Methods and Algorithms in CASTEP

Nick Woods

Kohn-Sharr Theory In Software

1. Initial Guess

 Calculatio of Occupied Orbitals

3. Self-Consistency

What's in the Box?

Nick Woods

Supervisors: Dr. Phil Hasnip and Prof. Mike Payne

August 24, 2018

Methods and Algorithms in CASTEP

Nick Woods

Kohn-Sham Theory In Software

1. Initial Guess

 Calculatio of Occupied Orbitals

3. Self-Consistency

Kohn-Sham Theory:

$$E^* = \inf_{
ho \in \mathcal{P}} \left\{ E^{ ext{KS}}[
ho] | \int d\mathbf{r} \
ho = \mathbf{N}, \langle \phi_i | \phi_j
angle = \delta_{ij}
ight\}$$

Kohn-Sham (Euler-Lagrange) equations:

$$\left(-\frac{1}{2}\nabla^2 + v^{\mathsf{ext}} + v^{\mathsf{h}} + v^{\mathsf{xc}}\right)\phi_i = \epsilon_i\phi_i$$

Plane-waves

Nick Woods

Kohn-Sham Theory In Software

1. Initial Guess

Calculation
 Of Occupied
 Orbitals

 Self-Consistency

+

+

+

... =

Ψ	

Methods and Algorithms in CASTEP

Nick Woods

Kohn-Sham Theory In Software

1. Initial Guess

2. Calculation of Occupied Orbitals

3. Self-Consistency **Goal:** Find the (occupied) eigenfunctions of H^{KS}

1. Need an initial guess of the density $\rho^{\rm guess}$ in order to calculate the Hartree and XC potentials,

$$\begin{split} v_{\mathsf{h}}(\mathbf{r}) &= \int d\mathbf{r}' \; \frac{\rho(\mathbf{r}')}{|r-r'|} \\ v_{\mathsf{xc}} &= v_{\mathsf{xc}}[\rho](\mathbf{r}) \end{split}$$

Methods and Algorithms in CASTEP

Nick Woods

Kohn-Sham Theory In Software

1. Initial Guess

 Calculation of Occupied Orbitals

 Self-Consistency

Identify species at positions ${f R}_\mu$

Methods and Algorithms in CASTEP

Nick Woods

Kohn-Sham Theory In Software

1. Initial Guess

 Calculation of Occupied Orbitals

3. Self-Consistency

Identify species at positions \mathbf{R}_{μ}

С — Н

Run (pseudopotential) DFT to obtain the electron density of each *isolated* species

Methods and Algorithms in CASTEP

Nick Woods

Kohn-Sham Theory In Software

1. Initial Guess

 Calculation of Occupied Orbitals

3. Self-Consistency

Identify species at positions \mathbf{R}_{μ}

Run (pseudopotential) DFT to obtain the electron density of each *isolated* species

Place at \mathbf{R}_{μ} and add: $\rho^{\text{guess}} = \sum \rho^{\text{isolated}}_{i}$

C - H

Eigenfunctions of H^{KS}

Methods and Algorithms in CASTEP

Nick Woods

Kohn-Shan Theory In Software

1. Initial Guess

2. Calculation of Occupied Orbitals

3. Self-Consistency • Typical (smallish) calculation $\sim \mathcal{O}(100,000)$ plane-waves.

$$RAM = 16 \times 100000^2 = 160GB$$

Bytes per entry (double precision \mathbb{C})

entries

Methods and Algorithms in CASTEP

Nick Woods

Kohn-Sham Theory In Software

1. Initial Guess

2. Calculation of Occupied Orbitals

 Self-Consistency Eigendecomposition of a Hermition \mathbb{C} matrix scales $\sim \mathcal{O}(N^3)$

If it takes $\sim 1s$ to find eigenvectors and values of a 1000 \times 1000 matrix

Our system takes:

 $t=rac{(100000)^3}{(1000)^3} imes 1spprox 12$ days

Methods and Algorithms in CASTEP

Nick Woods

Kohn-Sham Theory In Software

1. Initial Guess

2. Calculation of Occupied Orbitals

3. Self-Consistency

- \bullet Only want \sim as many eigenfunctions as we have electrons
- Frame as an optimisation problem:

$$\epsilon(\phi_i) = \frac{\phi_i^* H^{\rm KS} \phi_i}{|\phi_i|^2}$$

is a function minimised by the ground state eigenvector, which evaluates to the ground state eigenvalue.

