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Motivation

I Kohn-Sham (KS) density functional theory (DFT) has achieved astonishing
success as a method for modelling materials and chemicals from first
principles.

I Due to this, KS DFT software, e.g. castep [1], consumes a considerable
fraction of the worlds supercomputing power, meaning effective numerical
implementation of KS DFT is of paramount importance.

I Increasingly efficient and robust numerical solutions of KS DFT can
provide access to previously unexplored areas of science.

I For example, when searching for novel (meta-)stable phases of matter,
thousands of individual KS DFT calculations are typically performed per
‘structure search’. These searches can be limited by the KS DFT
implementations failing to find a solution. Hence, it is possible that
physically relevant regions of the potential energy surface are uncharted.

I This work studies the iterative methodology utilised in order to achieve a
so-called self-consistent solution to KS DFT.

Theory

I KS DFT presents a non-linear eigenvalue problem,

ĤKS [ρin(r)]φi = εiφi , (1)

ρout(r) =
∑

i∈occupied

|φi(r)|2. (2)

I The single particle wavefunctions {φi} are used to define an output particle
density ρout, which in general is different to the input particle density ρin

used to construct the KS Hamiltonian, ĤKS .

I Finding a particle density that satisfies both Eq. (1) and Eq. (2)
simultaneously defines self-consistency, ρ∗ = ρin = ρout.

I Density mixing is an iterative procedure that generates an improved
estimate for the ground state density for the subsequent iteration by
combinding the input-output density pairs of previous iterations.

I A density mixing scheme thus defines the form of the function

ρin
n+1 = f ({ρin

j , ρ
out
j }) (3)

for j ∈ [1, n] defining the iteration number.
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I The most widely adopted and generally best performing density mixing
scheme is a preconditioned version of Pulay’s discrete inversion in the
iterative subspace (DIIS) technique.

I This method extrapolates over a subspace spanned by the history of
iterative densities to predict a subsequent density that will minimise the
subsequent difference between input and output densities.

I The method is typically preconditioned with the Kerker preconditioner,
based on the isotropic dielectric response of the homogeneous electron gas.
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Alternative Methods

I A Kerker preconditioned multisecant Broyden technique was implemented
in castep, based on the work of Marks & Luke in Ref. [2] – Fig. (1).
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Figure 1: Comparison of SCF cycles to converge across a representative range of DFT input

systems: Pulay mixing vs. multisecant Broyden mixing.

I Pulay’s DIIS is most efficient when the history of densities span a
reasonable volume of phase-space. Periodic Pulay mixing [3] improves the
sample of densities in the iterative subspace by including linear mixing
steps in between Pulay mixing steps, thus allowing the DIIS to be more
effective – Fig. (2).
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Figure 2: Comparison of SCF cycles to converge: Pulay mixing vs. Periodic Pulay mixing.

I A preconditioner was constructed that implements a local, real-space
density dependence into the dielectric through the susceptibility model,

χ0(r, r′) = α
(
ρin

n (r)
)β
δ(r− r′). (4)

I This model implicitly includes inhomogeneity and anisotropy of an input
system directly into the preconditioner, for some appropriate choice of
{α,β}. In this work, these parameters were derived by considering an
inhomogeneous extension of the Thomas-Fermi screening model, labelled
‘ITF’ in Fig. (3): α = 4(3/π)1/3, β = 1/3.
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Figure 3: Comparison of SCF cycles to converge, Pulay mixing: Kerker Preconditioned vs.

ITF Preconditioned.


