 + V2| 1〉 = E1 + 〈1 |V2|〉 (5.6)

is a shift of the atomic energy by the crystal field of the other atom(s).
The more interesting term is the hopping matrix element that couples the atomic
states together:1

t = H12 = 〈1 |T + V1 + V2|2〉 (5.7)

For t < 0, the new eigenstates are

|ψ〉 =
1√
2

[|1〉 ∓ |2〉] E = Ẽ1 ± |t| (5.8)

The lower energy (bonding) state has electron density higher between atoms.
The higher energy (antibonding) state has node between atoms.

5.3 Linear chain

Now let us generalised this to a ring of N identical atoms (i.e. a chain with
periodic boundary conditions:

|ψ〉 =
∑

i

ci |i〉 (5.9)

which now generates the matrix equations2



E0 −E t 0 ... 0 t
t E0 − E t ... 0 0
0 t E0 −E ... 0 0
... ... ... ... ... ...
0 0 0 ... E0 −E t
t 0 0 ... t E0 − E







c1
c2
c3
...

cN−1

cN




(5.10)

The solutions are (check by substitution)

c
(m)
j =

1√
N

exp
(

2πi
jm

N

)
(5.11)

E(m) = Eo + 2t cos
(

2πm
N

)
m = 0, 1, ...,N − 1 (5.12)

1Note the sign of t depends on the symmetry of the orbitals: for s-states, with an attractive
potential Vi < 0, then t is negative; but for px states t is positive for atoms aligned along x.

2The t’s in the corners make this matrix symmetric under translations: it is called a
circulant
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Figure 5.1: Eigenvalues of the 1D chain Eq. (5.11) are confined to a band in
energy centred on the (shifted) atomic energy level Ẽ0. If N is very large, the
energies form a continuous band and are periodic in m. Then we replace the
index m by the continuous crystal momentum k = 2πm/Na, with a the lattice
constant. So we could label the states more symmetrically by keeping a range
−N/2 + 1 < m < N/2 (or −π/a < k < π/a); this is called the first Brillouin
zone.

5.4 Bloch’s theorem

The periodicity of the solutions of the 1D ring is a simple example of a very
general property of eigenstates in an infinite periodic potential.

The Hamiltonian for a particle in a periodic potential

Hψ(r) =
[
−h̄2∇2/2m + U (~r)

]
ψ(r) = Eψ(r), (5.13)

where U (r + R) = U (r) for all R in a Bravais lattice.

Bloch’s theorem states that they have the form

ψnk(r) = eik·runk(r) (5.14)

where
unk(r + R) = unk(r) (5.15)

or, alternatively, that
ψnk(r + R) = eik·Rψnk(r) (5.16)

Notice that while the potential is periodic, the wave function consists of a plane
wave times a periodic function. n is an index, call the band index, and we shall
see the physical meaning of both n and k in a moment.

Proof of Bloch’s theorem

Here we sketch a proof of Bloch’s theorem, and we shall give a somewhat more intuitive
(but longer) one later.
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First, let us define a translation operator TR, which when operating on any func-
tion, shifts the argument by a lattice vector R :

TRf(r) = f(r + R) (5.17)

It is straightforward3 to then show that TR commutes with the Hamiltonian:

TRH = HTR (5.18)

Furthermore
TRTR′ = TR′TR = TR+R′ ; (5.19)

the translation operators commute with themselves.

We may now use a fundamental theorem of quantum mechanics; two commuting
operators can be chosen to have the same eigenstates, so

Hψ = Eψ

TRψ = c(R)ψ (5.20)

Applying the results of Eq. (5.18) and Eq. (5.19), we see that the eigenvalues of T
must satisfy

c(R)c(R′) = c(R + R′) (5.21)

Now let ai be three primitive vectors of the lattice, and write

c(ai) = e2πixi (5.22)

which is just a definition of the xi, but we have chosen this form because the boundary
conditions will in the end force the xi to be real. Since a general Bravais lattice vector
can be written as R = n1a1 + n2a2 + n3a3, we can then use the rule of Eq. (5.21) to
show that

c(R) = c(a1)n1c(a2)n2c(a3)n3 = e2πi(x1n1+x2n2+x3n3) (5.23)

which is precisely of the form c(R) = eik·R when

k = x1b1 + x2b2 + x3b3 (5.24)

and the bi are reciprocal lattice vectors that satisfy bi · aj = 2πδij.

This is precisely Bloch’s theorem in the form given in Eq. (5.14).

Qu.5.12 * Another proof of Bloch’s theorem

A more elegant way to prove Bloch’s theorem is to note that the
translation operator can be written

TR = e−iP̂·R/h̄ ,

where P̂ is the momentum operator. (If you don’t know how to do

this, make the replacement P̂ = −ih̄∇, and check that the operator
generates the infinite Taylor series expansion of f(r + R).) By mul-
tiplying by the ket < k| (an eigenfunction of momentum), show that
either < k|ψ >= 0, or c(R) = e−ik·R.

3Operate with the translation operator on Hψ and use the periodic symmetry of the
potential
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5.5 Linear chain revisited

We can use Bloch’s theorem to revisit the linear chain problem. If we want to
make up a wave-function using only one-orbital per unit cell we now know that
it must be of the form

ψk(r) =
1√
N

∑

j

eikRjφ(r −Rj) (5.25)

and by comparison to the result of explicit calculation in Eq. 5.11 we can
connect the notation:

Rj = ja ; k = 2π
m

Na
; a = lattice constant (5.26)

Translational symmetry restricts the phase relationship from site to site.
With one orbital per unit cell there is then no choice in the wavefunction. Now
evaluate the energy

E(k) = 〈ψk |H|ψk〉 (5.27)

=
1
N

∑

j,m

e−ikRj 〈φj |H|φm〉 eikRm (5.28)

and then writing Rm = Rj + Rn

E(k) =
1
N

∑

j,n

eikRn × 〈φj |H|φj+n〉 (5.29)

=
1
N

∑

j

∑

n

eikRn × 〈φ0 |H|φn〉 (5.30)

= t(eika + e−ika) = 2t cos ka (5.31)

k has to be restricted to a window to avoid double counting. The values of
k are discrete, but very close together, spaced by ∆k = 2π/L, where L = Na.
The range of k must cover kmax − kmin = 2π/a to give N states. Frequently,
its convenient to choose the range −π/a < k < π/a, the first Brillouin zone.

5.6 LCAO method in general

It is now fairly clear how to extend this method to higher dimensions, and to multiple
orbitals per atom, and to multiple unit cells, with wavefunctions of the form

ψm,k(r) =
1

N
1
2

norb∑

n=1

∑

R

eik·Rc
(m)
n (k)φn(r− R) . (5.32)

• R are the lattice vectors. φn is the nth orbital in each unit cell.
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• m is the band index:if we have norb basis functions, we will have m = 1, ..., norb bands.

• k is a three-dimensional vector, now restricted to a three-dimensional Brillouin zone
(the Wigner-Seitz cell of the reciprocal lattice)

• c
(m)
n (k) is then the matrix of coefficients to be determined by diagonalising the Hamil-

tonian. The dimension of the matrix concerned is norb × norb.

In practice, how to do this:

• Write down a Bloch state made up out of a single orbital in each unit cell.

φn,k(r) =
1

N
1
2

∑

R

eik·Rφn(r − R) . (5.33)

• Bloch states of different k are orthogonal
〈
φm,k′ |φn,k

〉
=

1

N

∑

R,R′

eik·R−ik′ ·R′ 〈
φm(r− R′)|φn(r− R)

〉
(5.34)

=
1

N

∑

R,R′′

ei(k−k′)·Reik
′ ·R′′ 〈

φm(r − R − R′′)|φn(r− R)
〉
(5.35)

= δ(k − k′)
∑

R′′

eik
′·R′′

< φm(r− R′′)|φn(r) > (5.36)

≈ δ(k − k′)δm,n

∑

R′′

eik
′ ·R′′

δR′′ ,0 = δ(k − k′)δm,n (5.37)

where the very last line can, in principle, be made exact by choosing a basis of states
that are orthogonal in real space (and then known as Wannier functions).

• This forms a basis to solve the problem, i.e. the eigenstates are now known to be linear
combinations

ψm,k(r) =
∑

n

c
(m)
n (k)φn,k(r) (5.38)

• The eigenstates and eigenvalues are determined by the diagonalisation of the matrix
Hm,n(k), which has elements

Hm,n(k) =
〈
φm,k |H |φn,k

〉
(5.39)

=
1

N

∑

R,R′

e−ik·R′ 〈
φm(r− R′) |H |φn(r− R)

〉
eik·R (5.40)

=
1

N

∑

R

∑

R′′

e−ik·R′′ 〈
φm(r − R − R′′) |H |φn(r − R)

〉
(5.41)

=
∑

R′′

e−ik·R′′ 〈
φm(r − R′′) |H |φn(r)

〉
(5.42)

• Notice that the phase factor involves k · R, where R are lattice vectors, not distances
between atoms.

Qu.5.13 Tight binding for BCC and FCC lattices

Show that the tightbinding bandstructure based on a single orbital
per site for a body centred cubic lattice (include only the hopping to
the eight nearest neighbours) is

E(k) = ε0 + 8t cos(
1
2
kxa) cos(

1
2
kya) cos(

1
2
kza) , (5.43)
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and for the face centred cubic lattice (twelve nearest neighbours)

E(k) = ε0+4t[cos(
1
2
kxa) cos(

1
2
kya)+cos(

1
2
kya) cos(

1
2
kza)+cos(

1
2
kza) cos(

1
2
kxa)] .

(5.44)

5.7 Periodic boundary conditions and counting
states in 3 dimensions

We saw that the spacing between k-points in 1D was 2π/L, where L is the linear
dimension of the crystal.

• This generalises to 3 dimensions: the volume associated with each k is

∆k =
(2π)3

V
(5.45)

with V the volume of the crystal.

• Within each primitive unit cell of the reciprocal lattice there are now
precisely N allowed values of k, (N being the number of unit cells in the
crystal).

• In practice N is so big that the bands are continuous functions of k and
we only need to remember density of states to count.

• The bandstructure is periodic in the reciprocal lattice En(k+G) = En(k)
for any reciprocal lattice vector G. It is sometimes useful to plot the bands
in repeated zones, but remember that these states are just being relabelled
and are not physically different.

• Since electrons are fermions, each k-point can now be occupied by two
electrons (double degeneracy for spin). So if we have a system which
contains one electron per unit cell (e.g. a lattice of hydrogen atoms), half
the states will be filled in the first Brillouin zone. Two electrons per unit
cell fills a Brillouin zone’s worth of k states.

Periodic boundary conditions and volume per k-point

A formal proof of the number of allowed k-points uses Bloch’s theorem, and follows
from the imposition of periodic boundary conditions:

ψ(r + Niai) = ψ(r) (5.46)

where Ni are integers, with the number of primitive unit cells in the crystal being
N = N1N2N3 , and ai primitive lattice vectors. Applying Bloch’s theorem, we have
immediately that

eiNik·ai = 1, (5.47)
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so that the general form for the allowed Bloch wavevectors is

k =

3∑

i

mi

Ni
bi, for mi integral. (5.48)

with bi primitive reciprocal lattice vectors. Thus the volume of allowed k-space per
allowed k-point is just

∆k =
b1

N1
·
b2

N2
∧

b3

N3
=

1

N
b1 · b2 ∧ b3. (5.49)

Since b1 ·b2∧b3 = (2π)3N/V is the volume of the unit cell of the reciprocal lattice (V
is the volume of the crystal), Eq. (5.49) shows that the number of allowed wavevectors
in the primitive unit cell is equal to the number of lattice sites in the crystal. We may
thus rewrite Eq. (5.49)

∆k =
(2π)3

V
(5.50)



Chapter 6

Electronic structure from
plane waves

6.1 Nearly free electrons

The tight binding method is clearly the appropriate starting point for a theory
when the atomic potential is very strong, and the hopping probability for an
electron to move from site-to-site is very small. Here we explore the other limit,
where instead the lattice potential is assumed to be weak, and the kinetic energy
is the most important term.

6.2 The Schrödinger equation in momentum space

We need to solve

Hψ(r) =
[
−h̄2∇2/2m + U (r)

]
ψ(r) = Eψ(r) (6.1)

We expand the wavefunction in terms of a set of plane waves that satisfy
the periodic boundary conditions. 1

ψ(r) =
∑

k

cke
ik·r, (6.2)

The periodic potential U (r) has a plane wave expansion that only contains
waves with the periodicity of the reciprocal lattice

U (r) =
∑

G

UGe
iG·r, (6.3)

1The sum here is over all k, not just the Brillouin zone. Also the k-points are so dense
that we can usually replace the sum by an integral, i.e.

∑
k
→ V/(2π)3

∫
dk
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where G are the reciprocal lattice vectors.2 The momentum components are

UG =
N

V

∫

unitcell

dr e−iG·rU (r) , (6.4)

and since the potential is real U∗
G = U−G.

We now insert Eq. (6.2) and Eq. (6.3) in Eq. (6.1), and obtain, after a little
reorganisation of the terms

∑

k

eik·r

[(
h̄2

2m
k2 −E

)
ck +

∑

G

UGck−G

]
= 0 (6.5)

Since the plane waves form an orthogonal set, each coefficient in the sum over
k in Eq. (6.5) must vanish, i.e.