Circumventing the Eigendecomposition Methods and Algorithms in Solve $\min \{\epsilon(\phi_i) \mid i \in [1, N_b], \langle \phi_i | \phi_i \rangle = \delta_{ii} \}$ 2. Calculation where of Occupied Orbitals $\frac{d\epsilon(\phi_i)}{d\phi_i} = 0$ at eigenvectors.

Methods and Algorithms in CASTEP

Nick Woods

Kohn-Sham Theory In Software

1. Initial Guess

2. Calculation of Occupied Orbitals

3. Self-Consistency

Steepest descent

- 1) Generate an initial guess 'subspace': $\{\phi_i\}$
- 2) Compute gradient ('descent direction'): δ_i = dε(φ_i)/dφ_i
 3) Orthogonalise {δ_i}
- 4) Update: $\phi_i^{\text{new}} = \phi_i^{\text{old}} + \delta_i$.
- 5) Terminate when $|\delta_i| = 0$.

Methods and Algorithms in

Nick Woods

Kohn-Sham Theory In Software

1. Initial Guess

2. Calculation of Occupied Orbitals

3. Self-Consistency CASTEP uses Davidson...

"The Iterative Calculation of a Few of the Lowest Eigenvalues and Corresponding Eigenvectors of Large Real-Symmetric Matrices"

Similar procedure, but particularly suited to KS DFT calculations:

- Parallelisable
- Works well for diagonally dominant matrices (kinetic energy)

Methods and Algorithms in

Nick Woods

Kohn-Sham Theory In Software

1. Initial Guess

2. Calculation of Occupied Orbitals

3. Self-Consistency Source of the scaling in DFT: 'orthogonalise'

```
Approximately scales with N^3 = (\# \text{ eigenfunctions})^3 \approx (\# \text{ electrons})^3
```

Eigendecomposition now takes $t \sim 10$ seconds instead of 12 days.

Methods and Algorithms in CASTEP

Nick Woods

Kohn-Shan Theory In Software

1. Initial Guess

2. Calculation of Occupied Orbitals

 Self-Consistency No longer need to diagonalise, but in order to evaluate our optimisation function

$$\epsilon(\phi_i) = \frac{\phi_i^* H^{\mathrm{KS}} \phi_i}{|\phi_i|^2}$$

we still need to construct H^{KS} ; requires 160GB of RAM.

Methods and Algorithms in CASTEP

Nick Woods

Kohn-Sham Theory In Software

1. Initial Guess

2. Calculation of Occupied Orbitals

3. Self-Consistency Only require the *application* of H^{KS} on ϕ_i

Clever switching between Fourier (plane-wave) space and real space allows $(H^{KS}\phi_i)$ to be calculated with just a series of vector-vector products.

Methods and Algorithms in

Nick Woods

Kohn-Sham Theory In Software

1. Initial Guess

2. Calculation of Occupied Orbitals

3. Self-Consistency

What does CASTEP do?

Need to evaluate $H^{\text{KS}}\phi_i = \chi_i$:

$$\left(-\frac{1}{2} \nabla^2 + \mathbf{v}^{\text{ext}} + \mathbf{v}^{\text{h}} + \mathbf{v}^{\text{xc}} \right) \phi_i$$

= $\phi^{\text{kinetic}} + \phi^{\text{ext}} + \phi^{\text{h}} + \phi^{\text{xc}} = \chi_i$

Methods and Algorithms in CASTEP

Nick Woods

Kohn-Sham Theory In Software

1. Initial Guess

2. Calculation of Occupied Orbitals

3. Self-Consistency

Kinetic energy

In plane-wave space, the matrix elements of the Hamiltonian are diagonal:

$$\langle \mathbf{G}|-rac{1}{2}
abla^2|\mathbf{G}
angle=rac{1}{2}|\mathbf{G}|^2\delta_{\mathbf{G}\mathbf{G}'}$$

Easy to construct, just populate a vector with $1/2|G|^2$, multiply with ϕ_i to obtain $\phi_i^{\text{kinetic}}(G)$.

Methods and Algorithms in CASTEP

Nick Woods

Kohn-Sharr Theory In Software

1. Initial Guess

2. Calculation of Occupied Orbitals

3. Self-Consistency

Hartree potential

Requires an integral over all \mathbf{r}' – costly

$$v_{\mathsf{h}}(\mathbf{r}) = \int d\mathbf{r}' \; rac{
ho(\mathbf{r}')}{|r-r'|}$$

but...

$$\mathcal{F}(v_{\mathsf{h}}(\mathsf{r})) \sim rac{
ho(\mathsf{G})}{|\mathsf{G}|^2} = v_{h}(\mathsf{G})$$

