Correlated Phases of Atomic Bose Gases on a Rotating Lattice

Nigel Cooper Cavendish Laboratory, Cambridge

Low-D Quantum Condensed Matter Workshop, ITP Amsterdam, 11 July 2009.

[Gunnar Möller & NRC, arXiv:0904.3097]

Overview

- Strongly Correlated Phases of Ultracold Atomic Bose Gases
- Atomic Bose Gases on a "Rotating Lattice"
- Strongly Correlated Phases: Numerical Evidence
- Summary

Strongly Correlated Phases of Atomic Bose Gases

(1) Optical Lattice

[Bloch, Dalibard & Zwerger, RMP 80, 885 (2008)]

Bose-Hubbard model

[Jaksch et al., PRL 81, 3108 (1998)]

$$H = -J\sum_{\langle \alpha,\beta \rangle} \left[\hat{b}_{\alpha}^{\dagger} \hat{b}_{\beta} + h.c. \right] + \frac{1}{2}U\sum_{\alpha} \hat{n}_{\alpha}(\hat{n}_{\alpha} - 1) - \mu \sum_{\alpha} \hat{n}_{\alpha}$$

Strongly correlated regime for $U/J \gg 1$ at particle density $n \sim 1$.

- T = 0: competition between
- superfluid (BEC)
- Mott insulators, at n = 1, 2, ...

[Fisher et al., PRB 40, 546 (1989)]

Transition to Mott insulator observed in experiment [Greiner et al., Nature 415, 39 (2002)]

Strongly Correlated Phases of Atomic Bose Gases

(2) Rapid Rotation

Rotation frequency, Ω

Quantized vortices

Vortex density $n_{\rm v} = \frac{2M\Omega}{h}$

[Coddington et al. [JILA], PRA **70**, 063607 (2004)]

Strong correlation regime for $\Omega \to \omega_{\perp}$

[Bloch, Dalibard & Zwerger, RMP 80, 885 (2008)]

Filling Factor
$$u \equiv \frac{n_{
m 2d}}{n_{
m v}}$$

[NRC, Wilkin & Gunn, PRL 87, 120405 (2001)]

Critical filling factor $\nu_{\rm c}\simeq 6$

- $\nu > \nu_{\rm c}$: Vortex Lattice (BEC)
- $\nu < \nu_c$: *Bosonic* versions of fractional quantum Hall states: Laughlin, hierarchy/CF, Moore-Read & Read-Rezayi phases, smectic +...? [For a review, see: NRC, Adv. Phys. **57**, 539 (2008)]

Experimental challenges:

- the interaction scale at $u \sim 1$ is small
- rotating gas susceptible to "heating" by static perturbations.

Atomic Bose Gases on a "Rotating Lattice"

- Rotating lattice [Tung, Schweikhard, Cornell (2006); Williams *et al.* (2008)]
- Tunneling phases [Jaksch & Zoller (2003); Mueller (2004); Sørensen, Demler & Lukin (2005)]

Bose-Hubbard model with "magnetic field" (2D square lattice)

$$\begin{split} H &= -J \sum_{\langle \alpha, \beta \rangle} \left[\hat{b}_{\alpha}^{\dagger} \hat{b}_{\beta} e^{iA_{\alpha\beta}} + h.c. \right] + \frac{1}{2} U \sum_{\alpha} \hat{n}_{\alpha} (\hat{n}_{\alpha} - 1) - \mu \sum_{\alpha} \hat{n}_{\alpha} \\ \end{split}$$
Particle density, n
Interaction strength, U/J
Vortex density, n_v
4 3

$$\sum_{\text{plaquette}} A_{\alpha\beta} = 2\pi n_{v} \\ (0 \le n_{v} < 1)$$

What are the groundstates of bosons on a "rotating lattice"?

Single particle spectrum is the "Hofstadter butterfly"

[Harper, Proc. Phys. Soc. Lond. A 68, 874 (1955); Hofstadter, PRB 14, 2239 (1976)]

 $n, n_v \ll 1 \Rightarrow$ continuum limit [Sørensen, Demler & Lukin, PRL (2005); Hafezi *et al.*, PRA (2007)]

Are there new strongly correlated phases on the lattice for $n \sim n_v \sim 1$? Hard-core limit $U \gg J \Rightarrow 0 \le n_\alpha \le 1$ [frustrated spin-1/2 quantum magnet]

Composite Fermions

Rapidly rotating bosons in the continuum

Composite fermion = a bound state of a boson with *one vortex*.