[(
h̄2

2m
k2 − E

)
ck +

∑

G

UGck−G

]
= 0 (6.6)

It is often convenient to rewrite q = k − K, where K is a reciprocal lattice
vector chosen so that q lies in the first Brillouin zone, when Eq. (6.6) is just

[(
h̄2

2m
(q −K)2 −E

)
cq−K +

∑

G

UG−Kcq−G

]
= 0 (6.7)

The wavefunction is of the Bloch form, because Eq. (6.7) mixes plane waves
of momentum q with q −G, and so

ψk(r) =
∑

G

ck−Ge
i(k−G)·r = eik·ru(r) , (6.8)

where
u(r) =

∑

G

ck−Ge
−iG·r (6.9)

is now a function with the periodicity of the lattice.

6.3 One-dimensional chain

Let’s get some insight from a simple model of a one-dimensional chain, but
now simplifying the atomic potential so it just contains the leading Fourier
components, i.e

U (r) =
1
2
U0 cos

2πx
a

(6.10)

2In contrast to the sum over k, this sum really is discrete.
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Figure 6.1: Band structure in the “empty lattice”, where U = 0, but we pretend
to keep Bloch’s theorem, so we have multiple bands in each Brillouin zone.
Turning on the potential U0 splits the degeneracies and opens up band gaps

Then the secular determinant runs just down the tri-diagonal3

... ...

... (k + 4π
a )2 −E U0

U0 (k + 2π
a )2 −E U0

U0 k2 −E U0

U0 (k − 2π
a )2 − E U0

U0 (k − 4π
a )2 − E ...
... ...

(6.11)

The physical interpretation of this is that an incident plane wave with
wavevector k can be scattered by the potential into a state of k±2π/a. Multiple
scattering then mixes these terms together. If U0 is small, we should be able to
treat it perturbatively, remembering to take care of degeneracies. Of course if
U0 = 0, we get the free electron eigenvalues

E
(m)
0 (k) = (k − 2πm/a)2 m = ...,−2,−1, 0,1,2, ... (6.12)

which are now repeated, offset parabolas. Remember Bloch’s theorem tells us
that k as a crystal momentum is conserved only within the first Brillouin zone
(see Fig. 6.1).

Now suppose U0 is turned on, but is very small. It will be important only for
those momenta when two free electron states are nearly degenerate, for example,
m=0,1 are degenerate when k = π/a. Near that point, we can simplify the band

3We set h̄2/2m = 1 for a moment
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a

ψ-

ψ+

2 /aπ

Figure 6.2: Energy bands in one dimension, and amplitudes of wavefunctions
at the band edges

structure to the 2x2 matrix
(

(k − 2π
a )2 − E U0

U0 k2 −E

) (
c1
c0

)
(6.13)

The solution of the determinantal leads to a quadratic equation:

E±(k) =
1
2
(k2 + (k − 2π/a)2) ± 1

2

√
(k2 − (k − 2π/a)2)2 + 4U2

0 (6.14)

Exactly at k = π/a, the energy levels are

E±(π/a) = E0
π/a ± |U0|, (6.15)

and if we choose the potential to be attractive U0 < 0, the wavefunctions are
(aside from normalisation)

ψ−(π/a) = cos(πx/a) ,
ψ+(π/a) = sin(πx/a) . (6.16)

The wavefunctions are plotted, along with the potential, in Fig. 6.2.
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Figure 6.3: Diatomic chain of atoms. Note that if the potentials on the two atoms
are identical, and δ = 0, the chain converts to a monatomic chain of period a/2

Qu.6.14 The diatomic chain Consider a diatomic lattice of two
atoms labelled A and B in a lattice with period a, at the positions
±a/4(1−δ) in a one-dimensional array with overall period a (see Fig.
6.3).

Using the NFE approximation valid for momenta near the zone
boundary k → π/a, show that the solution of Eq. (6.14) leads to:
(a) a gap on the zone boundary of magnitude 2|U2π/a|, and

(b) wavefunctions that satisfy c±k /c
±
k−2π/a = ±U/|U | as k → π/a.

Hence show that the probability density for the electronic states
at k = π/a take the form

|ψ+(r)|2 ∝ cos2(
πx

a
+
φ

2
)

|ψ−(r)|2 ∝ sin2(
πx

a
+
φ

2
) . (6.17)

Show that the potential can be written

U2π/a = sin(
πδ

2
)(UA

2π/a + UB
2π/a) − i cos(

πδ

2
)(UA

2π/a − UB
2π/a) , (6.18)

where

UA,B
2π/a =

1
L

∫
dr e−2πir/aUA,B(r) , (6.19)

(here L → ∞ is the length of the chain).

The system contains an average of one electron per atom, or equiv-
alently two electrons per unit cell. Discuss the values of the energy
gaps and plot the charge densities corresponding to the highest filled
electron state and the lowest empty electron state in the three cases;
(a) identical atoms, UA = UB , and δ = 0;
(b) different atoms UA 6= UB , and δ = 0, ;
(c) identical atoms, UA = UB , and δ 6= 0.

Explain how this provides a simple model of either an ionic or
covalent solid.
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6.4 Pseudopotential

The NFE method and the tight-binding method are not accurate methods of
electronic structure determination; nevertheless both of them exhibit the basic
principles. They are commonly used to write down simple models for bands,
with their parameters fit to more sophisticated calculations, or to experiment. It
turns out that band gaps in semiconductors are usually fairly small, and the true
dispersion can be modelled by scattering from a few Fourier components of the
lattice potential. The reason is that the relevant scattering potential for valence
band electrons is however MUCH smaller than the full atomic potential ze2/r
of an electron interacting with a nucleus of charge z. The effective potential for
scattering of the valence electrons by the atomic cores is a weak pseudopotential.

When we consider the band structure of a typical solid, we are concerned
only with the valence electrons, and not with those tightly bound in the core,
which remain nearly atomic. If we solve the full Schrödinger equation with the
real Coulomb potential, we expect to calculate not just the valence electronic
states, but also the atomic like core states. A pseudopotential reproduces the
valence states as the lowest eigenstates of the problem and neglects the core
states.

Figure 6.4: Pseudopotential: The true potential V (r) has a wavefunction for
the valence electrons that oscillates rapidly near the core. The pseudopotential
Vs(r) has a wavefunction Φs(r) that is smooth near the core, but approximates
the true wavefunction far from the core region.

A weak pseudopotential acting on a smooth pseudo-wavefunction gives nearly
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the same energy eigenvalues for the valence electrons as the full atomic potential
does acting on real wavefunctions. Away from the atomic cores, the pseudopo-
tential matches the true potential, and the pseudo-wavefunction approximates
the true one.

A formal derivation of how this works can be given using the method of orthogo-
nalised plane waves. The atomic states are well described by the Bloch functions fnk

of the LCAO or tight-binding scheme Eq. (5.32). Higher states, which extend well
beyond the atoms will not necessarily be of this kind, but they must be orthogonal to
the core levels. This suggests that we should use as a basis 4

|χk >= |k > −
∑

n

βn|fnk > , (6.20)

where |k > is a plane wave, and the coefficients βn(k) are chosen to make the states
χ orthogonal to the core states |fnk >. The states in Eq. (6.20) are orthogonalised
plane waves (OPW); away from the core, they are plane wave like, but in the vicinity
of the core they oscillate rapidly so as to be orthogonal to the core levels.

We can now use the OPW’s as basis states for the diagonalisation in the same
way that we used plane waves in the NFE, viz

|ψk >=
∑

G

αk−G|χk−G > . (6.21)

This turns out to converge very rapidly, with very few coefficients, and only a few
reciprocal lattice vectors are included in the sum. The following discussion explains
why.

Suppose we have solved our problem exactly and determined the coefficients α.
Now consider the sum of plane waves familiar from the plane-wave expansion, but
using the same coefficients, i.e.

|φk >=
∑

G

αk−G|k − G > , (6.22)

and then 5 it is easily shown that

|ψ >= |φ > −
∑

n

< fn|φ > |fn > . (6.23)

Then substitute into the Schrodinger equation H |ψ >= E|ψ >, which gives us

H |φ > +
∑

n

(E − En) < fn|φ > |fn >= E|φ > (6.24)

We may look upon this as a new Schrödinger equation with a pseudopotential
defined by the operator

Vs|φ >= U |φ > +
∑

n

(E − En) < fn|φ > |fn > (6.25)

which may be written as a non-local operator in space

(Vs − U)φ(r) =

∫
VR(r,r′)φ(r′) dr′ , (6.26)

4We use Dirac’s notation of bra and ket, where |k > represents the plane wave state

exp(ik·r), and< φ1|T |φ2 > represents the matrix element
∫
drφ∗1(r)T (r)φ2(r) of the operator

T .
5Saving more notation by dropping the index k
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where

VR(r,r′) =
∑

n

(E − En)fn(r)f∗n(r′) . (6.27)

The pseudopotential acts on the smooth pseudo-wavefunctions |φ >, whereas the bare
Hamiltonian acts on the highly oscillating wavefunctions |ψ >.

One can see in Eq. (6.25) that there is cancellation between the two terms. The
bare potential is large and attractive, especially near the atomic core at r ≈ 0; the
second term VR is positive, and this cancellation reduces the total value of Vs especially
near the core. Away from the core, the pseudopotential approaches the bare potential.

Qu.6.15 Nearly free electron approximation for a square
lattice The potential in a 2-dimensional square crystal of side a is
given by

V (x, y) = −2V0

[
cos

(
2πx
a

)
+ cos

(
2πy
a

)]
. (6.28)

Use the nearly-free electron approximation to calculate the electron
energies at the wave-vectors

k0 =
2π
a

(0, 0) ,k1 =
2π
a

(
1
2
, 0) ,k2 =

2π
a

(
1
2
,
1
2
) . (6.29)

(a) Write down the form of the wavefunction within the nearly-
free-electron approximation, using 1 plane wave at k0, 2 plane waves
at k1, and 4 plane waves at k2.

(b) In each case, substitute these wavefunctions into the Schrödinger
equation, and write the resulting equations in matrix form.

(c) Solve the three eigenvalue problems for the energy levels at
k0, k1, and k2.



Chapter 7

Bandstructure of real
materials

7.1 Bands and Brillouin zones

In the last chapter, we noticed that we get band gaps forming by interference of
degenerate forward- and backward going plane waves, which then mix to make
standing waves.

Brillouin zones. What is the condition that we get a gap in a three-
dimensional band structure? A gap will arise from the splitting of a degeneracy
due to scattering from some fourier component of the lattice potential, i.e. that

E0(k) = E0(k −G) (7.1)

which means (for a given G) to find the value of k such that |k|2 = |k − G|2.
Equivalently, this is

k · G
2

=
∣∣∣∣
G
2

∣∣∣∣
2

(7.2)

which is satisfied by any vector lying in a plane perpendicular to, and bisecting
G. This is, by definition, the boundary of a Brillouin zone; it is also the Bragg
scattering condition, not at all coincidentally.

Electronic bands. We found that the energy eigenstates formed discrete
bands En(k), which are continuous functions of the momentum k and are addi-
tionally labelled by a band index n. The bands are periodic: En(k+G) = En(k).

Bloch’s theorem again. The eigenstates are of the form given by Bloch’s
theorem

ψnk(r) = eik·runk(r) (7.3)

where u(r) is periodic on the lattice. Notice that if we make the substitution
k → k + G, Eq. (7.3) continues to hold. This tells us that k can always be
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chosen inside the first Brillouin zone for convenience, although it is occasionally
useful to plot the bands in an extended or repeated zone scheme as in Fig. 6.2.

Crystal momentum. The quantity h̄k is the crystal momentum, and
enters conservation laws for scattering processes. For example, if an electron
absorbs the momentum of a phonon of wavevector q, the final state will have a
Bloch wavevector k′ = k+q+G, where G is whatever reciprocal lattice vector
necessary to keep k′ inside the Brillouin zone. Physical momentum can always
be transferred to the lattice in arbitrary units of h̄G. Notice that depending on
the energy conservation, processes can thus lead to transitions between bands.

Counting states. In a big system, the allowed k-points are discrete but
very closely spaced. Each occupies a volume

∆k =
(2π)3

V
(7.4)

with V the volume of the crystal. Thus within each primitive unit cell or Bril-
louin zone of the reciprocal lattice there are now precisely N allowed values of
k, (N being the number of unit cells in the crystal).

Even number rule. Allowing for spin, two electrons per real space unit
cell fills a Brillouin zone’s worth of k states.

7.2 Metals and insulators in band theory

The last point is critical to the distinction that band theory makes between
a metal and an insulator. A (non-magnetic) system with an even number of
electrons per unit cell may be an insulator. In all other cases, the fermi energy
must lie in a band and the material will be predicted1 to be a metal. Metallicity
may also be the case even if the two-electron rule holds, if different bands overlap
in energy so that the counting is satified by two or more partially filled bands.

Notation

The bandstructure En(k) defines a function in three-dimensions which is difficult
to visualise. Conventionally, what is plotted are cuts through this function
along particular directions in k-space. Also, a shorthand is used for directions
in k-space and points on the zone boundary, which you will often see in band
structures.

• Γ = (0, 0, 0) is the zone centre.

• X is the point on the zone boundary in the (100) direction; Y in the
(010) direction; Z in the (001) direction. Except if these directions are
equivalent by symmetry (e.g. cubic) they are all called ”X”.

