Topology of (1D) Quantum Systems Out of Equilibrium

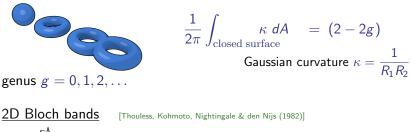
Nigel Cooper Cavendish Laboratory, University of Cambridge

Controlling Quantum Matter: From Ultracold Atoms to Solids Humboldt Kolleg, Vilnius, 30 July 2018

Max McGinley & NRC, arXiv:1804.05756

Engineering and Physical Sciences Research Council

Topological Invariants



$$\begin{array}{l} \text{Chern number } \nu = \frac{1}{2\pi} \int_{\mathrm{BZ}} d^2 k \; \Omega_{\boldsymbol{k}} \\ \text{Berry curvature } \Omega_{\boldsymbol{k}} = -i \nabla_{\boldsymbol{k}} \times \langle u_{\boldsymbol{k}} | \nabla_{\boldsymbol{k}} u_{\boldsymbol{k}} \rangle \cdot \hat{\boldsymbol{z}} \end{array}$$

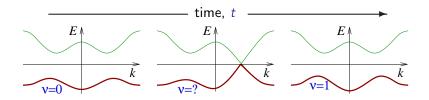
- $\bullet \ \nu$ cannot change under smooth deformations of the energy band
- bulk insulator with ν (chiral) metallic surface states

Many generalizations when *symmetries* included: "symmetry-protected" topological insulators/superconductors

- Time-reversal symmetry (non-magnetic material in B = 0) \Rightarrow 3D bulk insulator with metallic 2D surfaces
- Su-Schrieffer-Heeger model

 \Rightarrow 1D band insulator with gapless edge modes

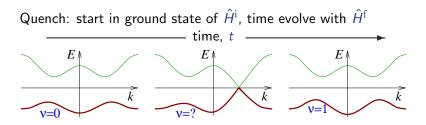
Dynamical changes in band topology?



What are the consequences for the topology of the system?

- preparation of topological states?
- non-adiabatic ⇒ meaning of topology out of equilibrium?

Dynamics of Chern Insulators (2D)



Time-evolving Bloch state of fermion at k

 $|u_{\boldsymbol{k}}(t)\rangle = \exp(-i\hat{H}_{\boldsymbol{k}}^{\mathrm{f}}t)|u_{\boldsymbol{k}}(0)\rangle$

 $\Omega_{\boldsymbol{k}}(t) = -i\nabla_{\boldsymbol{k}} \times \langle u_{\boldsymbol{k}}(t) | \nabla_{\boldsymbol{k}} u_{\boldsymbol{k}}(t) \rangle \cdot \hat{\boldsymbol{z}}$

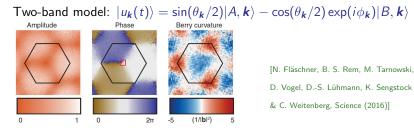
 \Rightarrow Chern number ν of the *state* is invariant

[L. D'Alessio & M. Rigol, Nat. Commun. (2015); M.D. Caio, NRC & M.J. Bhaseen, PRL (2015)]

["topological invariant" under smooth changes of the Bloch states]

Dynamics of Chern Insulators: Physical Consequences?

- Obstruction to preparation of state with differing Chern number [For slow ramps, and in finite systems, deviations can be small.]
- Chern number can be obtained by tomography of Bloch states



• Topology of *final* Hamiltonian can be uncovered by tracking the time evolution of the Bloch states in (\mathbf{k}, t) space [Next talk, Xiong-Jun Liu]

Any differences for symmetry-protected topological classes?

In 1D, all topological invariants can be determined by:

$$\mathrm{CS}_{1}=\frac{i}{2\pi}\int_{\mathrm{BZ}}dk\,\left\langle u_{k}|\partial_{k}u_{k}\right\rangle$$

Equivalently: Berry phase around the Brillouin Zone (Zak phase)

Only quantized in the presence of symmetries

In 1D, topology must be protected by symmetry

Example: Su-Schrieffer-Heeger Model

Symmetry-Protected Topology Out of Equilibrium

[Max McGinley & NRC, arXiv:1804.05756]

- \bullet Start in ground state of $\hat{\mathcal{H}}^i,$ then time evolve with $\hat{\mathcal{H}}^f$
- $\hat{\mathcal{H}}^{f}$ breaks symmetry \rightarrow topological "invariant" can vary ["explicit symmetry breaking"]
- What if $\hat{\mathcal{H}}^{f}$ respects symmetry?

