
NATURAL SCIENCES TRIPOS Part II

Wednesday 16 January 2008 10.30am to 12.30pm

THEORETICAL PHYSICS I

Answer three questions only. The approximate number of marks
allotted to each part of a question is indicated in the right margin
where appropriate. The paper contains four sides and is
accompanied by a booklet giving values of constants and containing
mathematical formulae which you may quote without proof.

1 A thin hollow cylinder of circular cross-section and radius R can roll on a
rough horizontal table. A particle is suspended from its axis by a light rod
attached to a frictionless bearing. If M and m are the masses of the cylinder and
particle, respectively, and c is the length of the rod, supposed less than R,
construct the Lagrangian of the system. [8]

Show that small oscillations about the position of stable equilibrium have the
same period as those of a simple pendulum of length 2Mc/(2M +m). [12]

The system is set in motion from rest by giving the cylinder a velocity V in
the direction in which it can roll. By using the constants of the motion, show that
the subsequent angular motion of the rod is given by

1

2
mc2

(
1− m cos2 φ

m+ 2M

)
φ̇2 =

mM

m+ 2M
V 2 −mgc(1− cosφ)

where φ is the angle it makes with the downward vertical. [13]

2 What are the main advantages of the Hamiltonian formulation of mechanics
over the Lagrangian formulation? [4]

Derive Hamilton’s equations of motion for the one-dimensional Hamiltonian

H(q, p) = pq̇ − L(q, q̇) .

(You should assume the symbols have their usual meanings.) [5]
If the Hamiltonian is written in terms of transformed position and

momentum coordinates
Q = Q(q, p) , P = P (q, p)

show that the transformed Hamiltonian H(Q,P ) obeys Hamilton’s equations of
motion in the new coordinates if [8]

{Q,P}q,p = 1
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where the Poisson bracket is defined by

{U, V }q,p =
∂U

∂q

∂V

∂p
− ∂U

∂p

∂V

∂q

Show that for the coordinate transformations

Q = arctan

(
mωq

p

)

P =
1

2mω
(p2 +m2ω2q2)

the above Poisson bracket holds. [8]
Rewrite the one-dimensional harmonic oscillator Hamiltonian

H =
p2

2m
+

1

2
mω2q2

in terms of Q,P and solve Hamilton’s equations in these coordinates. Show that
your solutions are consistent with the solutions to the harmonic oscillator solved
using q, p. [8]

3 The Lagrangian density for the Schrödinger wave function Ψ is

L =
h

2i

(
Ψ
∂Ψ ∗

∂t
− Ψ ∗∂Ψ

∂t

)
− h2

2m
∇Ψ ·∇Ψ ∗ − V (r)ΨΨ ∗

(a) Show that L has a global phase symmetry. [3]

(b) Derive the associated Noether density and current. Show explicitly that
they satisfy the expected conservation equation. [10]

(c) Derive the stress-energy tensor components T 00, T 0k, T j0 and T jk, where
j, k = 1, 2 or 3. (Use units such that c = 1.) [10]

(d) Show explicitly that these components satisfy the expected conservation
equations. [10]

4 The action for a system consisting of a relativistic charged particle and an
electromagnetic field is

S = −
∫
mc2dτ −

∫
eAµdx

µ(t)− 1

4µ0

∫
FαβF

αβd4x

(a) Explain the meaning of the terms in this equation. [5]

(b) Show how the action leads to the equation of motion for the particle and
the inhomogeneous Maxwell equations for the field. [15]
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(c) Explain what is meant by a gauge transformation and show that it does
not affect the dynamics of the system. [7]

(d) Show how to include a charged scalar field ϕ in such a way that the
gauge symmetry is preserved. [6]

[You may assume that Fαβ =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0

 ]

5 A real scalar field ϕ has Lagrangian density

L =
1

2

[
(∂µϕ)(∂µϕ) + aϕ2 + b ϕ4

]
where a and b are real constants.

(a) Derive the equation of motion, the canonical momentum density and the
Hamiltonian density. Find the conditions for the Hamiltonian density to be
bounded from below. [10]

(b) The Lagrangian is symmetric under the transformation ϕ→ −ϕ. Find
the conditions under which this symmetry is spontaneously broken, and the
resulting minimum-energy solutions for the field and energy density. [10]

(c) Find the equation of motion and dispersion relation for small variations
of the field around the minimum-energy solutions. [13]

6 The Green’s function for a quantum-mechanical particle with Hamiltonian H
is defined by (

ih
∂

∂t
−H

)
G(r, r′; t, t′) = δ3(r − r′) δ(t− t′)

Use Fourier methods to derive the Green’s function

G(r, r′; z) =
∫
eiz(t−t

′)/hG(r, r′; t, t′) dt

for a non-relativistic free particle in three dimensions (H = −h2∇2/2m), with
z = E + iε for the four cases [8]

(i) E > 0, ε > 0; (ii) E > 0, ε < 0; (iii) E < 0, ε > 0; (iv) E < 0, ε < 0.

The parameter ε should be assumed to be real and small.
Use your results to show that [6]

∆G(r, r′;E) = −2πi
2m

h2

sin
(√

2mE|r − r′|/h
)

4π2|r − r′|
Θ(E)
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where
∆G(r, r′;E) = lim

ε→0
[G(r, r′;E + i|ε|)−G(r, r′;E − i|ε|)]

Calculate the density of states (the number of quantum states per unit
energy per unit volume) ρ(E) for a non-relativistic free particle in three
dimensions using a simple phase-space argument. Hence show that for this case [6]

ρ(E) = lim
r→r′

∆G(r, r′;E)

−2πi

Now consider the general case. For a system with Hamiltonian H, energy
eigenvalues En and corresponding eigenfunctions φn(r), show that [6]

G(r, r′; z) =
∑
n

φn(r)φ∗n(r′)

z − En

Use this expression and the identity

lim
y→0+

1

x± iy
= P

1

x
∓ iπδ(x)

to show in general that [7]

ρ(r;E) = lim
r→r′

∆G(r, r′;E)

−2πi

END OF PAPER

A