1Band theory may fail in the case of strongly correlated systems where the Coulomb repul-
sion between electrons is larger than the bandwidth, producing a Mott insulator
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• L is the zone boundary point in the (111) direction.

• K in the (110) direction.

• You will also often see particular bands labelled either along lines or at
points by greek or latin capital letters with a subscript. These notations
label the group representation of the state (symmetry) and we won’t dis-
cuss them further here.

Density of states

We have dealt earlier with the density of states of a free electron band in 3,
especially Question 3.2. The maxima Emax and minima Emin of all bands must
have a locally quadratic dispersion with respect to momenta measured from the
minima or maxima. Hence the density of states (in 3D) near the minima will
be the same

g(E >
∼ Emin) =

V

π2

m∗

h̄2

(
2m∗(E −Emin

h̄2

)1
2

. (7.5)

as before, with now however the replacement of the bare mass by an effective
mass m∗ = (m∗

xm
∗
ym

∗
z)1/3 averaging the curvature of the bands in the three

directions. A similar form must apply near the band maxima, but with now
g(E) ∝ (Emax −E)

1
2 . Notice that the flatter the band, the larger the effective

mass, and the larger the density of states2.

Since every band is a surface it will have saddle points (in two dimensions
or greater) which are points where the bands are flat but the curvature is of
opposite signs in different directions. Examples of the generic behaviour of the
density of states in one, two and three dimensions are shown in Fig. 7.1. The
saddle points give rise to cusps in the density of states in 3D, and a logarithmic
singularity in 2D.

For any form of E(k), the density of states is

g(E) =
∑

n

gn(E) =
∑

n

∫
dk

4π3
δ(E − En(k)) , (7.6)

Because of the δ-function in Eq. (7.6), the momentum integral is actually over a
surface in k-spaceSn which depends on the energyE; Sn(EF ) is the Fermi surface. We
can separate the integral in k into a two-dimensional surface integral along a contour
of constant energy, and an integral perpendicular to this surface dk⊥ (see Fig. 7.2).
Thus

gn(E) =

∫

Sn(E)

dS

4π3

∫
dk⊥(k) δ(E − En(k))

=

∫

Sn(E)

dS

4π3

1

|∇⊥En(k)|
, (7.7)

2The functional forms are different in one and two dimensions, see Question 3.2.
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1D

2D

3D

Figure 7.1: Density of states in one (top curve), two (middle curve) and three
(lower curve) dimensions

Figure 7.2: Surface of constant energy
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where ∇⊥En(k) is the derivative of the energy in the normal direction.3

Notice the appearance of the gradient term in the denominator of Eq. (7.7), which
must vanish at the edges of the band, and also at saddle points, which exist generically
in two and three dimensional bands. Maxima, minima, and saddle points are all
generically described by dispersion (measured relative to the critical point) of

E(k) = E0 ±
h̄2

2mx
k2

x ±
h̄2

2my
k2

y ±
h̄2

2mz
k2

z (7.8)

If all the signs in Eq. (7.8) are positive, this is a band minimum; if all negative,
this is a band maximum; when the signs are mixed there is a saddle point. In the
vicinity of each of these critical points, also called van Hove singularities, the density
of states (or its derivative) is singular. In two dimensions, a saddle point gives rise
to a logarithmically singular density of states, whereas in three dimensions there is a
discontinuity in the derivative.

Qu.7.16 2D tight binding band

This question is to encourage you to visualise bands in two di-
mensions (and higher!). Using a simple numerical package to plot
representative cases will help.

Consider a two-dimensional band structure on a rectangular lattice

E(k) = −2 ∗ t1 cos(akx) − 2 ∗ t2 cos(bky) (7.9)

(a) What is the reciprocal lattice? Draw the first Brillouin zone
boundary.

(b) What is the real space lattice?

(c) Suppose that t1 > t2 > 0 and a < b. (Do you expect there
to be a relation?) Plot some contours of constant energy. At which
momenta do you find the band minima, maxima, and saddle points?
What are the effective masses of electrons at these points (keep track
of signs)?

(d) Make a numerical estimation of the density of states as a
function of energy (plot a histogram, say). Can you give an analytic
form for the energy- dependence of the density of states near the
singular points?

(e) For what range of energies are the energy contours open or
closed? Does this bear any relationship to the energies of the saddle
points?

3We are making use of the standard relation δ(f(x)− f(x0)) = δ(x− x0)/|f ′(x0)|
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Figure 7.3: Band structure of Al (solid line) compared to the free electron
parabolas (dotted line). Calculations from Stumpf and Scheffler, cited by
Marder.

7.3 Examples of band structures

Metals

If there are not an even number of electrons per unit cell, the chemical potential
must lie in a band, and there will be no energy gap. Because there are low-lying
electronic excitations, the system is a metal. The fermi surface is the surface in
momentum space that separates the filled from the empty states. In a simple
metal like Na (3s1 - 1 valence electron) or Al ( 3s2p1 - 3 valence electrons) this
is nearly a sphere like the free electron gas. In other cases (e.g. Cu, 4s3d10) the
sphere extends in some directions to meet the Brillouin zone boundary surface.
There can be situations where several bands are cut by the fermi energy, and
the topology of fermi surfaces is sometime complicated.

Semimetals

Even if there are the right number of electrons to fill bands and make a semi-
conductor, the bands may still overlap. Consequently, the chemical potential
will intersect more than one band, making a pocket of electrons in one band and
removing a pocket of electrons from the band below (which as we shall see later,
are sometimes called holes). This accounts for the metallicity of Ca and Mg
(which have two electrons per unit cell), and also As, Sb and Bi. The latter,
despite being group V elements, have crystal structures that contain 2 atoms
per unit cell and therefore 10 valence electrons. We have previously alluded
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Figure 7.4: Band structure of Cu metal [from G.A.Burdick, Phys. Rev.129,138
(1963)], cited by Grosso and Parravicini

Figure 7.5: Fermi surface of Cu



68 CHAPTER 7. BAND THEORY OF METALS AND INSULATORS

Figure 7.6: Pseudopotential band structure of Si and Ge [M.L.Cohen and
T.K.Bergstresser Phys.Rev141, 789 (1966)]. The energies of the optical transi-
tions are taken from experiment.

to graphite, which is a special kind of semimetal. We noted that a graphene
sheet has conduction and valence bands that touch at special points on the zone
boundary. Over all except these points, the band structure has a gap - thus
graphene is more correctly titled a zero-gap semiconductor.

Semiconductors and insulators

If there are an even number of electrons per unit cell, then it is possible (if the
bands don’t overlap) for the occupied states all to lie in a set of filled bands,
with an energy gap to the empty states. In this case the system will be a
semiconductor or insulator. Such is the case for the group IV elements C, Si
and Ge, as well as the important III-V compounds such as GaAs and AlAs.
These elements and compounds in fact have 2 atoms per unit cell (diamond or
zincblende structure) and have a total of 8 valence electrons per unit cell — 4
filled bands.

The band structures of Si, Ge, and GaAs are shown in Fig. 7.6 and Fig. 7.7.
The maximum of the valence bands of all the materials is at Γ. Si and Ge are
both indirect gap materials, because the conduction bands have minima either
in the (100) direction (Si) or the (111) direction (Ge).
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Figure 7.7: Band structure of GaAs [M.L.Cohen and T.K.Bergstresser
Phys.Rev141, 789 (1966)]

Figure 7.8: The valence charge density for Ge, GaAs, and ZnSe from an early
pseudopotential calculation, plotted along a surface in a 110 plane that contains
the two atoms of the unit cell. Note the (pseudo-)charge density shifting from
the centre of the bond in Ge to be almost entirely ionic in ZnSe. [M.L.Cohen,
Science 179, 1189 (1973)]
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7.4 Probing the band structure and density of
states

Optical transitions

The band structure provides the excitation spectrum of the solid. The ground
state of the system involves filling states up to the fermi energy, but we can also
excite the system in different ways. One of the simplest is the absorption of a
photon, which can be visualised as an excitation of an electron from an occupied
state into an empty state, leaving behind a ”hole” in the valence band. See Fig.
7.9.

The minimum gap in a semiconductor is the energy difference between the
highest occupied state and the lowest unoccupied state, and this is the threshold
for optical absorption (neglecting excitonic physics, see later). In some semicon-
ductors, the maximum valence band state and the minimum in the conduction
band occur at the same momentum - in such a direct gap system, direct optical
excitation is allowed at the minimum gap, and an important example is GaAs.

Si and Ge are example of indirect gap materials, because the conduction
band minimum is toward the edge of the zone boundary. The minimum en-
ergy transition is at large momentum, and therefore cannot be accomplished
by direct absorption of a photon. The lowest energy transition is instead a
phonon-mediated transition where the energy is provided by the photon and
the momentum provided by the phonon. This is much less efficient than direct
optical absorption.

Figure 7.9: Direct absorption by light is a nearly vertical transition since the
wavevector of a photon with energy of order a semiconductor gap is much smaller
than the typical momentum of an electron. (a) In a direct gap semiconductor,
such as GaAs, the lowest energy available states for hole and electron are at the
same momentum, and the optical threshold is at the vertical energy gap. (b)
IN an indirect gap material (e.g. Si or Ge), the minimum energy excitation of
electron and hole pair connects state of different momenta - and a phonon of
momentum q must be excited concurrently with the photon.

Luminescence is the inverse process of recombination of an electron-hole
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Figure 7.10: The interband absorption spectrum of Si has a threshold at the
indirect gap Eg ≈ 1.1 eV which involves a phonon and is very weak. The
energies E1 and E2 correspond to critical points where the conduction and
valence bands are vertically parallel to one another; absorption is direct (more
efficient) and also enhanced by the enhanced joint density of electron and hole
states. [E.D.Palik, Handbook of the optical constants of solids, AP, 1985]
.

pair to emit light. It comes about if electrons and holes are injected into a
semiconductor (perhaps electrically, as in a light-emitting diode). Obviously,
this process will not be efficient in an indirect gap semiconductor but is more so
in a direct gap material. This simple fact explains why GaAs and other III-V
compounds are the basis of most practical opto-electronics in use today, whereas
Si is the workhorse of electrical devices.
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Figure 7.11: Schematics of a photoemission experiment. The optical transitions
are nearly vertical, so the electrons are excited from the valence bands to high
energy excited states (above the vacuum energy necessary to escape from the
crystal) with the same crystal momentum. In this case the two transitions that
can be excited by a single frequency will yield a double peak in the kinetic
energy distribution of the escaped electrons. When the excited electrons escape
through the surface of the crystal, their momentum perpendicular to the surface
will be changed. If the surface is smooth enough, the momentum of the electron
parallel to the surface is conserved, so the angle of the detector can be used to
scan k‖

Photoemission

The most direct way to measure the electron spectral function directly is by
photoemission, although this is a difficult experiment to do with high resolu-
tion. In a photoemission experiment, photons are incident on a solid, and cause
transitions from occupied states to plane wave-like states well above the vac-
uum energy; the excited electron leaves the crystal and is collected in a detector
that analyses both its energy and momentum.4 The photon carries very lit-
tle momentum, so the momentum of the final electron parallel to the surface
is the same as the initial state in the solid, while of course the perpendicular
component of the momentum is not conserved. Photoemission data is therefore
most easy to interpret when there is little dispersion of the electronic bands
perpendicular to the surface, as occurs in anisotropic layered materials. It is
fortunate that there are many interesting materials (including high-temperature
superoconductors) in this class.

If one analyses both the energy and the momentum of the outgoing electron,
(this is Angle Resolved Photo-Emission Spectroscopy, or ARPES) one can de-

4For a detailed discussion of photoemission experiments, see Z.X.Shen and D.S.Dessau,
Physics Reports, 253, 1-162 (1995)
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Figure 7.12: Idealised results from a photoemission experiment. A peak is
observed at the band energy in each spectrum, but disappears when the band
crosses the Fermi energy

termine the band structure directly. Integrating over all angles gives a spectrum
that is proportional to the total density of states.

The ideal schematic for interpreting an ARPES experiment would then be
as shown in Fig. 7.11. An example of real data is shown in Fig. 7.13.

Photoemission can give information only about occupied states. The tech-
nique of inverse photoemission involves inserting an electron of known energy
into a sample and measuring the ejected photon. Since the added electron must
go into unoccupied state, this spectroscopy allows one to map out unoccupied
bands, providing information complementary to photoemission.

Tunnelling

Tunnelling spectroscopies (injecting or removing electrons) through a barrier
have now evolved to be very important probes of materials. The principle here
is that a potential barrier allows one to maintain a probe (usually a simple metal)
at an electrical bias different from the chemical potential of the material. Thus
the current passed through the barrier comes from a non-equilibrium injection
(tunnelling) through the barrier.