Symmetry can still be broken after a quench

Antiunitary symmetries

 $[\langle \hat{\mathcal{O}} \Phi, \hat{\mathcal{O}} \Psi \rangle = \langle \Phi, \Psi \rangle^*]$

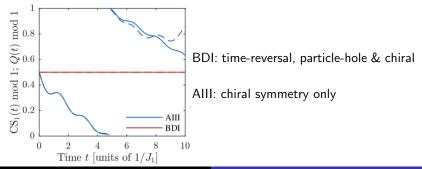
$$\hat{\mathcal{O}}e^{-i\hat{\mathcal{H}}t}\hat{\mathcal{O}}^{-1}=e^{+i\hat{\mathcal{H}}t}$$

Symmetry broken in the non-equilibrium state $|\Psi(t)\rangle$ ["dynamically induced symmetry breaking"] Topological "invariant" time-varying even if symmetries respected!

Time-Varying $CS_1(t)$: Physical Consequences

- Could be observed in Bloch state tomography [cf. Chern number]
- Directly measure, via: $\frac{d}{dt}CS_1(t) = j(t) = \dot{Q}(t)$ [cf. in 2D, Chern number \neq Hall conductance out of equilibrium]

Example: quenches in a generalized SSH model

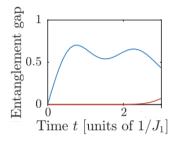


Topological Classification Out of Equilibrium

Equilibrium topological state \Rightarrow gapless edge state

Non-equilibrium topological state ⇒gapless *entanglement spectrum*

Example: quenches in a generalized SSH model



BDI: time-reversal, particle-hole & chiral

AIII: chiral symmetry only

 \Rightarrow Meaningful topological classification out of equilibrium

"Ten-fold way" for free fermions [Chiu, Teo, Schnyder & Ryu, RMP (2016)] [Time-reversal, particle-hole, and chiral symmetries]

Non-equilibrium classification in 1D

[Max McGinley & NRC, arXiv:1804.05756]

Class	Т	С	S	$CS_1(t=0)$	$\operatorname{CS}_1(t) \operatorname{mod} 1$	eq. \rightarrow non-eq.
AIII	0	0	1	$\mathbb{Z}/2^*$	Varies [0,1)	$\mathbb{Z} ightarrow 0$
BDI	+	+	1	$\mathbb{Z}/2^*$	Const. $\{0, 1/2\}$	$\mathbb{Z} \to \mathbb{Z}_2$
D	0	+	0	$\mathbb{Z}/2 \operatorname{mod} 1$	Const. $\{0, 1/2\}$	$\mathbb{Z}_2 \to \mathbb{Z}_2$
DIII	_	+	1	$\mathbb{Z} \operatorname{mod} 2^*$	Const. 0	$\mathbb{Z} ightarrow 0$
CII	_	_	1	\mathbb{Z}^*	Const. 0	$\mathbb{Z} ightarrow 0$

- Out of equilibrium, topological "invariants" can vary in time: *"dynamically induced symmetry breaking"*
- \Rightarrow no obstruction to changing the topology of the state dynamically
- \Rightarrow sensitivity to noise
- In 1D such time-variations appear as a measurable current

• There is a robust topological classification of non-equilibrium states, which differs from that at equilibrium: bulk-boundary correspondence applies to entanglement spectrum [holds also for interacting + disordered systems]

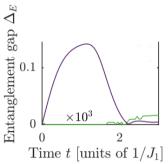
Generalization to Interacting SPT phases

[Max McGinley & NRC, arXiv:1804.05756]

Example: the Haldane phase of a S = 1 spin chain (e.g. AKLT model) is an SPT phase, stabilized by various symmetries:

- TRS (anti-unitary)
- $Z_2 \times Z_2$ dihedral symmetry (unitary)

Only unitary symmetries are preserved out of equilibrium



TRS only (purple) both TRS and dihedral (green)