The Half-Filled Landau Level

Nigel Cooper Department of Physics, University of Cambridge

Celebration for Bert Halperin's 75th January 31, 2017

Chong Wang, Bert Halperin & Ady Stern

[C. Wang, NRC, B. I. Halperin & A. Stern, arXiv:1701.00007]

Outline

HLR Composite Fermion Liquid

Particle-Hole Symmetry Dirac CFL Cyclotron radius Hall conductivity

Discussion & Summary

The Half-Filled Landau Level

2D band + magnetic field B^{ext} (no spin!)

[Willett, Eisenstein, Störmer, Tsui, Gossard, English, 1987]

Nigel Cooper, University of Cambridge

The Half-Filled Landau Level

"Unquantized Quantum Hall Effect"

Composite Fermion Liquid

[Halperin, Lee & Read, 1993]

$$\hat{H} = \sum_{i} \frac{(\mathbf{p}_{i} + e\mathbf{A}_{i}^{\text{ext}})^{2}}{2m_{e}} + \sum_{i < j} V(\mathbf{r}_{i} - \mathbf{r}_{j})$$

$$\rightarrow \sum_{i} \frac{(\mathbf{p}_{i} + e\mathbf{a}_{i} + e\mathbf{A}_{i}^{\text{ext}})^{2}}{2m_{e}} + \sum_{i < j} V(\mathbf{r}_{i} - \mathbf{r}_{j})$$

fermion = electron + 2 flux of auxiliary magnetic field $\nabla_i \times \mathbf{a}_i = -2\frac{h}{e}\sum_{j \neq i} \delta(\mathbf{r}_i - \mathbf{r}_j)$

mean-field theory, $B^{\text{eff}} = B^{\text{ext}} - 2\frac{h}{e}n$

•
$$B^{\text{eff}} = 0$$
 at $\nu = 1/2 \Rightarrow$ Fermi surface $(m^*, F_{\ell},...)$

•
$$\nu = \frac{p}{2p+1} \Rightarrow CFs \text{ fill } p \text{ LLs (FQH states)}$$

Composite Fermion Liquid

[Willett, West & Pfeiffer, 1993]

Dirac CFL Cyclotron radius Hall conductivity

Particle-Hole Symmetry

particle-hole symmetry at u = 1/2 [two-body forces]

HLR theory is not explicitly particle-hole symmetric... ...is it even *incompatible* with this symmetry?

Dirac CFL Cyclotron radius Hall conductivity

Dirac Composite Fermion Liquid [D.T. Son, 2015]

[Son; Wang & Senthil; Metlitski &Vishwanath; Mross, Alicea & Motrunich;...]

2D Dirac cone + magnetic field B^{ext}

Nigel Cooper, University of Cambridge The Half-Filled Landau Level

Dirac CFL Cyclotron radius Hall conductivity

(1) HLR vs Dirac: Cyclotron radius

$$R_{c}^{\text{eff}} \equiv \frac{k_{F}\hbar}{e|B^{\text{eff}}|} = \frac{k_{F}}{2\pi|n - n_{\phi}/2|}$$
At fixed $n_{\phi} = \frac{eB^{\text{ext}}}{h}$ particle-hole symmetry relates n to $n_{\phi} - n$
HLR: $n_{\text{CF}}^{\text{HLR}} = n$
Dirac: $n_{\text{CF}}^{\text{Dirac}} = \frac{1}{2}\frac{eB^{\text{ext}}}{h}$

$$k_{F}$$

HLR appears inconsistent with particle-hole symmetry

but, we need to calculate a physical observable...

[C. Wang, NRC, B.I. Halperin & A. Stern, arXiv:1701.00007]

Dirac CFL Cyclotron radius Hall conductivity

HLR CFL: Finite wavevector response

Semiclassical analysis within RPA...

...minima of magnetoroton spectrum <u>close to</u> $qR_c^{\text{eff}} \simeq \pi(i+1/4)$

▷ Keeping corrections to order $(n - n_{\phi}/2)^2$, the same theory shows particle-hole symmetry [C. Wang, NRC, B.I. Halperin & A. Stern, arXiv:1701.00007]

Dirac CFL Cyclotron radius Hall conductivity

(2) HLR vs Dirac: Hall conductivity

Particle-hole symmetry $\Rightarrow \sigma_{xy} = \frac{1}{2} \frac{e^2}{h}$

[Kivelson, Lee, Krotov & Gan, 1997]

For HLR:
$$\hat{\sigma} = \left[\hat{\rho}^{CF} + \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix} \frac{h}{e^2}\right]^{-1}$$

particle-hole symmetry would require $\sigma_{xy}^{CF} = -\frac{1}{2}\frac{e^2}{h}$

But... ...for particle-hole symmetric disorder... V(r) $\delta n^{CF}(\mathbf{r}) = -\chi V(\mathbf{r})$, $\delta B^{eff}(\mathbf{r}) = -2\frac{h}{e}\delta n^{CF}(\mathbf{r})$

CFs experience vanishing average magnetic field $\Rightarrow \sigma_{xy}^{CF} = 0$ (?)

Dirac CFL Cyclotron radius Hall conductivity

Hall conductivity of HLR state

[C. Wang, NRC, B. I. Halperin & A. Stern, arXiv:1701.00007]

Correlation of scalar potential with magnetic field

CFs move faster where $\delta B^{\mathrm{eff}} < 0 \Rightarrow$ larger Lorentz force ($\sigma_{xy}^{\mathrm{CF}} < 0$)

▷ Full calculation*
$$\Rightarrow \sigma_{xy}^{CF} = -\frac{1}{2} \frac{e^2}{h}$$

as required for particle-hole symmetry

[*classical "Kubo" formula, or quantum calculation of "side-jump" scattering in Born approx.]

Discussion

- HLR theory makes predictions for low-frequency and long-wavelength observables that are consistent with particle-hole symmetry.
- It is far from obvious that these results should emerge from the HLR theory. (Certainly not a convenient route!)
- A stronger feature: these results hold even in the absence of microscopic particle-hole symmetry (e.g. m_e ≠ 0, or ν = 1/4)
 - ⇒ emergent particle-hole symmetry
- Open issues: suppressed 2k_F backscattering, Hall viscosity...

[Geraedts et al., Science 2016; Levin & Wen, arXiv 2016;...]

Summary

- The HLR theory is compatible with particle-hole symmetry: HLR and Dirac theories describe the same phase of matter.
- Renewed interest has raised new questions and created links to other areas of physics (exotic phases on surfaces of topological insulators, quantum spin liquids, fermionic dualities...).
- The "unquantized quantum Hall effect" remains an inspiring and intriguing area of investigation.