A model for a simple metal tunnelling into a more complex material is shown
in Fig. 7.14. With the metal and sample maintained at different electrical
potentials separated by a bias eV , then the current through the junction can be
estimated to be of the form

I ∝
∫ µ

µ+eV

gL(ω)gR(ω)T (ω) (7.10)

where T is the transmission through the barrier for an electron of energy ω and
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Figure 7.13: . Photoemission spectra on the two dimensional layered metal
SrRuO4. The bands are nearly two-dimensional in character, so the interpre-
tation of the photoemission data is straightforward – different angles (see Fig.
7.11 )correspond to different in-plane momenta. The upper panels show energy
scans for different angles that correspond to changing the in-plane momentum
in the direction from the centre of the Brillouin zone Γ towards the centre of
the zone face M and the corner X. Several bands cross the Fermi energy, with
different velocities, and sharpen as their energies approach EF . The left hand
lower panel plots the positions of the peaks as a function of momentum at the
fermi energy, to be compared with the band structure calculation of the fermi
surface(s) on the lower right. [Experiment from Damascelli et al, PRL; theory
from Mazin et al PRL 79, 733 (1997)]
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gL and gR are the densities of states.5 If the barrier is very high so that T is
not a strong function of energy, and if the density of states in the contact/probe
is approximately constant, then the energy-dependence comes entirely from the
density of states inside the material. Notice then that the differential conduc-
tivity is proportional to the density of states (see Fig. 7.14):

dI/dV ∝ g(µ + eV ) . (7.11)

It is difficult to maintain very large biases, so most experiments are limited to
probing electronic structure within a volt or so of the fermi energy.

Figure 7.14: Schematic description of tunnelling between two materials main-
tained at a relative bias eV . The current is approximately given by the inte-
grated area between the two chemical potentials (provided the matrix element
for tunnelling is taken constant.) If the density of states of the contact (or probe,
labelled 1 in the figure )is also slowly varying, then the differential conductance
dI/dV is proportional to the density of states of the material itself, at the bias
eV above the chemical potential µ2.

Tunnel junctions are sometimes fabricated by deposition of a thin insulating
layer followed by a metal contact.

The technique of scanning tunnelling microscopy (STM) uses a small tip,
with vacuum as the surface barrier. Because the tunnel probability is an ex-
ponential function of the barrier thickness, this scheme provides high (close to
atomic, in some cases) spatial resolution, even though the tip radius will be nm
or larger. By hooking this up to a piezoelectric drive in a feedback loop, it has
proved possible to provide not only I − V characteristics at a single point, but
also spatial maps of the surface.

Scanned probe spectroscopies have advanced to become extraordinary tools
at the nanoscale. As well as STM, it is possible to measure forces near a surface

5Strictly this formula applies when the tunnelling process does not conserve momentum
parallel to the interface, i.e. if the surface is rough or disorded.
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Figure 7.15: Differential conductance of a tunnel junction between supercon-
ducting Pb and metallic Mg reveals the gap in the density of states of super-
conducting lead. [I. Giaever, Nobel Prize Lecture, 1973]

Figure 7.16: An array of Fe atoms arranged in a corral on the surface of Cu traps
a surface electron state whose density can be imaged by STM. M.F. Crommie,
C.P. Lutz, D.M. Eigler, E.J. Heller. Surface Review and Letters 2 (1), 127-137
(1995).
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(atomic force microscopy, AFM ), which is particularly useful for insulating
samples. It has proven possible to manipulate individual atoms, to measure the
magnetism of a single spin, and with small single-electron transistors to study
to motion of single electron charges in the material.

Qu.7.17 Optical absorption of simple metals

Why are electronic transitions involving photons normally regarded
as “vertical” while those involving phonons are “horizontal”?

In the first Brillouin zone of a body centred cubic (BCC) crystal,
the shortest distance from the zone centre to the zone boundary is√

2π/a. Show that the free electron fermi surface of a monovalent
metal is contained entirely within the first Brillouin zone.

Indicate on a diagram the threshold energy E0 for the absorption
of photons leading to an electron being excited from occupied energy
levels to unoccupied energy levels. For a BCC material, show that this
energy is E0 ≈ 0.64EF .

Alkali metals have a BCC structure. The experimental data below
show the frequency dependence of the conductivity in the alkali metals
Na, K, and Rb, which have lattice constants a, respectively, of 0.423
nm, 0.523 nm, and 0.559 nm . The broad peaks at higher frequencies
in each curve have been interpreted as arising from interband optical
absorption. Is this consistent with nearly free electron behaviour?
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Qu.7.18 * Graphite A single sheet of graphite has two carbon
atoms in the unit cell at positions d1 = 0 and d2 = (a/

√
3)(0, 1, 0).

The translation vectors for the two-dimensional hexagonal lattice are
t1 = (a/2)(1,

√
3, 0) and t1 = (a/2)(−1,

√
3, 0).

The electronic configuration of the carbon atom is 1s22s22p2, and
ignoring the 1s core states, we need to make a band structure from
the s, px, py abd pz orbitals. Because s, px and py orbitals are even
under reflection through the plane, and pz odd, the two sets do not
mix. The first three states hybridise to form σ−bonds with a large
gap between the bonding and anti-bonding orbitals. Within this gap
lie the π-orbitals arising from the hybridised pz. The three bonding
σ orbitals will accommodate 6 electrons per cell, leaving 2 electrons
per unit cell in the π-bands. This question considers the electronic
π-bands only.

Figure 7.17: Two dimensional structure of graphite

(a) Construct Bloch states that consist of a linear mixture of the
two pz orbitals in the unit cell, and show how this gives rise to the
secular equation to determine the eigenstate energies

∣∣∣∣
Ep −E tF (k)
tF ∗(k) Ep −E

∣∣∣∣ = 0 , (7.12)

where t is the two center hopping matrix element between neighbour-
ing pz orbitals, and

F (k) = 1 + 2 cos (
kxa

2
) exp (−i

√
3kya

2
) . (7.13)

(b) Show that the reciprocal lattice is also a hexagonal lattice, at
an angle of π/6 to the real-space lattice. Show that the first Brillouin
zone is a hexagon centred at the point Γ = (000), whose corners are
at the points P = (2π/a)(2/3, 0, 0)
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(c) Determine a formula for the dispersion curves for the two
eigenstates, and plot them in the directions ΓP , and ΓQ. (Here
Q = (2π/a)(1/2, 1/2

√
3, 0) is at the middle of a zone face.

(d) Where will the π-bands lie in energy relative to the sp2 σ-
orbitals? Is a single layer of graphite a metal or an insulator?

(e) Carbon nanotubes are formed by curling a graphite sheet into a
tube, connecting the atoms with periodic boundary conditions. There
are many ways to do this, and the different nanotubes can be indexed
by the vector mt1 + nt2 that identifies which atoms are connected
periodically. Assuming the band-structure is unchanged, show that the
allowed k-states now lie on a set of lines whose direction is parallel to
the tube. Discuss the situations under which the resulting tube will
be semiconducting or metallic.

Qu.7.19 Band structure of d-band metals

In many transition metals a narrow d-band lies within a broad
energy band originating from s−orbitals. This question discusses the
band structure using a simple one-dimensional model contructed from
a tight-binding Hamiltonian with one s-orbital φs(r) and one d-orbital
φd(r) per atom; the atoms are arranged in a linear chain of lattice
constant a.

(a) Write down two Bloch states φs(k) and φd(k) formed from the
atomic s- and d- states respectively. The eigenstates must be linear
combinations of these.

(b) Hence show that the one-particle bandstructure E(k) can be
found from the determinantal equation

∣∣∣∣
Es − 2tss cos(ka) − E(k) −2tsd cos(ka)

−2tsd cos(ka) Ed − 2tdd cos(ka) −E(k)

∣∣∣∣ = 0 .

Identify and explain the parameters appearing in the determinantal
equation, and discuss the approximations made that lead to this form.

(c) Discuss why you would expect that tss > |tsd| > tdd.

(d) Plot the dispersion of the two bands when |Ed−Es| � 2|tss|,
and tsd and tdd are neglected.

(e) How is the dispersion modified from (d) by the inclusion of
small values of tsd and tdd?

(f) Discuss the relevance of this model to the electronic bandstruc-
ture of Cu metal.
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Chapter 8

Electrodynamics of metals

8.1 Screening and Thomas-Fermi theory

One of the most important manifestations of electron-electron interactions in
metals is that of screening. If we insert a positive test charge into a metal, it
attracts a cloud of electrons around it, so that at large distances away from the
test charge the potential is perfectly screened - there is zero electric field inside
the metal. Notice that this is quite different from a dielectric, where the form
of the electrostatic potential is unchanged but the magnitude is reduced by the
dielectric constant ε.

General remarks on screening

The charge density we introduce into the solid we will call ρext(r) = |e|next(r).
In vacuum it would produce a potential vext that satisifies Poisson’s equation

∇2vext(r) =
e2

ε0
next(r) . (8.1)

Once the electrons in the solid relax to accommodate the new potential, the
total charge density will consist of the external charge and the induced electron
charge density nind(r), viz

ρtot(r) = ρext(r) + ρind(r) = e(next(r) − nr(r)) , (8.2)

which generates the actual potential vtot seen by the electrons,

∇2vtot(r) =
e2

ε0
(next(r) − nind(r)) . (8.3)

The net effect will be that the total potential seen by an individual electron in
the Schrodinger equation is less than the external potential.

81
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In general, this phenomenon is incorporated into electromagnetic theory
through the dielectric function ε, and usually one assumes that the total poten-
tial and the induced potential are linearly related (linearity being an assumption,
for the moment). The dielectric function relates the electric displacement D to
the electric field E, in the form

D(r) = ε0

∫
dr′ ε(r, r′)E(r′) . (8.4)

Because D is generated by ”free” charges (i.e. ρext) and E by the total charge
(i.e. ρtot) Eq. (8.4) can be rewritten as a relationship between the potentials
generated by those charge distributions:

vext(r) =
∫
dr′ ε(r, r′)vtot(r′) . (8.5)

In a spatially uniform electron gas, ε can depend only on the separation between
coordinates, i.e. ε(r, r′) = ε(r− r′), so that Eq. (8.5) becomes a convolution in
real space – better written of course in Fourier (momentum) space as1

vext(q) = ε(q)vtot(q) . (8.6)

The job of a microscopic model is to calculate the induced charge den-
sity (using the Schrodinger equation) produced by the external potential, i.e.
nind([vext(r)]); again assuming it is linear (expected to be the case if vext is
small enough, this will be a calculation of what is usually called the linear
susceptibility χ, defined by

nind(q) = χ(q)vext(q) . (8.7)

Looking back to the definitions of the potential in terms of the density, the
relationship to the dielectric function is

1
ε(q)

= 1 − 4πe2

q2
χ(q) . (8.8)

Thomas-Fermi approximation

The Thomas-Fermi theory of screening starts with the Hartree approximation
to the Schrödinger equation. The Hartree approximation is to replace the many-
body pairwise interaction between the electrons by a set of interactions between
a single electron and the charge density made up from all the other electrons,
i.e. by a one-body potential for the ith electron

Ucoul(r) = −e
∫
dr′

ρ(r′)
r− r′

= e2
∑

j 6=i

∫
dr′

|ψj(r′)|2

r− r′
, (8.9)

1Here we use the same symbol for a function and its Fourier transform, distinguishing the
two by their arguments
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Vext

Vtot E (r)F

Figure 8.1: Thomas-Fermi approximation

where the summation is over all the occupied states ψi. This clearly takes
into account the averaged effect of the Coulomb repulsion due to all the other
electrons. This introduces enormous simplicity, because instead of needing to
solve an N-body problem, we have a (self-consistent) one-body problem. It
contains a lot of important physics, and turns out to be an approximation that
is good provided the electron density is high enough. We will discuss better
theories later, in the special topic of the electron gas.

We shall treat the case of “jellium”, where the ionic potential is spread out
uniformly to neutralise the electron liquid. We wish to calculate the density
induced by an external potential nind([vext(r)]).

Jellium. The potential in the problem is the total potential (external plus
induced) produced by the added charge and by the non-uniform screening cloud
(see Fig. 8.1)

− h̄2

2m
∇2ψ(r) + vtot(r)ψ(r) = Eψ(r) . (8.10)

Slowly varying potential. Assume that the induced potential is slowly
varying enough that the energy eigenvalues of Eq. (8.10) are still indexed by
momentum, but just shifted by the potential as a function of position:

E(k, r) =
h̄2k2

2m
+ vtot(r) . (8.11)

This makes only sense in terms of wavepackets, but provided the potential varies
slowly enough on the scale of the Fermi wavelength 2π/kF , this approximation
is reasonable.

Constant chemical potential. Keeping the electron states filled up to a
constant energy µ requires that we adjust the local kF such that

µ =
h̄2kF (r)2

2m
+ vtot(r) = EF (r) + vtot(r) , (8.12)
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where we have adopted the usual convention of measuring EF from the bottom
of the parabolic band2.

Local density approximation. We assume that kF just depends on the
local density

kF (r) = (3π2n(r))1/3 . (8.13)

Remember that

vtot(r) = vext(r) + vind(r) = vext(r) +
∫
dr′

e2

|r− r′|n(r′) (8.14)

Thomas-Fermi equation. Substituting into Eq. (8.12):

h̄2

2m
(3π2)2/3n2/3(r) +

∫
dr′

e2

|r− r′|n(r′) = µ − vext(r) . (8.15)

Linearised Thomas-Fermi. When the added potential vext is small, the
density cannot differ very much from the density no of the system without the
potential so we may then linearise:

δn(r) = n(r) − no , (8.16)

where δn is the induced charge density. To linear order

h̄2

3m
(3π2)2/3n−1/3

o δn(r) +
∫
dr′

e2

|r− r′|
δn(r′) = −vext(r) (8.17)

Density response. This is solved by Fourier transforms.

