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Strongly Correlated Phases of Atomic Bose Gases

(1) Optical Lattice [Bloch, Dalibard & Zwerger, RMP 80, 885 (2008)]

Bose-Hubbard model [Jaksch et al., PRL 81, 3108 (1998)]

Ĥ = −J
∑

〈i,j〉

[

â†i âj + h.c.
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1
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U
∑
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∑
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n̂i



Strongly correlated regime for U/J ≫ 1
at particle density n ∼ 1.

T = 0: competition between

• superfluid (BEC)

• Mott insulators, at n = 1, 2, . . .

[Fisher et al., PRB 40, 546 (1989)]

Transition to Mott insulator observed in experiment [Greiner et al., Nature 415, 39 (2002); . . .]
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Strongly Correlated Phases of Atomic Bose Gases

(2) Rapid Rotation [Bloch, Dalibard & Zwerger, RMP 80, 885 (2008)]

Rotation frequency, Ω

Quantized vortices

Vortex density nv = 2MΩ
h

[Coddington et al. [JILA], PRA 70, 063607 (2004)]

Strong correlation regime for Ω → ω⊥



Filling Factor ν ≡ n2d

nv

Critical filling factor νc ≃ 6

• ν > νc: Vortex Lattice (BEC)

• ν < νc: Bosonic versions of fractional quantum Hall states:
Laughlin, hierarchy/CF, Moore-Read & Read-Rezayi phases, smectic +...?

[For a review, see: NRC, Adv. Phys. 57, 539 (2008)]

Experimental challenges:

• the interaction scale at ν ∼ 1 is small;

• rotating gas susceptible to “heating” by static perturbations.



Bose-Hubbard Model + Gauge Fields

[Jaksch & Zoller (2003); Mueller (2004); Sørensen, Demler & Lukin (2005); Gerbier & Dalibard (2010)]

Bose-Hubbard model with “magnetic field” (2D square lattice)

Ĥ = −J
∑

〈i,j〉

[

â†i âje
iAij + h.c.

]

+
1

2
U
∑

i

n̂i(n̂i − 1)− µ
∑

i

n̂i

Gauge invariant fluxes nv = nφ =
1

2π
[A12 +A23 +A34 +A41]

(0 ≤ nv < 1)

Vortex/flux density, nv ∼ 1

Particle density, n ∼ 1

Interaction strength, U/J >
∼ 1

4 3

21
A

What are the groundstates for interacting bosons?



Uniform nv: Single particle spectrum is the “Hofstadter butterfly”
[Harper, Proc. Phys. Soc. Lond. A 68, 874 (1955); Hofstadter, PRB 14, 2239 (1976)]
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n, nv ≪ 1 ⇒continuum limit [Sørensen, Demler & Lukin, PRL (2005); Hafezi et al., PRA (2007)]

Are there new strongly correlated phases on the lattice for n ∼ nv ∼ 1?



Hard-core limit, U ≫ J

0 ≤ ni ≤ 1 ⇒spin-1/2 system: ŝzi = n̂i − 1
2, ŝ

+
i = â†i , ŝ

−
i = âi

Ĥ = −J
∑

〈i,j〉

[

ŝ+i ŝ
−
j e

iAij + h.c.
]

− µ
∑

i

ŝzi + const.

Frustrated quantum magnet.

Mean-field theory: ~s = S(sin θ cosφ, sin θ sinφ, cos θ)

H = −2JS2
∑

〈i,j〉 sin θi sin θj cos(φi − φj +Aij)− µS
∑

i cos θi

−J

−J

−J2πnv− J cos(       )

Are there “spin-liquid” phases? [NB Energy scale, J , is large!]



(1) Uniform Flux: Strongly Correlated Phases



(1) Uniform Flux: Strongly Correlated Phases

Composite Fermions [Jain, Read, Girvin, Fradkin,. . . ]

Interacting electrons in magnetic field ⇒non-interacting composite fermions.

[Illustration by Kwon Park]

Composite fermion = bound state of an electron with two flux quanta.