[NRC & Wilkin, PRB 80, 16279 (1999)]

$$\Psi_{\mathrm{B}}(\{\boldsymbol{r}_i\}) \propto \mathcal{P}_{LLL} \prod_{i < j} (z_i - z_j) \psi_{\mathrm{CF}}(\{\boldsymbol{r}_i\})$$

$$n_{\rm v}^{\rm CF} = n_{\rm v} - n$$

CFs fill p Landau levels for

$$\frac{n}{n_{\rm v}^{\rm CF}} = \pm p \qquad \Rightarrow \qquad \nu = \frac{n}{n_{\rm v}} = \frac{p}{p \pm 1}$$

 $\Rightarrow (trial) \text{ incompressible states of interacting bosons,} \\ \text{describe exact groundstates well for } \nu = 1/2, 2/3, (3/4) \\ \text{[NRC & Wilkin, PRB (1999); Regnault & Jolicoeur, PRL (2003); ...]}$

Filled band of CFs at $(n, n_v^{CF}) \Rightarrow$ trial incompressible state of bosons at (n, n_v)

There can exist incompressible states with no counterpart in the continuum

Gaps for non-interacting CFs

band-gaps

Do these new phases describe the exact groundstates?

Numerical Methods

• Exact Diagonalization

 $L_x \times L_y$ square lattice, with periodic boundary conditions (torus).

$$N = nL_x L_y$$
$$N_v = n_v L_x L_y$$

• Low-energy spectrum (Lanczos) for hard-core interactions $U \gg J$.

• Limited by finite size effects, $N \leq 6$.

Composite Fermion Wavefunction

<u>Continuum</u>

$$\Psi_{\rm B}(\{\boldsymbol{r}_i\}) \propto \mathcal{P}_{LLL} \prod_{i < j} (z_i - z_j) \psi_{\rm CF}(\{\boldsymbol{r}_i\})$$

Slater det. of lowest Landau level wavefunctions: $\nu = 1$ state of fermions.

<u>Lattice</u>

[G. Möller & NRC, arXiv:0904.3097]

$$\Psi_{\rm B}(\{\boldsymbol{r}_i\}) \propto \underbrace{\psi_{\rm J}^{(\phi_x,\phi_y)}(\{\boldsymbol{r}_i\})}_{\nu = 1 \text{ state of fermions.}} \psi_{\rm CF}^{(-\phi_x,-\phi_y)}(\{\boldsymbol{r}_i\})$$

• Hard-core bosons.

- Generalized periodic boundary conditions: phases (ϕ_x, ϕ_y) .
 - Recovers the two $\nu = 1/2$ Laughlin wavefunctions in continuum limit.

[Haldane & Rezayi, PRB **31**, 2529 (1985)]

CF states stabilized by the lattice

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

1

On
$$n_{\rm v} = \frac{1}{2}(1-n)$$
:

Groundstate is consistent with the CF state for $n \lesssim 1/5$

Overlap with trial CF state

n	n_{ϕ}	N	L_x	L_y	$ \langle \Psi \Psi_{ m trialCF} angle ^2$	$\dim(\mathcal{H})$
1/7	3/7	2	2	7	0.437	91
1/7	3/7	3	3	7	0.745	1330
1/7	3/7	4	4	7	0 [0.2753]	20.5k
1/7	3/7	5	5	7	0.5631	324k
1/7	3/7	6	6	7	0.3284	5.2M
1/9	4/9	2	2	9	0.3603	153
1/9	4/9	3	3	9	0.8407	2925
1/9	4/9	4	4	9	0 [0.1515]	58.9k
1/9	4/9	4	6	6	0.3061	58.9k
1/9	4/9	5	5	9	0.4585	1.2M
1/9	4/9	6	6	9	0 [0.1957]	25.8M

- Sizeable overlap with CF state (no free parameters!)
- Correct groundstate degeneracy on the torus (1).
- Correct Chern number (2), tested for $N \leq 5$.

Evidence for wider applicability of CF ansatz.

Summary

• Ultracold atomic Bose gases on a rotating lattice offer the possibility to explore novel aspects of the FQHE: the FQHE of bosons; the interplay of the FQHE and lattice periodicity.

• A generalized composite fermion construction leads to the prediction of strongly correlated incompressible phases of bosons at certain (n, n_v) , including states which are stabilized by the lattice.

• We find numerical evidence for uncondensed incompressible fluids for several of the predicted cases. This shows a wider applicability of the CF construction than its continuum formulation.

• There are many other cases (n, n_v) to understand: points of failure of the CF construction can help to identify other competing phases.