δn(q) = − vext(q)
4πe2

q2

[
1 + q2

q2
T F

] , (8.18)

where the Thomas-Fermi wavevector (inverse of the screeing length) is

q2TF =
4
π

me2

h̄2
kF =

4
π

kF

aB
= (

2.95

r
1
2
s

Å−1)2 . (8.19)

Screening. εTF ∝ q−2 at small q (long distances), so the long range part
of the Coulomb potential (also ∝ 1/q2) is exactly cancelled. In real space, if
vext = Q/r is Coulombic (long range), V (r) = (Q/r)e−qT F r is a short-range
Yukawa, or screened potential3. In a typical metal, rs is in the range 2 − 6,
and so potentials are screened over a distance comparable to the interparticle
spacing; the electron gas is highly effective in shielding external charges.

2One is often sloppy about using EF and µ interchangeably; here is a place to take care
3This form is originallydue to P.Debye and E.Hückel, Zeitschrift für Physik 24, 185, (1923)

and was derived for the theory of electrolytes; it appears also in particle theory under the name
of the Yukawa potential; the physics in all cases is identical
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Dielectric function. Eq. (8.18) gives us the definition of the density re-
sponse function χ, and hence we have calculated the static dielectric function
in the Thomas-Fermi approximation

εTF (q) = 1 +
q2TF

q2
, (8.20)

or equivalently

vtot(q) = vext(q)
q2

q2 + q2TF

. (8.21)

Qu.8.20 Thomas-Fermi screening

Check the formulae in Eq. (8.18) and Eq. (8.19). Suppose that
the potential vext = Q/r, show that the induced charge density is
then of the form

δn(r) ∝ e−r/ξ

r

and identify the screening length ξ.

8.2 Plasma oscillations

If you treat the electrons as a classical charged fluid, and displace them relative
to the fixed ionic background (jellium again) by an amount u(r):

u = uoe
i(q·r−ωt) uo ‖ q (8.22)

This is a longitudinal wave — displacement parallel to the wavevector.

The longitudinal displacement of the charge induces a polarisation

P = −neu (8.23)

and therefore an internal electric field in the sample which is

ε0E = −P + D (8.24)

where D is the displacement field, due to external forces only. D is the applied
field.

The equation of motion for the displacement is

mü = −eE = −ne
2

ε0
u− e

ε0
D (8.25)

which after rearrangement and Fourier transformation gives

(−mω2 +
ne2

ε0
)u = − e

ε0
D . (8.26)
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Plasmons. If D = 0, Eq. (8.26) describes modes of free oscillation: solu-
tions of the form uoe

iωpt oscillating at the plasma frequency ωp = (ne2/ε0m)1/2

– which describes a massive mode4.

Dielectric function. The ratio of the internal electric field E to the applied
field D gives the dielectric function - some straightforward reshuffling leads to

ε0

[
1 −

ω2
p

ω2

]
E‖ = D‖ , (8.27)

which defines the longitudinal dielectric function

ε‖ =

[
1 −

ω2
p

ω2

]
. (8.28)

Since D is generated (by Poisson’s law) by the external potential, and E is gen-
erated by the screened potential, another way of writing the dielectric function
is

Vsc(q, ω) =
Vext(q, ω)
ε(q, ω)

(8.29)

Defined this way, we have already estimated a formula for the static dielectric
function in Eq. (8.20).

This classical discussion does not generate any dispersion for the plasmon,
i.s. the plasma frequency is found to be q-independent. It turns out that the
classical theory is exact for q → 0, but there are quantum transitions that are
entirely missed at short wavevectors.

Since ε measures the charge response of a solid, then plasmons are generated
by any charged probe. The classic experiment to observe plasmons is Electron
Energy Loss Spectroscopy (EELS), where a high energy electron is sent into
the sample and the energy loss monitored. As in any driven oscillator, energy
is dissipated at or near the resonant frequency (with the width in frequency
depending on the damping of the oscillator). An EELS spectrum will therefore
have a peak near the plasma frequency.

8.3 Optical conductivity of metals

The equation of motion we wrote down for the electrons in a solid Eq. (8.26)
assumes that electrons are accelerated in an applied field, and do not suffer any
damping — it would predict the conductivity of a metal to be infinite. This is
fixed up in a Drude model by adding a phenomenological damping term, that
represents the effects of scattering. With the additional term, the modified
equation of motion becomes

mü + γu̇ = −eE = −ne
2

ε0
u− e

ε0
D (8.30)

4In sensible CGS units, used in most texts ω2
p = 4πne2/m.
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Figure 8.2: Generic diagram of an inelastic scattering experiment. The incident
particle - in this case an electron is scattered to a final state of different energy
and momentum. By comparing the incident and scattered spectra, one deduces
the energy loss spectrum of the internal collective excitations in the medium. For
high energy electrons - typically used in an EELS experiment - the momentum
loss (q − k) is small.

which after Fourier transformation gives

(−mω2 − iγω +
ne2

ε0
)u = −eD . (8.31)

Clearly we can rework the previous analysis by replacing everywhere mω2

by mω2 + iγω. We will then arrive at a complex dielectric function

ε(ω) = 1−
ω2

p

ω2 + iω/τ
, (8.32)

where we have defined a relaxation rate

1
τ

=
γ

m
. (8.33)

This is one way of expressing the result. An alternative expression is not to
relate the displacement field to the electric field, but instead to calculate the
current density

j = −neu̇ = iωneu (8.34)

induced by the applied electric field. After a few algebraic manipulations, we
get

j(ω) =
ε0ω

2
p

(1/τ − iω)
E(ω) . (8.35)
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Figure 8.3: . Electron energy loss spectrum for Ge and Si (dashed lines) com-
pared to values of Im(1/ε) extracted directly from measurements of the optical
conductivity. [From H.R.Philipp and H.Ehrenreich, Physical Review 129, 1550
(1963)

This instead expresses the result as a complex conductivity

σ(ω) =
ε0ω

2
p

(1/τ − iω)
. (8.36)

The two results Eq. (8.32) and Eq. (8.36) are completely equivalent: a rela-
tion between D and E implies a relation between j and E. One may translate
between the two formulae by

ε(ω) = 1 + i
σ(ω)
ε0ω

. (8.37)

The real part of the conductivity is proportional to the imaginary part of the
dielectric function.

From Eq. (8.36), one can see that the theory gives rise to a familiar d.c.
conductivity

σ(0) = ε0ω
2
pτ =

ne2τ

m
, (8.38)

so that τ has a simple interpretation as the mean free time between collisions.
At frequencies larger than 1/τ the conductivity rapidly falls off:

<σ(ω) =
σ(0)

1 + ω2τ2
. (8.39)

Consequently, the dielectric function near q = 0 can be extracted directly
from measurements of the ac conductivity σ(ω) by optical absorption of light.
A comparison between optical measurements and electron energy loss measure-
ments is shown in Fig. 8.3.
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Qu.8.21 Reflectivity of metals

The phase velocity of light in a conducting medium is the speed
of light divided by the complex dielectric constant N (ω) = ε(ω)1/2

where we may use for ε the Drude result

ε(ω) = 1−
ω2

p

ω2 + iω/τ
. (8.40)

In a “good” metal, we have 1/τ � ωp.

Sketch curves of: (a) <σ(ω), (b) <ε(ω), (c) <N (ω), (d) =N (ω).

You may wish to choose a parameter ωpτ ≈ 100 and let a com-
puter do it. But make sure you understand the answer. In particular,
notice that:
(a) For ω � 1/τ , ε is large and pure imaginary, so that |N | � 1 and
has roughly equal real and imaginary parts,
(b) For 1/τ � ω � ωp, ε is real and negative, so that N is imaginary,
(c) For ω > ωp, ε is positive, and N is real.

Consider a light wave with the electric field polarised in the x−direction
at normal incidence from the vacuum on a good Drude metal (with
1/τ � ωp) occupying the region z > 0. In the vacuum (z < 0), the
incident E1 and reflected E2 waves give rise to a field

Ex = E1 exp(iω[z/c− t]) + E2 exp(−iω[z/c+ t]) , (8.41)

whereas in the medium, the electric field is

Ex = E0 exp(iω[N (ω)z/c− t]) . (8.42)

Matching the electric and magnetic fields on the boundary, show that

E0 = E1 +E2 , (8.43)
NE0 = E1 −E2 , (8.44)

and hence show that the reflection coefficient satisfies

R =
∣∣∣∣
E2

E1

∣∣∣∣
2

=
∣∣∣∣
1 −N

1 +N

∣∣∣∣
2

. (8.45)

Using the Drude formula above, show that

R ≈ 1 − 2
(

ω

2πσ(0)

)1/2

for ω � 1/τ (8.46)

≈ 1 − 2
ωpτ

for 1/τ � ω � ωp (8.47)

≈
1
16

(ωp

ω

)4

for ωp � ω (8.48)
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and sketch the reflectivity R(ω).

To get the first two of these results with the minimum of fuss, you
may find it helpful to expand in 1/N , viz.

R =
(1 − 1

N
)(1 − 1

N∗ )
(1 + 1

N
)(1 + 1

N∗ )
≈ 1 − 4<(1/N ) (8.49)

Qu.8.22 Optical properties of solids

Discuss why, at optical frequencies, glass is transparent, and silver
is shiny, while graphite appears black, and powdered sugar is white.

Qu.8.23 Metals and insulators

Explain the differences between a metal and an insulator. Your dis-
cussion should include reference to: single particle properties; screen-
ing of the Coulomb interaction; optical properties; and electrical and
thermal properties.



Chapter 9

Semiclassical model of
electron dynamics

9.1 Wavepackets and equations of motion

We now want to discuss the dynamics of electrons in energy bands. Because
the band structure is dispersive, we should treat particles as wave-packets. The
band energy ε(k) is the frequency associated with the phase rotation of the
wavefunction, ψke

−iε(k)t/h̄, but for the motion of a wave packet in a dispersive
band, we should use the group velocity, dω/dk, or as a vector

ṙ = vg = h̄−1∇kε(k) , (9.1)

where r is the position of the wavepacket. All the effects of the interaction with
the lattice are contained in the dispersion ε(k).

If a force F is applied to a particle, the rate of doing work on the particle is

dεk
dt

=
dε

dk

dk

dt
= Fvg (9.2)

which leads to the key relation

h̄
dk
dt

= F = −e(E + v ∧B) = −e(E + h̄−1∇kε(k) ∧B) (9.3)

where we have introduced electric E and magnetic B fields.

The effect of an electric field is to shift the crystal momentum in the direction
of the field, whereas the effect of a magnetic field is conservative - the motion
in k-space is normal to the gradient of the energy. Thus a magnetic field causes
an electron to move on a line of constant energy, in a plane perpendicular to the
magnetic field. This property is the basis of magnetic techniques to measure
the fermi surface of metals.
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Figure 9.1: Band energy E(k) (solid line) and group velocity v(k) dashed line in
a simple 1D band. A wavepacket progressing its crystal momentum according
to Eq. (9.4) accelerates as k increases from zero, and then slows and reverses
direction as k approaches the zone boundary.

Bloch oscillations

Suppose we have a one-dimensional electron band, such as shown in in Fig. 9.1.
The group velocity is also shown — note that it reaches maximum size about
half way to the zone boundary, and then decreases to zero at the zone boundary.
If an electron in this band were subject to a constant electric field, we get

k(t) = k(0) − eEt

h̄
, (9.4)

so that the wave packet of electrons oscillates up and down the energy surface.
It we start from the minimum of the band, then the group velocity grows linearly
in time as for a free electron accelerating (though with a mass different from
the free electron mass). However, on approaching the zone boundary, the group
velocity slows - the acceleration of the particle is opposite to the applied force.
What is actually happening is buried within the semiclassical model via the
dispersion ε(k): as the wavepacket approaches the Brillouin zone boundary, real
momentum (not crystal momentum k) is transferred to the lattice, so that on
reaching the zone boundary the particle is Bragg-reflected.

Thus a DC electric field may be used - in principle - to generate an AC elec-
trical current. All attempts to observe these Bloch oscillations in conventional
solids has so far failed. The reason is that in practice it is impossible to have
wavepackets reach such large values of momentum as π/a due to scattering from
impurities and phonons in the solid. We will incorporate scattering processes
in the theory in a moment.

It turns out however, that one can make artificial periodic potentials in a
semiconductor superlattice. The details of this process will be discussed later,
but for our purposes the net effect is to produce a square well potential that
is periodic with a periodicity that can be much longer than the atom spacing.
The corresponding momentum at the zone boundary is now much smaller, so the
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Figure 9.2: . Schematic diagram of energy versus space of the conduction and
electron bands in a periodic heterostructure lattice. The tilting is produced by
the applied electric field. The levels shown form what is called a Wannier-Stark
ladder for electron wavepackets made by excitation from the valence band in
one quantum well, either vertically (n=0) or to neighbouring (n = ±1) or next-
neighbouring n = ±2 wells of the electron lattice. In the experiment, electrons
(and holes) are excited optically by a short-pulse laser whose frequency is just
above the band gap of the semiconductor (i.e. a few ×1015 Hz). The electrical
radiation (on a time scale of picoseconds) is monitored as a function of time
and for different DC electrical biases, shown on the left panel. The spectral
content is then determined by taking a fourier transform of the wavepackets
(right panel); at large negative voltages one sees a peak at a frequency that
increases with increasing bias. The device is not symmetric, and therefore has
an offset voltage of about -2.4 V before the Bloch oscillation regime is reached.
[From Waschke et al. Physical Review Letters 70, 3319 (1993).]

wavepacket does not have to be excited to such high velocities. The signature of
the Bloch oscillations is microwave radiation produced by the oscillating charge
- at a frequency that is proportional to the DC electrical field.
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Qu.9.24 Bloch oscillations

The valence electron energy band in a one-dimensional periodic
structure is given by

ε(k) = C sin2

(
ka

2

)
(9.5)

Sketch the variation of the group velocity and the effective mass
in the first Brillouin zone.