 Self-Consistency

Hartree potential

2. Construct $v_h(G)$

3. FFT⁻¹(
$$v_h(G)$$
) = $v_h(\mathbf{r})$

4. Multiply $\phi_i^h(\mathbf{r}) = v_h(\mathbf{r})\phi_i$

Kohn-Sham Theory In Software

1. Initial Guess

2. Calculation of Occupied Orbitals

3. Self-Consistency

Other (local) potentials

Easy to construct in real-space, and apply in real-space:

$$\phi^{\mathsf{loc}}(\mathbf{r}) = v^{\mathsf{loc}}(\mathbf{r})\phi_i$$

(ignoring how pseudopotentials work)

Methods and Algorithms in CASTEP

Nick Woods

Kohn-Sham Theory In Software

1. Initial Guess

2. Calculation of Occupied Orbitals

 Self-Consistency

We now have
$$\{\phi^{\text{kinetic}}(G), \phi_i^h(\mathbf{r}), \phi_i^{xc}(\mathbf{r}), \phi_i^{ext}(\mathbf{r})\}$$

Finally, add them all together in the same space:

$$FFT^{-1}(\phi^{\text{kinetic}}(G)) + \phi_i^h(\mathbf{r}) + \phi_i^{xc}(\mathbf{r}) + \phi_i^{ext}(\mathbf{r}) = \chi_i$$

and we have applied $H^{\rm KS}$ to a vector, without constructing it, efficiently.

Savings...

Methods and Algorithms in CASTEP

Nick Woods

Kohn-Sham Theory In Software

1. Initial Guess

2. Calculation of Occupied Orbitals

3. Self-Consistency

RAM requirements: 160GB $\rightarrow \sim$ 4GB

Time requirements: 12 days $ightarrow \sim$ 10 seconds

Self-Consistency

Methods and Algorithms in CASTEP

Nick Woods

Kohn-Sham Theory In Software

1. Initial Guess

2. Calculation of Occupied Orbitals

3. Self-Consistency Calculated correct (occupied) eigenfunctions $\{\phi_i\}$ from Davidson

Compute
$$\rho^{\text{out}}(\mathbf{r}) = \sum_{k,i} |\phi_i|^2$$

Not the same as the guess density we used to construct ${\cal H}^{\rm \scriptscriptstyle KS}$ in the beginning, $\rho^{\rm in}$

Updating the Density

Methods and Algorithms in

Nick Woods

Kohn-Sham Theory In Software

1. Initial Guess

2. Calculation of Occupied Orbitals

3. Self-Consistency

$$\rho^{\mathsf{out}}
eq \rho^{\mathsf{in}}$$

How do we update ρ such that they are \sim equal?

The Naive Method

$$\rho^{\mathsf{in}} = \rho^{\mathsf{out}}$$

and start the process again...

Updating the Density

Methods and Algorithms in CASTEP

Nick Woods

- Kohn-Sham Theory In Software
- 1. Initial Guess
- 2. Calculation of Occupied Orbitals
- 3. Self-Consistency

- Diverges on most systems
- 'Damping' the iterations: guaranteed to converge for a small enough 'damping parameter'
- \bullet Can take $\mathcal{O}(1000)$ iterations (1000+ calculations of eigenfunctions...)

Updating the Density

Methods and Algorithms in CASTEP

Nick Woods

Kohn-Sham Theory In Software

1. Initial Guess

2. Calculation of Occupied Orbitals

3. Self-Consistency

What does CASTEP do?

Pulay's method - 'discrete inversion in the iterative subspace'

$$\rho^{\mathsf{new}} = \rho^{\mathsf{old}} + \delta\rho$$

Error: $\rho^{\text{in}} - \rho^{\text{out}}$

Methods and Algorithms in CASTEP				
	tput)	•		
	no -			
	nput			
3. Self- Consistency	or (i			
	Jurc			
			ρ ⁱⁿ	

<u> </u>		
<u></u>	VID	ac
Ja	VIII	ട്രാ
		0-

Methods and Algorithms in CASTEP	
	Divergent or $\mathcal{O}(1000)$ iterations $\rightarrow \mathcal{O}(10)$ iterations
3. Self- Consistency	

Conclusion

Methods and Algorithms in CASTEP

Nick Woods

Kohn-Sham Theory In Software

1. Initial Guess

2. Calculation of Occupied Orbitals

3. Self-Consistency

- Diagonalise iteratively as an optimisation problem
- FFTs switch between spaces to avoid storing large matrices
- Accelerated mixing allows the computation to converge

• Scaling saving:
$$\sim \mathcal{O}(N^3_{plane-waves}) \rightarrow \sim \mathcal{O}(N^3_{electrons})$$