Composite Fermions

Rapidly rotating bosons in the continuum

Composite fermion = a bound state of a boson with one vortex.
[NRC & Wilkin, PRB 80, 16279 (1999)]

ΨB({ri}) ∝ PLLL

∏

i<j

(zi− zj) ψCF({ri})
[

z = (x+ iy)/ℓ ℓ = 1/
√
2πnv

]

nCF
v = nv − n

CFs fill p Landau levels for

n

nCF
v

= ±p ⇒ ν =
n

nv
=

p

p± 1

⇒(trial) incompressible states of interacting bosons,
describe exact groundstates well for ν = 1/2, 2/3, (3/4)

[NRC & Wilkin, PRB (1999); Regnault & Jolicoeur, PRL (2003); . . .]



Lattice: CF spectrum is the “Hofstadter butterfly”
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Filled band of CFs at (n, nCF
v ) ⇒trial incompressible state of bosons at (n, nv)

There can exist incompressible states with no counterpart in the continuum



Gaps for non-interacting CFs [G. Möller & NRC, PRL 103, 105303 (2009)]
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Do these new phases describe the exact groundstates?



Numerical Methods

• Exact Diagonalization

Lx × Ly square lattice, with
periodic boundary conditions
(torus).

N = nLxLy

Nv = nvLxLy 1 2 Lx

1

Ly

2

• Low-energy spectrum (Lanczos) for hard-core interactions.

• Limited by finite size effects, N ≤ 6.



CF states stabilized by the lattice
[G. Möller & NRC, PRL 103, 105303 (2009)]

Evidence for strongly correlated states
at a series of these new cases.
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On nv = 1
2(1− n): Groundstate is consistent with the CF state for n <

∼ 1/5.

• Uncondensed.

• Large overlaps with a trial CF state.

• Correct groundstate degeneracy on the torus (1).

• Correct Chern number (2).

Evidence for wider applicability of CF ansatz.



(2) Staggered Flux: Condensed Phases



(2) Staggered Flux: Condensed Phases

Staggered Fluxes

Easiest to generate in scheme of [Gerbier & Dalibard (2010)]

Aij = 2παyi(xi − xj)× (−1)xi +α

+α +α

+α

+α−α

−α

−α

+α

0

0

y

x1 2 3

1

2

3

cf. checkerboard staggered fluxes [Lim, Morais Smith & Hemmerich, PRL 100, 130402 (2008)]

Special case for α = 1/2: gauge-equivalent to uniform nv = 1/2
time-reversal symmetry, eiAij = ±1
“fully frustrated” magnet [Villain, J Phys C 10, 1717 (1977)]



Staggered Fluxes: Single Particle Spectrum

ψi = ei(kxxi+kyyi) ×
{

ψe xi even
ψoe

i2παyi xi odd

Groundstate is two-fold degenerate for α > αc ≃ 0.29.
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Gross-Pitaevskii Mean-Field Theory

Fully condensed state

|Ψ〉 =
(

∑

i

ψc
i â

†
i

)N

|0〉

Energy per particle (N ≫ 1)

〈Ĥ〉
N

= −J
∑

〈i,j〉

[

ψc∗
i ψ

c
je

iAij + ψc∗
j ψ

c
ie

iAji
]

+
U

2
N
∑

i

|ψc
i |4

Weak Coupling, nU ≪ J

ψc ≃ AψkA +BψkB ⇒ minimize
∑

i |ψc
i |4

|A|, |B| 6= 0 ⇒broken translational invariance



Mean-Field Theory: Results

α = 1/2 kAy − kBy = π
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ψc
± =

1√
2

[

ψkA ± iψkB

]

• Broken translational invariance (∆y = 2)

• Broken time-reversal symmetry

• “Staggered Flux” Phase
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α = 0.389 kAy − kBy = 2π/3
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ψc =
1√
2

[

ψkA + eiφψkB

]

• Interaction energy independent of φ ⇒“Goldstone” mode.

• Increasing nU/J selects φ = 0,±2π/3.

• Broken translational invariance (∆y = 3)



Numerical Methods

• Exact Diagonalization

Lx × Ly square lattice, with
periodic boundary conditions
(torus).

N = nLxLy
1 2 Lx

1

Ly

2

+α

+α

+α

+α−α

−α

−α

−α

• Low-energy spectrum (Lanczos).

• Limited by finite size effects, N ≤ 12.



Condensed Fraction

Single-particle density matrix of the groundstate

ρij = 〈Ψ0|â†i âj|Ψ0〉

“Simple” BEC: One eigenvalue, λ0, is of order N .