Show that in a uniform applied electric field, E, the motion in real
space is periodic with amplitude C

2eE and angular frequency aeE
h̄ .

The sample shown in Fig. 9.2 had an overall thickness of 1 µm.
Using the measured frequency shift with bias dωBloch/dV at the most
negative voltages estimate the period of the superlattice potential.

Estimate the frequency and real space amplitude of Bloch oscilla-
tions produced by applying an electric field of 100 V m−1 to electrons
in a perfect crystal of GaAs. Is this observable in a real material?

Approximations and justification for the semiclassical model

A full justification of the semiclassical model is not straightforward and we will not
go into that here. [See Kittel, Appendix E, and for a more formal treatment J. Zak,
Physical Review 168 686 (1968)]

• Note that at least the semiclassical picture takes note of the fact that the Bloch states
are stationary eigenstates of the full periodic potential of the lattice, and so there are
no collisions with the ions.

• We must be actually describing the motion of a wavepacket

ψn(r, t) =
∑

k′

g(k − k′)ψnk′ (r, t) exp [−iεn(k′)t/h̄] where g(k) → 0 if |k| > ∆k

(9.6)
The wavepacket is described by a function g(k) that is sharply peaked, of width ∆k,
say. Clearly ∆k � 1/a, with a the lattice constant (otherwise the packet will disperse
strongly).

• The size of the packet in real space is therefore ∆R ≈ 1/∆k. Consequently the semi-
classical model can only be used to describe the response to fields that vary slowly in
space, on a scale much larger than the lattice constant.

• n, the band index, is assumed to be a good quantum number. Clearly if the lattice
potential were tiny, we would expect to return to free electrons, and be able to accelerate
particles to high energies and make transitions between bands. Rather naturally the
constraint is that the characteristic field energies be small in comparison to the band
gap Egap: they are in fact

eEa� E2
gap/EF (9.7)

with EF the characteristic fermi energy, or overall bandwidth. The electric fields in a
metal rarely exceed 1 Vm−1, when the LHS of this inequality is about 10−10 eV; not
in danger.
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• The corresponding constraint on magnetic fields is

h̄ωc � E2
gap/EF (9.8)

with ωc = eB/mc the cyclotron frequency. This corresponds to about 10−2 eV in a
field of 1 Tesla, so that strong magnetic fields indeed may cause transitions between
bands, a process of magnetic breakdown.

• The last condition is that of course that the frequency of the fields must be much
smaller than the transition energies between levels, i.e. h̄ω � Egap

9.2 Electrons and holes in semiconductors

An immediate consequence of this picture is that filled bands are inert. If all
the electrons states in a zone are occupied, then the total current is got by
integrating the group velocity over the whole zone; but the group velocity is the
gradient of a periodic function; so this integral yields zero. Indeed all insulating
solid elements have either even valence, or a lattice containing an even number
of atoms in the basis, and therefore filled bands.

It is of interest to consider what happens to a filled band with one electron
removed. This can be created by absorption of a photon whose energy exceeds
the energy gap of a semiconductor, to make a transition of an electron from
the valence band into the conduction band [See Fig. 9.3]. The removal of an
electron from a filled band leaves a hole , which in fact can be viewed as a
fermionic particle with distinct properties.

Hole momentum.
kh = −ke (9.9)

This can be seen from the optical absorption experiment. The light produces
a (nearly) vertical transition and gives no momentum to the electron hole pair.
Since the initial state is a filled band with total momentum zero, Eq. (9.9)
follows.

Hole energy.
εh(kh) = −εe(ke) (9.10)

This sign is needed because (measuring energies from the top of the band)
removing an electron of lower energy requires more work.

Hole velocity. A combination of the first two rules then gives

vh = h̄−1∇khεh(kh) = h̄−1∇keεe(ke) = ve (9.11)

Effective mass. The dispersion at the bottom (top) of the bands is parabolic,
and therefore can be approximated as

ε = ε0 +
h̄2k2

2m∗ (9.12)
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Figure 9.3: Absorption of a photon creates an electron-hole pair, with an energy
εe + εh + 2Egap but adds negligible momentum to the system. Hence the hole
momentum is the negative of the momentum of the empty electronic state, and
its energy is positive (measured conventionally from the top of the band).

defining an effective mass m∗. We have

m∗
h = −m∗

e (9.13)

so the hole mass is positive at the top of the electron band.

Hole charge. The effective charge of a hole is positive, as can be seen by
taking the equation of motion for the electron

h̄
dke

dt
= −e(E + ve ∧B) (9.14)

and making the replacement ke → −kh and ve → vh, giving

h̄
dkh

dt
= e(E + vh ∧B) (9.15)

The same result comes from noticing that the current carried by the hole evh

must be the same as the (missing) current (not) carried by the empty electron
state.
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Qu.9.25 Hole current and electron current An applied DC
electric field points along the positive x-axis of a semiconductor con-
taining both an electron in the conduction band and a hole in the
valance band.

(a) In which direction is the initial velocity of the electron? What
is the direction of the electrical current carried by the electron?

(b) In which direction is the initial velocity of the hole? What is
the direction of the electrical current carried by the hole?

Qu.9.26 Cyclotron resonance A DC magnetic field B points in
the z-direction. An electron sits near the bottom of a parabolic band
with effective mass m∗. Show that the particle orbits with an angular
velocity

ωc =
eB

m∗ (9.16)

Is the sense of the orbit the same, or different, for a hole?

9.3 Scattering and electrical conductivity of met-

als

We will incorporate scattering into our semiclassical picture in the crudest pos-
sible way, though frequently quite adequate at a phenomenological level, by
introducing a scattering rate τ . The equation of motion becomes

h̄
dk
dt

= F− h̄
k
τ

= −e(E + v ∧B) − h̄
k
τ

(9.17)

so that the collisions are introduced as a frictional force. Let us now apply this
simple theory to describe the electrical conductivity of a metal.

We set B = 0, and consider first the fermi sea at rest. There are equal
numbers of states occupied of positive and negative momentum, and hence
there is no current in the absence of an applied field. In a small electric field E,
after an initial transient, the result of Eq. (9.17) will be that the momenta of
all particles in the fermi sea will be shifted by a small amount

δk = −eEτ/h̄ (9.18)

For a parabolic band, the incremental velocity is

δv = δk/m∗ (9.19)



98 CHAPTER 9. SEMICLASSICAL DYNAMICS

Figure 9.4: The net current from the fermi sea at rest is zero, but a shift by a
small momentum leads to a net imbalance.

and therefore a net current density

j = −neδv =
ne2τ

m∗ E (9.20)

which is the familiar Ohm’s law.

The conductivity can also be written in terms of the mobility µ = eτ/m∗

σ = neµ =
ne2τ

m∗ (9.21)

Almost invariably, δk � kF , so the shift in the Fermi sea is very small —
and the net current is entirely produced by the small imbalance near the Fermi
surface. Just as for the specific heat and paramagnetic suseptibility, it is only the
properties of electrons near the fermi surface that determine the conductivity
of a metal.

Thermal conductivity of metals

Particles with velocity v, mean free path l and specific heat C are expected to yield a
thermal conductivityK = Cvl/3. For a free fermi gas, we get the correct answer from
this formula by using the electronic specific heat, the characteristic carrier velocity
vF , and the mean free path for carriers on the fermi surface l = vF τ . Hence, using
the relationship between the Fermi velocity and the fFermi energy EF = mv2F /2,

Kel =
π2

2

nk2
BT

EF
· vF · vF τ =

π2nk2
BTτ

3m
(9.22)

Almost invariably, the electronic thermal conductivity is bigger than that due to
the lattice. K and σ are of course closely related, being both proportional to the
scattering time and the density, as is natural. The ratio

K

σT
=
π2

3

(
kB

e

)2

(9.23)
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is expected to be a constant, independent of material parameters. This proportionality
is the Wiedemann-Franz law, which works strikingly well for simple metals.

9.4 Transport in electrical and magnetic fields

Returning to Eq. (9.17), we now study the electrical transport in a transverse
magnetic field, i.e. a static magnetic field B in the ẑ direction, and static
currents and electrical fields in the x− y plane.

The equations of motion for an electron of charge -e are now1.

m(∂t + τ−1)vx = −e(Ex +Bvy)
m(∂t + τ−1)vy = −e(Ey −Bvx) (9.24)
m(∂t + τ−1)vz = −eEz

In steady state , we set the time derivatives ∂t = d/dt = 0, and get the three
components of the drift velocity

vx = −eτ
m
Ex − βvy

vy = −eτ
m
Ey + βvx (9.25)

vy = −eτ
m
Ez

with the dimensionless parameter β = eB
m τ = ωcτ = µB the product of the

cyclotron frequency and the scattering rate.

Hall effect

If a current j = ev is flowing in a magnetic field B, Eq. (9.17) leads to a force on
the carrier −ev∧B, normal to the direction of flow. Since there is no flow in the
normal direction, there must exist a counterbalancing electric field E = −v∧B.
This is the Hall effect.

Consider the rod-shaped geometry of Fig. 9.5. The current is forced by
geometry to flow only in the x-direction, and so vy = 0, which gives

vx = −eτ
m
Ex , (9.26)

and
Ey = −βEx (9.27)

It turns out that for high mobility materials, and large magnetic fields, it is not
hard to reach large values of β � 1, so that the electric fields are largely normal
to the electrical currents.

1We define e to be a positive constant.
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Figure 9.5: The upper figure shows the geometry of a Hall bar, with the current
flowing uniformly in the x-direction, and the magnetic field in z. The lower
figure shows the steady state electron flow (arrows) in a section normal to ẑ.
When a voltage Ex is first applied, and Ey is not yet established, the electrons
will deflect and move in the (downward) y-direction. The y-surfaces of the
crystal then become charged, producing the field Ey which exactly cancels the
Lorentz force −evxB.

The Hall coefficient is defined by

RH =
Ey

jxB
= − 1

ne
(9.28)

Notice that it is negative for electrons, but importantly is independent of the
effective mass, and grows with decreasing carrier density. One can straightfor-
wardly check that for holes of charge +e the sign is positive.

The Hall effect is an important diagnostic for the density and type of carriers
transporting the electrical current in a semiconductor. The simple picture of
parabolic bands works quite well for alkali metals, where the predicted Hall
coefficient is within a few percent of the expected value for a parabolic free
electron band. But Be, Al, and In all have positive Hall coefficients - accounted
for by a band-structure with hole pockets that dominates the Hall effect.
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Qu.9.27 Static conductivity tensor

From Eq. (9.28), show that the electrical conductivity can be writ-
ten as a tensor j = σ ·E, where the cartesion components are

σ =
σo

1 + β2




1 −β 0
β 1 0
0 0 1 + β2


 (9.29)

Here β = ωcτ and σo = ne2τ/m.

In a high magnetic field (β � 1), show that σyx = −σxy = ne/B.
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Chapter 10

Semiconductors

10.1 Semiconductor band structure

Direct gap semiconductors

The band structure near k = 0 of a diamond-structure (Si, Ge) or zincblende-
structure (GaAs) semiconductor is shown in Fig. 10.1. The conduction band is
a simple parabola, but the valence bands are more complex. The complexity
arises because the symmetry of the valence bands is p − like and there are
three degenerate bands (in cubic symmetry) at k = 0. At finite k they split
into light hole and heavy hole bands, so called because of the difference in the
electron masses. Additionally, there is a deeper lying band, split off by spin-
orbit interactions from the others. This is usually not important for thermally
excited carriers.

The band masses are quite different from free electron masses, for example,
in GaAs m∗

e = 0.066, m∗
lh = 0.082, m∗hh = 0.17 (in units of the free electron

mass). The cubic symmetry of the crystal means that the bands are isotropic
(to order k2).

Qu.10.28 Band gaps and effective masses Using the one-
dimensional nearly-free electron model of Eq. (6.14), calculate the
effective masses of electrons and hole states in terms of the band gap.

Is the data in the table below approximately consistent with your
result?

Crystal m∗
e Egap/eV

InSb 0.015 0.23
InAs 0.026 0.43
InP 0.073 1.42
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Figure 10.1: Sketch of the valence bands of diamond or zincblende structure
semiconductors near the Γ-point (k = (000)). The lowest hole band - the spin-
orbit split-off band - is lower by an energy ∆ that is a few tenths of an eV and
therefore not relevant for thermally excited carriers at room temperature and
below. In III-V semiconductors the absolute minimum in the conduction band
is at Γ; in Si and Ge the absolute minimum of the conduction band is elsewhere
in the zone.

Indirect gap semiconductors

As we remarked earlier, the conduction bands of Si and Ge do not have their
minima at the Γ-point, but far out in the zone.

