Quantum Quenches in Chern Insulators

Nigel Cooper
Cavendish Laboratory, University of Cambridge

CUA Seminar
M.I.T., November 10th, 2015

Marcello Caio & Joe Bhaseen (KCL), Stefan Baur (Cambridge)

M.D. Caio, NRC & M.J. Bhaseen, arXiv:1504.01910
Topological Invariants

Gaussian curvature \[\kappa = \frac{1}{R_1 R_2} \]

\[\frac{1}{2\pi} \int_{\text{closed surface}} \kappa \, dA = (2 - 2g) \]

Gauss-Bonnet Theorem

genus \(g = 0, 1, 2, \ldots \) for sphere, torus, 2-hole torus...

Topological invariant: \(g \) cannot change under smooth deformations
Topological Features of 2D Bands

[Thouless, Kohmoto, Nightingale & den Nijs (1982)]

Chern number

\[\nu = \frac{1}{2\pi} \int_{\text{BZ}} d^2k \, \Omega_k \]

Berry curvature

\[\Omega_k = -i \nabla_k \times \langle u| \nabla_k u \rangle \cdot \hat{z} \]

crystal momentum \(\mathbf{k} \), Bloch state \(|u_k\rangle \)

Topological invariant:

\(\nu \) cannot change under smooth variations of the energy band
Physical Consequences

Chern band filled with fermions ("Chern insulator"):

- quantized Hall effect, \(\sigma_{xy} = \nu \frac{e^2}{h} \)

[TKNN (1982)]
Physical Consequences

Chern band filled with fermions ("Chern insulator"):

- quantized Hall effect, $\sigma_{xy} = \nu \frac{e^2}{h}$
- ν gapless chiral edge states

[TKNN (1982)]
Dynamical changes in band topology?

\[\text{time, } t \]

\[\nu = 0 \quad \nu = ? \quad \nu = 1 \]
Dynamical changes in band topology?

Bosons / BEC: Adiabatic

- Adiabatic formation of vortex lattice

Dynamical changes in band topology?

Bosons / BEC: Adiabatic
- Adiabatic formation of vortex lattice

Fermionic Band Insulator: Non-adiabatic
- Effects of quenching between band topologies?

[M.D. Caio, NRC & M.J. Bhaseen, arXiv:1504.01910]
Bosons: Adiabatic Formation of Vortex Lattice
 Harper-Hofstadter Model
 Adiabatic Route

Fermions: Quench of Band Topology
 Haldane Model
 Preservation of Chern Number
 Relaxation of Edge Currents
Harper-Hofstadter Model

Effective magnetic field

flux density \(n_\phi = \frac{\alpha}{2\pi} \)
Harper-Hofstadter Model

Bosons: Adiabatic Formation of Vortex Lattice
Fermions: Quench of Band Topology

Harper-Hofstadter Model
Adiabatic Route

Effective magnetic field
flux density \(n_\phi = \frac{\alpha}{2\pi} \)

Imprint phases on tunneling matrix elements
[Jaksch & Zoller '03; Mueller '04; Sørensen, Demler & Lukin '05; Gerbier & Dalibard 2010; Struck et al. (2012)...]

e.g. tilted lattice [MIT,LMU]

\[J_{\text{eff}} \sim \frac{\Omega_1 \Omega_2^*}{\Delta'} \] inherits phase difference of the Raman beams
Flux density $n_\phi = \frac{\alpha}{2\pi}$

$n_\phi = p/q$:
- q bands with (in general) non-zero Chern numbers
- weakly interacting BEC in band minimum
 \Rightarrow vortex lattice with vortex density n_ϕ
Flux density $n_\phi = \frac{\alpha}{2\pi}$

$n_\phi = \frac{p}{q}$:

- q bands with (in general) non-zero Chern numbers
- weakly interacting BEC in band minimum

\Rightarrow vortex lattice with vortex density n_ϕ

Can one adiabatically create such high vortex densities?
Adiabatic Route: Essential Idea

e.g. $n_\phi = 1/3 \ (\alpha = 2\pi/3)$

magnetic unit cell

Adiabatic Route: Essential Idea

e.g. $n_\phi = 1/3$ ($\alpha = 2\pi/3$)

magnetic unit cell
Adiabatic Route: Essential Idea

\(n_\phi = 1/3 \) (\(\alpha = 2\pi/3 \))

For fixed unit cell, vary phase \(\alpha = 0 \rightarrow 2\pi/3 \)

Adiabatic Route: Essential Idea

\[e.g. \quad n_\phi = 1/3 \quad (\alpha = 2\pi/3) \]

\[\text{magnetic unit cell} \]

For fixed unit cell, vary phase \(\alpha = 0 \rightarrow 2\pi/3 \)

\[e.g. \quad \text{RF + Raman} \quad \quad Je^{i\phi} = J_{\text{RF}} + J_{\text{Raman}}e^{-i\frac{2\pi}{3a}y} \]

