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THEORETICAL PHYSICS I

Answer three questions only. The approximate number of marks

allotted to each part of a question is indicated in the right margin

where appropriate. The paper contains 4 sides and is accompanied

by a book giving values of constants and containing mathematical

formulae which you may quote without proof.

1 A system consists of one point-like particle with a mass M and position
vector R and n particles with the same mass m and position vectors Rα, with
α = 1, ..., n. All interactions are described by the potential energy U(R,Rα).
Write down and describe the terms in the Lagrangian for this system. [6]

The system evolves such that its centre of mass remains fixed (take, for
definiteness, that it remains at the origin of the coordinate system). Describe the
type of constraint this is and reduce the number of degrees of freedom, writing the
Lagrangian in terms of the relative coordinates rα = Rα − R. [10]

Find the canonical momenta pα for this system. [6]
Hence, or otherwise, prove that the Hamiltonian function for this system

takes the form [12]

H =
1

2m

∑

α

p2

α +
1

2M

(

∑

α

pα

)2

+ U.

2 A thin uniform rod of mass m and length ` is pivoted at its centre. Its top
end is linked to a point with coordinates (0, 0, 1

2
`) with an elastic spring of zero

equilibrium length with spring constant κ, see sketch. (The transverse moment of
inertia for a rod is I⊥ = 1

12
m`2; you may regard I‖ = 0.)
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Write the Lagrangian for this system in terms of angular coordinates θ and φ. [10]
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Obtain the canonical momenta for this system and write down the
Hamiltonian. [4]

Find and discuss the canonical (Hamilton’s) equations and the conservation
laws that you can identify for this system. [4]

Determine the conditions for which it is possible to have a steady state
motion consisting of a rotation about the z axis with an angular velocity φ̇ = Ω. [10]

Show that the frequency of small oscillations about the polar angle θ0 of this
steady-state is equal to [6]

ω = Ω

√

1 −
9κ2

m2Ω4
.

[Hint: In principal axes, the components of angular velocity of a solid body are
expressed through Euler angles:
Ω1 = θ̇ cosψ + φ̇ sin θ sinψ; Ω2 = −θ̇ sinψ + φ̇ sin θ cosψ; Ω3 = φ̇ cos θ + ψ̇.]

3 A relativistic particle of rest mass m0 is acted on by a constant force F ,
along its line of motion. Write down the Lagrangian for this particle. [8]

Show that the Hamiltonian for this particle is [8]

H(p, q) =
√

p2c2 + E2
0 − Fq,

where E0 is the rest energy of the particle.
Prove that this Hamiltonian is a conserved quantity. [4]
Find the complete solution, p(t) and q(t), given the initial conditions

p(0) = 0, q(0) = 0. [8]
Find the time dependence of the velocity q̇(t) and comment on its limits for

small and large t. [6]

4 Consider a damped one-dimensional harmonic oscillator,

ẍ+ γẋ+ Ω2x = f(t) ,

excited by a top-hat pulse force: f(t) = f0 for t ∈ (0, a) and f(t) = 0 otherwise (γ,
Ω and a are positive constants, 4Ω2 > γ). Show that the Fourier transform xω

takes the form [8]

xω = −i
f0(1 − eiωa)

ω(ω2 + iωγ − Ω2)
.

Discuss the application of Green’s functions and the role of causality in
dynamical problems. [8]

Examine the possibility of integration on the complex plane of [Reω, Imω] to
perform the inverse Fourier transformation of xω. In particular compare the
regimes where t < a and t > a, and the structure of the singularities. [8]

Hence, or otherwise, find the asymptotic form of x(t) at long times, t� a
and comment on your result. [10]
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5 Using the principles of integration on the complex plane, prove the following
property of Dirac delta function: [14]

∫ ∞

−∞
f(x)δ(x− y)dx = f(y)

(for an arbitrary regular function f(x), bound at x→ ±∞), using the following
definition of delta function

δ(x) = lim
ε→0

1

π

ε

x2 + ε2
.

The complete gamma function Γ(z) is defined to be an extension of the
factorial function to real and complex number arguments. It is related to the
factorial by Γ(n) = (n− 1)! . It is analytic everywhere except at z = 0,−1,−2, ...
The integral representation is Γ(z) =

∫∞
0
tz−1e−tdt.

Show that the following relationship holds [6]

Γ(x)Γ(1 − x) =
∫ ∞

0

ux−1

1 + u
du .

Hence, or otherwise, prove the famous Euler reflection formula [14]

Γ(x)Γ(1 − x) =
π

sin πx
.

[Two hints: (1) When writing the product of two Gamma functions via a double
integral,

∫∞
0
tx−1e−tdt

∫∞
0
s−xe−sds, make a substitution t = s u. (2) On the plane

of complex u, use the close contour sketched, with R → ∞ and ε→ 0, and
examine how different parts of it contribute to the integral

∮

dz zx−1/(1 − z).]
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6 Describe the standard form of the Langevin (stochastic) equation,

q̇α = Fα(q) +Gk
α(q)Ak(t) ,

and its relation to classical Brownian motion. [6]
Outline principles leading to the Fokker-Planck (kinetic) equation for the

probability density f(q, t): [6]

∂f(q , t)

∂t
=

{

−
∂Kα(q)

∂qα
+

1

2

∂2

∂qα∂qβ
Qαβ(q)

}

f(q , t) ,

with Kα = Fα +
1

2

∂Gi
α

∂qβ
Gk

βδik; Qαβ = Gi
αG

k
βδik .
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Obtain the Fokker-Planck equation for the free Brownian motion. [8]
Discuss the conditions under which the probability of a Brownian particle

satisfies an ordinary diffusion equation. [6]
By finding the equilibrium probability density of a free Brownian particle,

prove the fluctuation-dissipation relationship between the friction and the thermal
noise constants. [8]
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