Condensate fraction [Yang, Rev. Mod. Phys. 34, 694 (1962)]

xc ≡
λ0
N

Condensate wavefunction from eigenvector.



Condensed Fraction with Symmetry Breaking

If the condensed state has D-fold degeneracy, related by symmetries of the
underlying Hamiltonian (e.g. D = 2 for staggered flux phase)

• Exact groundstate is “fragmented”, with D large eigenvalues.

• Lowest energy spectrum breaks into D-fold (quasi-) degenerate states.

[e.g. Mueller, Ho, Ueda & Baym, PRA (2006)]



Condensed Fraction with Symmetry Breaking

General Numerical Method

(1) From the energy spectrum, identify an emerging quasi-degenerate set of
groundstates |Ψµ

0〉 (µ = 1, D).

(2) Construct |Ψc〉 ≡
D
∑

µ=1

cµ|Ψµ
0〉.

(3) Maximize the eigenvalue of the resulting single-particle density matrix

Xc ≡ max
cµ

[xc(cµ)]

⇒condensate fraction and condensate wavefunction.



Condensate fraction for α = 1/2

MFT Staggered flux state (D = 2), ψc
±.

Exact results

• The inferred condensed state is exactly the mean-field state.

• Condensate depletion up to ∼ 50%.
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Condensate fraction for α = 0.389

MFT

• nU ≪ J continuous degeneracy (additional Goldstone mode)

• Increasing nU/J selects φ = 0,±2π/3. (D = 3)

Exact results assuming D = 3

• Qualitative agreement with MFT state for nU/J >
∼ 0.01
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Expansion Imaging

Expansion under Ĥfree: no potentials, no gauge field, (neglect interactions)

After time t
n(x) = (M/~t)

3 |w̃(k)|2G(k)

k =Mx/~t, w̃(k) from Wannier orbital [Bloch, Dalibard & Zwerger, RMP (2008)]

G(k) =
∑

i,j

eik·(ri−rj)〈â†i âj〉

≃
∑

i,j

eik·(ri−rj)ψc∗

i ψ
c
j [pure condensate]



1. Gauge Invariance

Ĥ = −J
∑

〈i,j〉

[

â†i âje
iAij + h.c.

]

+
1

2
U
∑

i

n̂i(n̂i − 1)− µ
∑

i

n̂i

Change of gauge Aij → A′
ij = Aij + Si − Sj

Removed by the redefinition âi → â′i ≡ âie
−iSi

All physical properties of Ĥ (spectrum, response functions, ...) are
gauge-invariant.

Density matrix
〈â†i âj〉 → 〈â′†i â′j〉 = ei(Si−Sj)〈â†i âj〉

The expansion image, under Ĥfree, is sensitive to Si ⇒“gauge-dependent”.



Example: Staggered flux phase

• In our gauge, the two states ψc
± are related by ψc

− = (ψc
+)

∗

⇒G+(k) = G−(k)

G (k)=G (k)+ −

π/ay

π/ax
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• In the gauge of [Lim, Morais Smith & Hemmerich, PRL 100, 130402 (2008)]

ψc
+ = 1

ψc
− = (−1)xeiπ/2[mod(x+y,2)]



2. Phase Imprinting

Use potentials/optical dressing to imprint of phases eiSi prior to release.

e.g. Si = ǫ×mod(xi, 2)mod(yi, 2)
eiε

eiε eiε

eiε

0

0

y

x1 2 3
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3

ǫ 6= 0 distinguishes staggered flux phases, G+(k) 6= G−(k)

G (k)=G (k)+ − +G (k) −G (k)
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Summary

• Atomic Bose gases on a lattice with gauge fields offer the possibility to explore
interesting strong correlation phenomena:
– the FQHE of bosons (at large energy scales);
– the interplay of the FQHE and lattice periodicity;
– equivalent to a class of frustrated quantum magnets (energy scale J).

(1) Uniform Flux

• A generalized composite fermion construction leads to the prediction of strongly
correlated phases of bosons, including states which are stabilized by the lattice.

• We find numerical evidence for the appearance of these phases for several of the
predicted cases. This shows a wider applicability of the CF construction.

(2) Staggered Flux

• Allowing for translational symmetry breaking, we find that exact diagonalization
studies are consistent with the mean-field groundstates.

• Expansion images are gauge dependent. Imprinting phase patterns before
expansion can give useful additional information.