Adiabatic Route: Essential Idea

For fixed unit cell, vary phase $\alpha = 0 \rightarrow 2\pi/3$

e.g. RF + Raman $J e^{i\phi} = J_{RF} + J_{Raman} e^{-i \frac{2\pi}{3a} y}$

\Rightarrow adiabatic path from uniform BEC to vortex lattice

Adiabatic Route: Essential Idea

e.g. \(n_\phi = 1/3 \) (\(\alpha = 2\pi/3 \))

For fixed unit cell, vary phase \(\alpha = 0 \rightarrow 2\pi/3 \)

e.g. RF + Raman \(J e^{i\phi} = J_{RF} + J_{Raman} e^{-i\frac{2\pi}{3\alpha}} y \)

\(\Rightarrow \) adiabatic path from uniform BEC to vortex lattice
Repulsive interactions select a particular vortex lattice unit cell.

Same periodicity as

\[J_{x,y} = J_{RF} + J_{Raman} e^{-i(x+y) \frac{2\pi}{3a}} \]

BEC is loaded into the stable vortex lattice as \(\alpha = 0 \rightarrow \frac{2\pi}{3} \)
Outline

Bosons: Adiabatic Formation of Vortex Lattice
Harper-Hofstadter Model
Adiabatic Route

Fermions: Quench of Band Topology
Haldane Model
Preservation of Chern Number
Relaxation of Edge Currents
Haldane Model

[F. D. M. Haldane, PRL 61, 2015 (1988)]

Cold atom realization:

[Jotzu et al. [ETH], Nature 515, 237 (2014)]

Honeycomb lattice

A, B sublattices

\[\hat{H} = -t_1 \sum_{\langle i,j \rangle} (\hat{c}_i^\dagger \hat{c}_j + \text{h.c.}) \]
Haldane Model

\[\hat{H} = -t_1 \sum_{\langle i,j \rangle} \left(\hat{c}_i^\dagger \hat{c}_j + \text{h.c.} \right) - t_2 \sum_{\langle\langle i,j \rangle\rangle} \left(e^{i\varphi_{ij}} \hat{c}_i^\dagger \hat{c}_j + \text{h.c.} \right) + M \sum_{i \in A} \hat{n}_i - M \sum_{i \in B} \hat{n}_i \]

nearest neighbour
next n.n.

\(\varphi_{ij} = \pm \varphi \) breaks time-reversal symmetry
\(M \) breaks inversion symmetry

⇒ band gap

Cold atom realization:

\[\text{Honeycomb lattice} \]
\[A, B \text{ sublattices} \]

Haldane Model

[F. D. M. Haldane, PRL 61, 2015 (1988)]
Haldane Model: Phase Diagram

Boundaries where gaps close at two Dirac points

Non-topological ($\nu = 0$) Topological ($\nu = \pm 1$)

[After Jotzu et al. [ETH], Nature 515, 237 (2014)]
Quenches in the Haldane Model

Change Chern number of lowest band (sign of m_α)

\[

\begin{pmatrix}
 +m_\alpha & -c[k_x + i\alpha k_y] \\
 -c[k_x - i\alpha k_y] & -m_\alpha
\end{pmatrix}

\]
Quenches in the Haldane Model

Change Chern number of lowest band (sign of \(m_\alpha \))

- non-interacting fermions
- isolated system (unitary evolution)

\[
\begin{pmatrix}
+ m_\alpha & -c [k_x + i \alpha k_y] \\
-c [k_x - i \alpha k_y] & -m_\alpha
\end{pmatrix}
\]
(1) Momentum space: time-evolution of Chern number, ν

Occupied single particle states:

$$|\psi_\alpha(k)\rangle = a_\alpha(k)e^{-iE_\alpha^l(k)t}|l_\alpha(k)\rangle + b_\alpha(k)e^{-iE_\alpha^u(k)t}|u_\alpha(k)\rangle$$

[\text{l/u denote lower/upper bands}]
(1) Momentum space: time-evolution of Chern number, ν

Occupied single particle states:

$$|\psi_\alpha(k)\rangle = a_\alpha(k)e^{-iE^l_\alpha(k)t}|l_\alpha(k)\rangle + b_\alpha(k)e^{-iE^u_\alpha(k)t}|u_\alpha(k)\rangle$$

[I/u denote lower/upper bands]

Chern number of the state

$$\nu(t) = \sum_{\alpha = \pm 1} -\alpha \text{ sign } m_\alpha \left(\frac{1}{2} - |b_\alpha(0)|^2 \right)$$

$$-|b_\alpha(\infty)||a_\alpha(\infty)| \cos[(E^u_\alpha(\infty) - E^l_\alpha(\infty))t + \delta]$$