The conduction band minima of Ge are at the eight equivalent L-points
2π/a(0.5 0.5 0.5), on the surface of the Brillouin zone. Here the band edges
have a spheroidal energy surface, and are not isotropic as near the centre of the
zone. In Ge, the longitudinal mass – along (111) – is ml = 1.59m, much larger
than the tranverse mass mt = 0.082m.

In Si the conduction band minima are along the six (100) directions, close to
the zone boundary atX [2π/a(100)]. The constant energy surfaces are ellipsoids,
ml = 0.92m, and mt = 0.19m.

Bands near the zone centre

The band structure near k = 0 is simple to analyse, because Bloch’s theorem here
requires the wave function to be the same in every unit cell. The wavefunctions have
pure symmetry requirements imposed on them by the lattice. Since the zincblende
structure has inversion symmetry about each atom the states can be separated into
those that are even or odd about any lattice site (for our purposes s and p). Addition-
ally, if we have the diamond lattice there is a further symmetry point midway between
the two atoms in the unit cell; the states can also be classified as odd/even about this
point. So we must have the following sets of states:
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Figure 10.2: Valence and conduction bands near k=0 according to a tight-
binding prescription. (a) is for diamond crystals, and (b) for zincblende; spin-
orbit splitting is neglected. (From Phillips.)

bonding (antibonding) s1 ± s2
bonding (antibonding) p1 ± p2

(the subscript refers to the two atoms in the cell) The p− states are triply degenerate
(in the absence of spin-orbit coupling which we will come back to in a moment) because
the crystal is cubic – this degeneracy is analogous to the orbital degeneracy of px,py

and pz states in an atom. We expect these states to be ordered in the way shown in
Fig. 10.2.

In zincblende materials, the admixture of states will reflect the partial ionicity,
as noted in the figure: if atom 2 is the more electronegative atom, γ(′) > 1, but the
bonding/antibonding character is essentially preserved.

Now let us include spin-orbit interactions, which will come with a term λL · S in
the Hamiltonian. This will split the p-states in Fig. 10.2, and we can easily see how.
Without spin orbit, we had a sixfold-degenerate level altogether– 3 (orbital) x 2 (spin).
After coupling, the states must be eigenfunctions of the total angular momentum J ,
which can take on the values J = 3/2 (fourfold degenerate), and J = 1/2 (twofold
degenerate). We end up with the bands shown in Fig. 10.1 and in particular with the
characteristic “light” and “heavy” mass bands for holes.
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Figure 10.3: Density of states for electrons and the fermi function determining
the occupancy of the thermally excited states in an intrinsic semiconductor.
The chemical potential lies mid-gap, and the temperature is assumed small in
comparison to the gap.

10.2 Intrinsic carrier concentration

Semiconductors are materials where the energy gap is small enough that thermal
excitation of carriers across the gap is important. Here we shall calculate the
thermal intrinsic carrier concentration in a model semiconductor with parabolic
electron and hole bands. The conduction and valence band dispersions are thus
(see Fig. 10.3)

Ec(k) = Ec +
h2k2

2m∗
e

; Ev(k) = Ev −
h2k2

2m∗
h

(10.1)

We shall need the densities of states for the conduction band

ge(E) =
1

2π2

(
2m∗

e

h̄2

)2

(E − Ec)1/2 (10.2)

and for the valence band

gh(E) =
1

2π2

(
2m∗

h

h̄2

)2

(Ev − E)1/2 (10.3)
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We can calculate the carrier density once the chemical potential µ is known.
For electrons in the conduction band

n =
∫ ∞

Ec

dE ge(E)f(E) (10.4)

with f the fermi function

f(E) =
1

e(E−µ)/(kBT ) + 1
≈ e−(E−µ)/(kBT ) (10.5)

with the latter approximation valid for small enough temperature. This gives

n ≈ 2
(
m∗

ekBT

2πh̄2

)3/2

e
− Ec−µ

kBT (10.6)

A similar calculation determines the concentration of holes

p ≈ 2
(
m∗

hkBT

2πh̄2

)3/2

e
− µ−Ev

kBT (10.7)

Qu.10.29 Hole statistics Show that fh(ε) = 1 − fe(ε), where

fe(ε) =
1

eβ(ε−µ) + 1

is the fermi distribution function for electrons and

fh(ε) =
1

eβ(µ−ε) + 1

describes the distribution function for holes.

Eq. (10.4) and Eq. (10.7) give the concentration of electrons and holes at
a temperature T , in terms of the chemical potential µ, as yet unknown. It is
useful to notice that the product

np = 4
(
kBT

2πh̄2

)3

(m∗
em

∗
h)3/2e

−Egap
kBT (10.8)

is independent of µ. In particular, we will be able to use this result when carriers
are introduced to the system by impurities.

For an intrinsic semiconductor, the electron and hole densities are equal, and
can be obtained my taking the square root of Eq. (10.8)

ni = pi = 2
(
kBT

2πh̄2

)3/2

(m∗
em

∗
h)3/4e

− Egap
2kBT (10.9)
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and substituting back in either the equation for n (Eq. (10.4)) or p Eq. (10.7))
yields the chemical potential

µ =
1
2
Eg +

3
4
kBT log(mh/me) . (10.10)

The chemical potential thus sits mid gap at zero temperature, and shifts slightly
away from that position if the carrier masses are different. Note that the ac-
tivation energy to create intrinsic carriers (either electrons or holes) is always
exactly half the optical energy gap.

10.3 Extrinsic semiconductors

Carriers can also be created in semiconductors by adding impurity atoms in a
process called doping.

Donor levels. Consider the effect in a Si crystal of replacing a single atom
by an As atom. As is a group V element and therefore provides 5 electrons in
the place of the 4 of the Si it replaced. We now ask whether the added electrons
stay tightly bound to this impurity.

Suppose one electron wanders away from the impurity site. It will of course
see an attractive Coulomb force from the (now charged) As impurity, and the
energy levels are then that of the Hydrogen atom. The Coulomb potential is
however screened by the dielectric constant of Si (ε ≈ 12) so is much weaker
than in free space. Also, the electron effective mass is smaller than the free
electron mass, so the kinetic energy of an electron in a given momentum state
is larger. The net effect is that the binding energy of the 1s impurity state is
now

∆d =
e4m∗

e

2(4πεεoh̄)2
=
m∗

e/m

ε2
× 13.6 eV (10.11)

which can be very small in comparison to the band gap, and often comparable
or smaller than thermal energies. Such donor impurities easily donate electrons
to the conduction band.

As donors in Si have an ionisation energy of 50 meV; donors in GaAs have
an ionisation energy of about 6 meV, approximately 50 Kelvin.

Acceptor levels. A trivalent impurity (e.g. B) in Ge or Si can bind a hole
— or accept an electron from the valence band. The accepted electron is used
to complete the covalent bond with the neighbouring atoms (which however
renders the site negatively charged). The hole left in the band is weakly bound
to the acceptor site, and easily ionised. The calculation of the binding energy
of holes is more complex than for electrons because of the degeneracy of the
valence bands.

n- and p-type materials. Even for very low densities of impurities, since
the donor or acceptor energies are so much smaller than the gap, impurities
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Figure 10.4: . The left hand figure shows the effect of donor levels at an energy
Ed = Ec−∆d. The chemical potential will shift near the conduction band edge,
increasing the electron density and decreasing the hole density in comparison
to the intrinsic case, while the product of the two is nevertheless constant.
The right hand figure shows the corresponding picture for acceptor levels at an
energy Ea = Ev + ∆a.

in semiconductors are often the principal source of electrically active carriers.
If donor atoms predominate, the carriers are predominantly electrons, and the
material is said to be n-type. If holes are the dominant carrier type, the mate-
rial is called p-type. Experimentally, these regimes may be distinguished by a
measurement of the Hall effect, whose sign depends on the type of carrier.

Impurity ionisation. We just quote here the results for thermal ionisation
of the carriers in simple limits. If there are no acceptors, then the carrier
concentration at low temperatures is

n = (ncNd)1/2e
− ∆d

2kBT (10.12)

where Nd is the donor density and the factor nc = 2(m∗
ekBT/2πh̄2)3/2 is the

effective density of electron states within an energy kBT of the band edge.
Notice again that the activation energy is half the binding energy.

Since ∆d is often quite small, there may be a regime of temperature ∆d <
2kBT < Eg where the donors are all ionised, and n ≈ Nd. At a still higher
temperature, the intrinsic carrier generation process takes over.

If there are only acceptors and no donors, then a similar formula can be
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obtained for holes by inspection. When both donors and acceptors exist, the
problem is more complicated and not illuminating. However, many situations
of practical importance for devices require such an analysis.

Lastly, note that by the law of mass action, np is a constant at fixed tem-
perature, given by Eq. (10.8). An excess of electron donors over hole acceptors
will therefore increase n and decrease p.

Qu.10.30 Ge Give a brief explanation of the concepts of drift ve-
locity, electron mobility, and effective mass, as used in solid state
physics.

A sample of Ge is doped so that the concentration of pentavalent
donor impurities, Nd is 3 × 1022m−3, and that of trivalent accep-
tors, Na, is 1022m−3. Estimate the concentration of electrons in the
conduction band and holes in the valence band at 300 K.

[The intrinsic carrier density of Ge at 300K is 2.4 × 1019m−3.]

Sketch a graph of the conductivity as a function of temperature
you would expect to measure for this sample of Ge.

Qu.10.31 Impurity Bands

InSb has a dielectric constant ε = 18 and an effective mass for
electrons m∗ = 0.015m. Calculate the ionisation energy of a hydro-
genic donor orbit.

At what density of donors do you expect to see the effects of
overlaps between the orbits of adjacent impurities?

At low densities, donor levels are isolated, and if the temperature
is so low that the probability of ionisation is very small, the system
will be an insulator. But at higher density, the donor levels overlap to
form an impurity band that can support metallic conduction.



Chapter 11

Semiconductor devices

We now consider the properties of inhomogeneous systems and devices. In this
section we discuss the general properties of surfaces and interfaces between ma-
terials, and then the basic devices of bulk semiconductor physics. For bulk
devices we will use the semiclassical approximation, treating electrons as clas-
sical particles obeying the Hamiltonian1

H = En(k) − eφ(r) (11.1)

with the momentum p = h̄k and a spatially varying potential φ(r). The poten-
tial will arise from externally applied fields, from charges induced by doping, and
from changes in the material composition. When we discuss narrow quantum
wells, we shall need to modify this approximation to quantise the levels.

For an isolated solid in equilibrium, the energy difference between the chem-
ical potential µ the vacuum level is the work function Φ. This is the energy
required to remove an electron from the fermi level and place it in a state of
zero kinetic energy in free space.

Two different isolated materials with different work functions will then have
different chemical potentials. If these two materials are placed in contact, their
chemical potentials must equalise, and this is accomplished by electron flow to
the more electronegative material; this material becomes charged, its potential
φ changes, and an overall balance will be established. But in general, there will
be as a result internal, inhomogeneous electric fields.

11.1 Metal - semiconductor contact

The figure Fig. 11.1 is a schematic of this process for an ideal metal placed in
contact with a semiconductor. We consider the more interesting case when the

1We shall keep to the convention that e is a positive number, and therefore −eφ is the
potential energy seen by electrons in an electrostatic potential φ

111
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chemical potential of the (doped) semiconductor is above that of the metal.

Qu.11.32 Depletion layer

A full treatment of this problem requires the solution of the Pois-
son equation to determine the electric field distribution V (x) com-
bined with the thermal carrier statistics to determine the occupancy
of the states. At low temperature, when the boundary of the depletion
regime may be assumed to be sharp, it is more straightforward.

A metal-semiconductor contact is made between a perfect conduc-
tor and a uniformly doped n-type semiconductor with a donor density
Nd (see Fig. 11.1. Assume that the temperature is low eneough that
the donor levels are completely filled or completely empty. By solving
Poisson’s equation, show that in the depletion region 0 < x < xb the
potential satisfies

φ = φb −
Nde

2εε0
x2 (11.2)

Estimate the depletion width for a semiconductor with ε = 12,
eφb = 0.5 eV , and Nd = 1022 m−3.

Qu.11.33 Ohmic contact

Sketch the equivalent diagrams to Fig. 11.1 for a metal-semiconductor
junction in the case that φs > φm. Explain why such a junction acts
as an ohmic contact.

Rectification by a metal contact

The barrier set up between the metal and insulator inhibits current flow. An electron
from the metal must either tunnel through the barrier (at low temperatures) or may
be thermally excited over it (thermionic emission). However, when a large enough
external bies is applied, the junction may act as a rectifier Fig. 11.2. We will not
analyse this in detail, as the more important case of a p-n diode is similar, and soon
to follow.