But, $b_\alpha(\infty) = 0$ always... so Chern number of state unchanged
Band Hamiltonian describes a “spin” in an effective magnetic field

\[\hat{H}_k = -h_k \cdot \hat{\sigma} \]

band gap \(\Rightarrow |h_k| \neq 0 \)
Preservation of Chern Number

Band Hamiltonian describes a “spin” in an effective magnetic field

\[\hat{H}_k = -\mathbf{h}_k \cdot \hat{\sigma} \]

\(\nu \) is the number of times \(\frac{\mathbf{h}_k}{|\mathbf{h}_k|} \) wraps the sphere in the BZ

e.g. BZ of the honeycomb lattice

The “spins” precess in new \(\mathbf{h}_k \), but preserve their winding number

[D’Alessio & Rigol, arXiv:1409.6319]
Preservation of Chern Number

Band Hamiltonian describes a “spin” in an effective magnetic field

\[\hat{H}_k = -\mathbf{h}_k \cdot \hat{\sigma} \]

band gap \(\Rightarrow |\mathbf{h}_k| \neq 0 \)

\(\nu \) is the number of times \(\frac{\mathbf{h}_k}{|\mathbf{h}_k|} \) wraps the sphere in the BZ

e.g. BZ of the honeycomb lattice

The “spins” precess in new \(\mathbf{h}_k \), but preserve their winding number

[D’Alessio & Rigol, arXiv:1409.6319]

Out of equilibrium, the Chern number of the state is different from that of the (new) Hamiltonian
(2) Real Space: Edge States and Edge Currents

At equilibrium, the Chern insulator has ν gapless edge states.
At equilibrium, the Chern insulator has ν gapless edge states.

How do edge currents change after a quench to new Hamiltonian?
(2) Real Space: Edge States and Edge Currents

At equilibrium, the Chern insulator has ν gapless edge states.

How do edge currents change after a quench to new Hamiltonian?

Finite-width strip (infinite length)

N rows of lattice sites
Edge States

\[
t_1 = 1, \ t_2 = 1/3, \ M = 1, \ N = 20
\]

Non-topological (\(\varphi = \pi/6\))
Topological (\(\varphi = \pi/3\))

Topological phase has edge states
Dynamics of Edge Currents

Quench from topological to non-topological phase

\[t_1 = 1, \quad t_2 = 1/3, \quad \varphi = \pi/3, \quad M = 1.4 \rightarrow 1.6 \quad \text{(inset, 2.2)} \]

Red Line: Ground state current of final Hamiltonian

\[N = 30 \quad \text{(circles)} \]
\[N = 40 \quad \text{(crosses)} \]
Dynamics of Edge Currents

Quench from topological to non-topological phase

\[t_1 = 1, \quad t_2 = 1/3, \quad \varphi = \pi/3, \quad M = 1.4 \rightarrow 1.6 \ (\text{inset}, \ 2.2) \]

\(J_N(t) \)

Red Line: Ground state current of final Hamiltonian

⇒ fast relaxation to (close to) the ground state edge current of the new Hamiltonian

\(N = 30 \) (circles)

\(N = 40 \) (crosses)
Dynamics of Edge Currents

Quench from non-topological to topological phase

\[J_{\text{edge}}(t) \]

Red Line: Ground state current of final Hamiltonian

⇒ fast relaxation to (close to) the ground state edge current of the new Hamiltonian
(1) Momentum space: Preservation of the Chern number ν

Measure the wave function, e.g. by time-of-flight

[Zhao et al., PRA 84, 063629 (2011); Alba et al., PRL 107, 235301 (2011); Hauke et al., PRL 113, 045303 (2014)]

Amplitude Phase Berry curvature

[Fläschner et al. [Hamburg], arXiv:1509.05763]
Experimental Consequences

(1) Momentum space: Preservation of the Chern number ν

Measure the *wave function*, e.g. by time-of-flight

[Zhao *et al.*, PRA 84, 063629 (2011); Alba *et al.*, PRL 107, 235301 (2011); Hauke *et al.*, PRL 113, 045303 (2014)]

Amplitude Phase Berry curvature

[Fläschner *et al.*[Hamburg], arXiv:1509.05763]

(2) Real space: Relaxation dynamics of edge currents

Measure currents, e.g. as for two-leg ladders

[Local version (microscope) should show light-cone spreading]
Summary

- Optical lattices allow dynamical changes in the topology of energy bands.
- For a BEC, the evolution can be adiabatic:
 - allows \textit{adiabatic} preparation dense vortex lattices.
- For fermionic band insulators, the dynamics is \textit{non-adiabatic}:
 - the Chern number of the state is preserved;
 - edge currents quickly relax to (close to) the equilibrium for the new Hamiltonian.

⇒ Out of equilibrium there can be a sharp distinction between the topology of the state and local observables.