11.2 p-n junction

A p-n junction is formed by inhomogeneous doping: a layer of n-type mate-
rial (containing donors) is placed next to p-type material (with acceptors). A
schematic layout is shown in Fig. 11.3. The behaviour can be understood by an
extension of the discussion for the metal-semiconductor contact.
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Figure 11.1: (a) When metal and semiconductor are not in contact they are
in equilibrium with the vacuum level. We consider an n-type semiconductor,
with the chemical potential lying close to the conduction band edge. (b). When
the two are brought into contact, electrons leave the semiconductor and are
transferred to the metal. This produces an electrical potential φ(x) which will
eventually equilibrate so that the chemical potential is constant over the whole
system. (The combined function µ + eφ(x) is sometimes called the electro-
chemical potential.) (c) Shows the energy level diagram relative to the constant
chemical potential. The semiconductor bands bend upwards, so that the donor
levels near the interface are emptied of electrons - leaving a positively charged
depletion region, and a Schottky barrier φb.
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Figure 11.2: . Schematic picture of a Schottky diode. In the upper panel,
applying a positive bias across the junction lowers the barrier for electrons to
enter the metal, and can eventually tilt the electron bands so much that the
barrier disappears. The current grows rapidly with positive bias. However, if
the bias is negative, the depletion width grows and the current is little changed.

• Deep inside the n-doped (p-doped) regimes, the chemical potential must
lie close to the donor (acceptor) levels.

• If we were instantaneously to place the n-type and p-type regions in con-
tact, charge will flow because of the different chemical potentials.

• In doing so, the interface region becomes depleted of carriers, and the
ionised donors (acceptors) now have positive (negative) charge (see Fig.
11.4.

• The electrostatic potential so generated shifts the energy levels of the
donors (acceptors) down (up) and the chemical potential is equalised

The typical extent of the depletion region is between 10 nm and 1 µm.

Rectification by a p-n junction

A p-n junction behaves as a diode, allowing current to flow much more readily
in one direction from the opposite. A simple picture can be given as follows,
with reference to the diagram in Fig. 11.5. Our sign convention is to apply
an electrical bias where positive voltage V is applied to the p-type side of the
junction.

Diffusion currents. In equilibrium with no external voltage bias, there is
no net current flowing across the junction. But of course to maintain chemical
eqilibrium, there must be microscopic current flows across the barrier in both
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Figure 11.3: Two equivalent ways of representing the energy levels in a p-n
junction. (a) shows the energy levels, and includes the electrostatic potential in
the electrochemical potential µ + eφ(x). In (b) we recognise that the chemical
potential is constant, and the effect of the potential φ is a shift in the energetic
position of the energy levels Ed(x) = Ed−eφ(x), Ea(x) = Ea−eφ(x). When the
shifted donor or acceptor levels pass through the chemical potential, these levels
are ionised, and the carriers pass from one side of the barrier to the other, and
annahilate. The impurity levels within the depletion region are now charged.

Figure 11.4: (a) Carrier densities and (b) charge densities near the depletion
region of a p-n junction. When the temperature is low, the carrier density
changes abruptly at the point where the chemical potential passes through the
donor or acceptor level. Close to the barrier, the carriers are depleted, and here
the system is now physically charged, with a charge density of +eNd on the n-
type side, and −eNa on the p-type side. This dipole layer produces a potential
φ(x) shown in (b). The potential itself self-consistently determines the charge
flow and the width of the depletion region.
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Figure 11.5: Operation of a p-n diode. (a) shows the potential across the
junction, which is decreased in forward bias (corresponding to a positive voltage
V applied to the p-type side). (b) Shows the carrier density for holes - large
on the p-type side and a small minority carrier population on the n-type side.
Carriers diffusing out of either of the two populations generate opposing currents
that exactly cancel in equilibrium at zero bias. (c) shows the same for the
electrons. Because the charge on the electron is negative the electrical currents
shown have the same sign as for holes, though of course the particles move
in the opposite direction. In forward bias, the recombination current (which
is thermally activated) grows exponentially with bias, and the device readily
passes current. In reverse bias, there is very little change, and the currents are
small.
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directions, that cancel on average. We consider them separately for holes and
electrons.

Potential barrier. The depletion regime of the junction is a high-resistance
in comparison to the n- or p-type doped semiconductors. Any potential applied
across the device is dropped almost entirely across the depletion layer. The
overall potential seen by a (positively charged) hole is therefore φb − V , where
φb is the barrier height at equilibrium.

Hole generation current. On the n-type side of the depletion regime, the
majority carriers are electrons, but detailed balance (Eq. (10.8)) means that
there will always be some small density of minority holes. Any minority carrier
diffusing into the depletion regime will be swept down the potential into the p-
type regime. This generates a current (from right to left, of holes, and therefore
negative)2

−Jgen
h (11.3)

It is not much dependent on the external bias V , because of the large inbuilt
potential drop in the depletion regime.

Hole recombination current. The holes in the p-type regime have a
small probability of being thermally excited up the potential hill. Since the
temperature is low compared to the barrier, this current is activated,

Jrec
h ∝ e−e(φb−V )/kBT . (11.4)

Net current. We know that in equilibrium at zero bias the hole recombi-
nation current and generation currents must cancel. Then the total hole current
takes the form

Jh = Jgen
h (eeV/kBT − 1) . (11.5)

Electrons. The same analysis appplies to electrons, except that the cor-
responding electron generation and recombination (number) currents flow in
the opposite directions to their hole counterparts. But electrons are oppositely
charged, so the electrical current density has the same form as Eq. (11.5).

Diode IV characteristic. The sum of the contributions of electrons and
holes gives an asymmmetrical form

I = Isat

(
eeV/kBT − 1

)
(11.6)

where the saturation current Isat is proportional to n2
i and therefore of the

Arrhenius form e−Eg/kBT (see footnote 2).

2 The magnitude can be estimated to be (n2
i /Nd)(Lp/τp), where the first factor in brackets

is the minority hole density in the p-type region (Eq. (10.9)) τp is the recombination time of
a carrier, and Lp is the length that the hole will diffuse before it recombines with an electron
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Figure 11.6: The left panel shows the theoretical I-V characteristic from Eq.
(11.6). The right panel shows data from an early Ge p-n diode compared to
the same model. [F.S. Goucher, G.N. Pearson, M.Sparkes, G.K.Teal and W.
Shockley, Physical Review 81, 637, (1951)]

Solar cell

If light shines on a p-n junction, without an external bias voltage, then each
absorbed photon will create an electron-hole pair. If these carriers reach the
junction, the built-in field will separate them - the potential gradient pulls
electron and hole in opposite directions. The separation of the charges across
the depletion layer adds an extra internal dipole to the system - like charging
a capacitor - and therefore generates an overall electrical bias. The induced
voltage is in the forward direction - because it is opposite in sign to the built-in
potential.

This is the photovoltaic effect, which can deliver power to an external circuit.
Large arrays of p-n junctions of Si are used to make solar panels, converting solar
radiation to electrical power.

Light-emitting diode

The inverse process to the photovoltaic effect powers a light-emitting diode or
LED. Here a current is injected into a p-n diode in a non-equilibrium situation
where the electron and hole chemical potentials are kept to be different with a
large bias eV . Electrons are injected from n-side to p-side of the junction, and
holes in the reverse direction. Recombination of electron-hole pairs occurs with
the emission of a photon, whose energy will be close to the band gap of the
semiconductor.
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Figure 11.7:

This process is not efficient for an indirect band-gap semiconductor such
as Si or Ge, and so direct gap III − V or II − V I materials are commonly
employed. Using materials with wider band gaps gives higher frequency light.
In recent years, efficient LEDs have been developed across the visible spectrum
(see Fig. 11.7, and are now more efficient than incandescent bulbs. Recent LED
developments include not only wide-gap inorganic materals but also organic
materials. These can be processed in different and simpler ways from inorganic
compound semiconductors, have a larger intrinsic radiative coupling, and are of
course flexible.

11.3 Field effect transistor

The ability of an external potential to shift the electronic energy levels is the
basis of ubiquitous electronic technology of the field-effect transistor. Previously
we discussed direct metal-semiconductor junctions, but if we place an insulating
barrier between the metal and semiconductor, we can adjust the band-bending
at the interface by amounts as large as the semiconductor gap itself, as shown
in Fig. 11.8. The width of the well is often narrow enough that the levels within
it are quantised.

Consequently a metal electrode placed over an oxide barrier on a Si substrate
can be used as a gate to modulate the conductivity in the plane. This is the
basis of the Metal-Oxide-Si-Field-Effect-Transistor, or MOSFET, the workhorse
of modern electronics.
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Figure 11.8: A Metal-Insulator-Semiconductor device allows a bias potential to
be applied to bend the band edges of the semiconductor beside the insulating
barrier. If the bending is large enough, a p-type semiconductor — as shown
here — can have the conduction band pulled down below the chemical potential.
This creates a narrow channel called an inversion layer, whose density can be
modulated by the gate potential eV applied to a metal electrode.

11.4 Compound semiconductor heterostructures

Bandstructure engineering

Another way to make an inversion layer is to change the semiconductor chem-
istry in a discontinuous fashion within the same crystal structure. Epitaxial,
atomic layer-by-layer growth allows the chemical composition and doping to be
manipulated in fine detail. Such devices of compound semiconductors are used,
for example, in semiconductor lasers for optical discs, in high speed electronics
(e.g. cellphones) and high-speed lasers in telecommunications. This technology
has also enabled fundamental science, by preparing very high mobility electron
systems (e.g. for the quantum Hall effects), making “quantum wires” that are
so thin as to have quantised levels, and for studies of the neutral electron-hole
plasma as a possible superfluid.

Alloys of compound semiconductors, e.g. Al1−xGaxAs, allow one to con-
tinuously vary the optical gap and the position of the band edges by varying
the composition x. Two different semiconductors will - when referred to the
vacuum potential at infinity - have bands that will in general line up in an
offset fashion. We consider here only the case (like (Al,Ga)As when the band
edges of one semiconductor lie entirely within the band gap of the other, though
staggered overlaps do occur. When the materials are placed in contact, their
Fermi energies must equalise, which is accomplished by charge transfer across
the boundary. This lowers the conduction band edge on one side of the inter-
face, and if doped sufficiently the band edge falls below the chemical potential,
so that an equilibrium electron gas forms at the interface.
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Inversion layers

Fig. 11.9 shows an outline of a scheme called modulation doping, where the
donor levels are placed on the side of the interface away from the electron
layers (and often at some distance from the interface). This has the advantage
of creating an electron gas in a region where the crystal structure is nearly
perfect, and mobilities greater than 103 m2V −1s−1 have been achieved at low
temperature. By addition of metal gates to the surface of the strucutures,
electrical potential gradients can be applied to continuously vary the electron
density in the layer, to pattern one dimensional wires, and to construct other
interesting spatial structures.

Quantum wells

One of the most widespread applications of semiconductor multilayers is to make
a quantum well — a thin region of a narrow gap material sandwiched inside a
wide-gap one. Because the wells can be made very narrow, quantisation of the
levels is important. In general, the eigenstates will be of the form Φ(r, z) =
φn(z)eik·r where r and k are here two-dimensional vectors, describing position
and momentum in the plane. The situation for holes is more complex, because
the degeneracy of the light and heavy hole states in bulk is broken by the 2D
geometry. The details are important in practice, but not exciting.

Qu.11.34 Quantum well sub-bands

A 10 nm thick quantum well of GaAs is surrounded by bulk
Al0.7Ga0.3As. The conduction band offset is 0.26 eV, and the ef-
fective mass of electrons in GaAs is 0.066 me.

(a) Estimate the energies of the (bottom of the) sub-bands En(k =
0), assuming the walls of the potential are infinitely high.

(b) What is the maximum areal density of electrons that can be
occupied in the lowest sub-band before the second sub-band starts to
be filled?

(c) How many sub-bands do you estimate exist for the actual
sitation — a well of finite potential depth?

(d)* Note the word estimate in (c). Nevertheless, the 1D finite
potential well is not a difficult problem to solve, though the actual
solution of eigenstate energies needs to be done graphically.

For a potential of depth V0 and width L, show that the number
of bound states is

1 + Int
[
(2m∗V0L

2/π2h̄2)1/2
]
. (11.7)



122 CHAPTER 11. SEMICONDUCTOR DEVICES

Figure 11.9: Formation of a 2D electron system by modulation doping. (a)
Shows two semiconductors not in contact, with different chemical potentials,
determined by the doping level. (b) is the band scheme that results when they
are placed in contact. If the doping level is high enough - as shown here - the
band edge on the left may fall below the chemical potential, and a layer of
electrons is formed at the interface. (c) Shows the modulation doping scheme in
more detail. Donors are placed to the right of the interface, so that the electron
layer is pristine and free of impurities. The well width may be narrow enough
that electron levels are quantised in a direction perpendicular to the barrier,
forming sub-bands.
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Quantum well laser

The operation of a laser requires an efficient mechanism for luminescent electron-
hole recombination, which rules out indirect gap semiconductors in practice.
Lasing operation requires high densities of electrons and holes so that the prob-
ability of stimulated emission overcomes that of absorption. This latter condi-
tion requires inversion, meaning that the average electron (hole) occupancy in
the luminescing states exceeds 1/2.

A double heterojunction laser is designed to achieve high densities, by using
a quantum well — designed to trap both electrons and holes — with the source
of carriers being a p-doped region on one side of the well, and an n-doped region
on the other (see Fig. 11.10). This is indeed a diode (because holes can flow
in from the p-side and electrons from the n, but not vice versa), but it is not
operated in the same regime as a conventional diode. Instead, a rapid rate of
recombination in the lasing region maintains different chemical potentials for
electron and hole systems.

Figure 11.10: Operation of a double heterojunction laser. Notice the quasi-
equilibrium condition, with separate electron and hole chemical potentials.


